A.A. Beilinson, Letter to Soulé, 1982.
Google Scholar
A.A. Beilinson, Height pairings between algebraic cycles. K-theory, arithmetic and geometry (Moscow, 1984–1986), 1–25, Lecture Notes in Math. 1289, Springer-Verlag, Berlin, 1987.
Google Scholar
P. Berthelot, A. Grothendieck et L. Illusie, Théorie des intersections et théorème de Riemann–Roch. Séminaire de Géometrie Algèbrique du Bois–Marie 1966–1967. Lecture Notes in Mathematics 225, Springer-Verlag, Berlin, 1971.
Google Scholar
S. Bloch, Algebraic K-theory and crystalline cohomology. Inst. Hautes Etudes Sci. Publ. Math. 47 (1977), 187–268.
MATH
CrossRef
MathSciNet
Google Scholar
S. Bloch, Algebraic Cycles and Higher K-theory. Adv. in Math. 61 (1986), 267–304.
MATH
CrossRef
MathSciNet
Google Scholar
S. Bloch, A note on Gersten’s conjecture in the mixed characteristic case. Appl. of Alg. K-theory to Alg. Geometry and Number Theory, Cont. Math. AMS 55 Part I (1986), 75–78.
Google Scholar
S. Bloch, Algebraic cycles and the Beilinson conjectures. The Lefschetz centennial conference, Part I (Mexico City, 1984), Cont. Math. AMS, 58, (1986), 65–79.
Google Scholar
S. Bloch, The moving lemma for higher Chow groups. J. Alg. Geom. 3 (1994), no. 3, 537–568.
MATH
MathSciNet
Google Scholar
S. Bloch, K. Kato, p-adic étale cohomology. Inst. Hautes Etudes Sci. Publ. Math. 63 (1986), 147–164.
CrossRef
MathSciNet
Google Scholar
S. Bloch, S. Lichtenbaum, A spectral sequence for motivic cohomology. Preprint 1995.
Google Scholar
S. Bloch, A. Ogus, Gersten’s conjecture and the homology of schemes. Ann. Sci. Ecole Norm. Sup. (4) 7 (1974), 181–201.
MATH
MathSciNet
Google Scholar
M. Bökstedt, W.C. Hsiang, I. Madsen, The cyclotomic trace and algebraic K-theory of spaces. Invent. Math. 111 (1993), 465–539.
MATH
CrossRef
MathSciNet
Google Scholar
A. Borel, Stable real cohomology of arithmetic groups. Ann. Sci. Ecole Norm. Sup. (4) 7 (1974), 235–272.
MATH
MathSciNet
Google Scholar
A.K. Bousfield, D.M. Kan, Homotopy limits, completions and localizations. Lecture Notes in Math. 304, Springer-Verlag, Berlin, 1972.
MATH
Google Scholar
K.S. Brown, S.M. Gersten, Algebraic K-theory as generalized sheaf cohomology. Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 266–292. Lecture Notes in Math. 341, Springer-Verlag, Berlin, 1973.
Google Scholar
G. Carlson, Deloopings in Algebraic K-theory. This volume.
Google Scholar
J.L. Colliot-Thélène, R. Hoobler, B. Kahn, The Bloch–Ogus–Gabber theorem. Fields Inst. Com. 16 (1997), 31–94.
Google Scholar
W.G. Dwyer, E.M. Friedlander, Algebraic and etale K-theory. Trans. Amer. Math. Soc. 292 (1985), 247–280.
MATH
CrossRef
MathSciNet
Google Scholar
Ph. Elbaz-Vincent, S. Muller-Stach, Milnor K-theory of rings, higher Chow groups and applications. Invent. Math. 148 (2002), no. 1, 177–206.
MATH
CrossRef
MathSciNet
Google Scholar
J.M. Fontaine, W. Messing, p-adic periods and p-adic étale cohomology. Contemp. Math. 67 (1987), 179–207.
MathSciNet
Google Scholar
E. Friedlander, A. Suslin, The spectral sequence relating algebraic K-theory to motivic cohomology. Ann. Sci. Ecole Norm. Sup. (4) 35 (2002), no. 6, 773–875.
MATH
MathSciNet
Google Scholar
Fujiwara, A proof of the absolute purity conjecture (after Gabber). Algebraic geometry 2000, Azumino, 153–183, Adv. Stud. Pure Math., 36, Math. Soc. Japan, Tokyo, 2002.
Google Scholar
W. Fulton, Intersection Theory. Springer 1984.
Google Scholar
O. Gabber, K-theory of Henselian local rings and Henselian pairs. Algebraic K-theory, commutative algebra, and algebraic geometry (Santa Margherita Ligure, 1989), Cont. Math. AMS 126 (1992), 59–70.
Google Scholar
T. Geisser, p-adic K-theory of Hecke characters of imaginary quadratic fields. Duke Math. J. 86 (1997), 197–238.
MATH
CrossRef
MathSciNet
Google Scholar
T. Geisser, Tate’s conjecture, algebraic cycles and rational K-theory in characteristic p. K-theory 13 (1998), 109–122.
MATH
CrossRef
MathSciNet
Google Scholar
T. Geisser, On K
3 of Witt vectors of length two over finite fields. K-Theory 12 (1997), no. 3, 193–226.
MATH
CrossRef
MathSciNet
Google Scholar
T. Geisser, Motivic cohomology over Dedekind rings. Math. Z. 248 (2004), 773–794.
MATH
CrossRef
MathSciNet
Google Scholar
T. Geisser, Weil-étale cohomology over finite fields. Math. Ann. 330 (2004), 665–691.
MATH
CrossRef
MathSciNet
Google Scholar
T. Geisser, L. Hesselholt, Topological Cyclic Homology of Schemes. K-theory, Proc. Symp. Pure Math. AMS 67 (1999), 41–87.
Google Scholar
T. Geisser, L. Hesselholt, K-theory and topological cyclic homology of smooth schemes over discrete valuation rings. To appear in: Trans. AMS.
Google Scholar
T. Geisser, L. Hesselholt, The de Rham–Witt complex and p-adic vanishing cycles. Preprint 2003.
Google Scholar
T. Geisser, M. Levine, The p-part of K-theory of fields in characteristic p. Inv. Math. 139 (2000), 459–494.
MATH
CrossRef
MathSciNet
Google Scholar
T. Geisser, M. Levine, The Bloch–Kato conjecture and a theorem of Suslin–Voevodsky. J. Reine Angew. Math. 530 (2001), 55–103.
MATH
MathSciNet
Google Scholar
H. Gillet, Gersten’s conjecture for the K-theory with torsion coefficients of a discrete valuations ring. J. Alg. 103 (1986), 377–380.
MATH
CrossRef
MathSciNet
Google Scholar
H. Gillet, M. Levine, The relative form of Gersten’s conjecture over a discrete valuation ring: The smooth case. J. of Pure Appl. Alg. 46 (1987), 59–71.
MATH
CrossRef
MathSciNet
Google Scholar
H. Gillet, C. Soule, Filtrations on higher algebraic K-theory. Algebraic K-theory (Seattle, WA, 1997), 89–148, Proc. Sympos. Pure Math., 67, Amer. Math. Soc., Providence, RI, 1999.
Google Scholar
D. Grayson, Higher algebraic K-theory. II (after Daniel Quillen). Algebraic K-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976), pp. 217–240. Lecture Notes in Math. 551, Springer-Verlag, Berlin, 1976.
Google Scholar
D. Grayson, Weight filtrations via commuting automorphisms. K-theory 9 (1995), 139–172.
MATH
CrossRef
MathSciNet
Google Scholar
M. Gros, Classes de Chern et classes de cycles en cohomologie de Hodge–Witt logarithmique. Mém. Soc. Math. France (N.S.) 21 (1985).
Google Scholar
M. Gros, N. Suwa, La conjecture de Gersten pour les faisceaux de Hodge–Witt logarithmique. Duke Math. J. 57 (1988), 615–628.
MATH
CrossRef
MathSciNet
Google Scholar
A. Grothendieck, Eléments de géométrie algébrique. IV. Etude locale des schémas et des morphismes de schémas IV. Inst. Hautes Etudes Sci. Publ. Math. No. 32 (1967).
Google Scholar
L. Hesselholt, On the p-typical curves in Quillen’s K-theory. Acta Math. 177 (1996), 1–53.
MATH
CrossRef
MathSciNet
Google Scholar
L. Hesselholt, Algebraic K-theory and trace invariants. Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 415–425, Higher Ed. Press, Beijing, 2002.
Google Scholar
L. Hesselholt, K-theory of truncated polynomial algebras. This volume.
Google Scholar
L. Hesselholt, I. Madsen, On the K-theory of finite algebras over Witt vectors of perfect fields. Topology 36 (1997), no. 1, 29–101.
MATH
CrossRef
MathSciNet
Google Scholar
L. Hesselholt, I. Madsen, Cyclic polytopes and the K-theory of truncated polynomial algebras. Invent. Math. 130 (1997), no. 1, 73–97.
MATH
CrossRef
MathSciNet
Google Scholar
L. Hesselholt, I. Madsen, The K-theory of local fields. Annals of Math. 158 (2003), 1–113.
MATH
CrossRef
MathSciNet
Google Scholar
M. Hovey, B. Shipley, J. Smith, Symmetric spectra. J. Amer. Math. Soc. 13 (2000), no. 1, 149–208.
MATH
CrossRef
MathSciNet
Google Scholar
L. Illusie, Complexe de de Rham–Witt et cohomologie cristalline. Ann. Sci. Ecole Norm. Sup. 12 (1979), 501–661.
MATH
MathSciNet
Google Scholar
U. Jannsen, Continuous étale cohomology. Math. Ann. 280 (1988), 207–245.
MATH
CrossRef
MathSciNet
Google Scholar
U. Jannsen, Motives, numerical equivalence, and semi-simplicity. Invent. Math. 107 (1992), no. 3, 447–452.
MATH
CrossRef
MathSciNet
Google Scholar
B. Kahn, The Geisser–Levine method revisited and algebraic cycles over a finite field. Math. Ann. 324 (2002), 581–617.
MATH
CrossRef
MathSciNet
Google Scholar
B. Kahn, Algebraic K-theory, algebraic cycles and arithmetic geometry. This volume.
Google Scholar
K. Kato, Galois cohomology of complete discrete valuation fields. Lecture Notes Math. 967 (1982), 215–238.
CrossRef
Google Scholar
M. Kurihara, A Note on p-adic Etale Cohomology. Proc. Jap. Acad. 63A (1987), 275–278.
CrossRef
MathSciNet
Google Scholar
M. Levine, Mixed motives. Mathematical Surveys and Monographs, 57. American Mathematical Society, Providence, RI, 1998.
MATH
Google Scholar
M. Levine, Techniques of localization in the theory of algebraic cycles. J. Alg. Geom. 10 (2001), 299–363.
MATH
Google Scholar
M. Levine, K-theory and Motivic Cohomology of Schemes I. Preprint 2002.
Google Scholar
M. Levine, The homotopy coniveau filtration. Preprint 2003.
Google Scholar
M. Levine, Mixed motives. This volume.
Google Scholar
S. Lichtenbaum, Values of zeta-functions at non-negative integers. In: Number theory, Noordwijkerhout 1983, 127–138, Lecture Notes in Math. 1068, Springer-Verlag, Berlin, 1984.
Google Scholar
S. Lichtenbaum, Motivic complexes. Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, (1994), 303–313.
Google Scholar
S. Lichtenbaum, The Weil-étale topology. Preprint 2001.
Google Scholar
J.L. Loday, Cyclic homology. Grundlehren der Mathematischen Wissenschaften 301. Springer-Verlag, Berlin, 1992.
MATH
Google Scholar
H. Matsumura, Commutative Ring Theory. Cambridge Studies in Advanced Mathematics 8 (1986).
Google Scholar
R. McCarthy, Relative algebraic K-theory and topological cyclic homology. Acta Math. 79 (1997), 197–222.
CrossRef
MathSciNet
Google Scholar
J.S. Milne, Arithmetic duality theorems. Perspectives in Mathematics 1. Academic Press, Inc., Boston, MA, 1986.
MATH
Google Scholar
J.S. Milne, Values of zeta functions of varieties over finite fields. Amer. J. Math. 108 (1986), no. 2, 297–360.
MATH
CrossRef
MathSciNet
Google Scholar
J.S. Milne, Motivic cohomology and values of zeta functions. Comp. Math. 68 (1988), 59–102.
MATH
MathSciNet
Google Scholar
J.S. Milne, Etale cohomology. Princeton Math. Series 33.
Google Scholar
J.S. Milne, Motives over finite fields. Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., 55, Part 1, (1994), 401–459.
Google Scholar
J. Milnor, Algebraic K-theory and quadratic forms. Invent. Math. 9 (1969/1970), 318–344.
Google Scholar
Y. Nesterenko, A. Suslin, Homology of the general linear group over a local ring, and Milnor’s K-theory. Math. USSR-Izv. 34 (1990), no. 1, 121–145.
MATH
CrossRef
MathSciNet
Google Scholar
Y. Nisnevich, The completely decomposed topology on schemes and associated descent spectral sequences in algebraic K-theory. Algebraic K-theory: connections with geometry and topology (Lake Louise, AB, 1987), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 279 (1989), 241–342.
Google Scholar
I.A. Panin, The Hurewicz theorem and K-theory of complete discrete valuation rings. Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 763–775.
MATH
MathSciNet
Google Scholar
D. Popescu, General Neron Desingularisation and Approximation (Letter to the Editor). Nagoya Math. J. 118 (1990), 45–53.
MATH
MathSciNet
Google Scholar
D. Quillen, On the cohomology and K-theory of the general linear groups over a finite field. Ann. of Math. (2) 96 (1972), 552–586.
CrossRef
MathSciNet
Google Scholar
D. Quillen, Higher algebraic K-theory. In: Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), 85–147. Lecture Notes in Math. 341, Springer-Verlag, Berlin, 1973.
Google Scholar
P. Roberts, Multiplicities and Chern classes in local algebra, Cambridge Tracts in Mathematics 133 (1998).
Google Scholar
K. Sato, An étale Tate twist with finite coefficients and duality in mixed characteristic. Preprint 2002.
Google Scholar
P. Schneider, p-adic points of motives. Motives (Seattle, WA, 1991), Proc. Symp. Pure Math. AMS 55, Part 2, Amer. Math. Soc., Providence, RI (1994), 225–249.
Google Scholar
J.P. Serre, Algébre locale. Multiplicités. (French) Cours au Collège de France, 1957–1958, redige par Pierre Gabriel. Seconde edition, 1965. Lecture Notes in Mathematics 11, Springer-Verlag, Berlin, 1965.
Google Scholar
C. Soulé, K-théorie des anneaux d’entiers de corps de nombres et cohomologie étale. Inv. Math. 55 (1979), 251–295.
MATH
CrossRef
Google Scholar
C. Soulé, Groupes de Chow et K-théorie de variétés sur un corps fini. Math. Ann. 268 (1984), 317–345.
MATH
CrossRef
MathSciNet
Google Scholar
C. Soulé, Operations on etale K-theory. Applications. Algebraic K-theory, Part I (Oberwolfach, 1980), 271–303, Lecture Notes in Math. 966, Springer-Verlag, Berlin, 1982.
Google Scholar
A. Suslin, Higher Chow groups and étale cohomology. Ann. Math. Studies 132 (2000), 239–554.
MathSciNet
Google Scholar
A. Suslin, On the K-theory of local fields. J. Pure Appl. Alg. 34 (1984), 301–318.
MATH
CrossRef
MathSciNet
Google Scholar
A. Suslin, Algebraic K-theory and motivic cohomology. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zurich, 1994), 342–351, Birkhauser, Basel, 1995.
Google Scholar
A. Suslin, On the Grayson spectral sequence. Preprint 2002.
Google Scholar
A. Suslin, V. Voevodsky, Bloch–Kato conjecture and motivic cohomology with finite coefficients. The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., 548 (2000), 117–189.
Google Scholar
R. Swan, Néron–Popescu desingularization. Algebra and geometry (Taipei, 1995), 135–192, Lect. Algebra Geom., 2, Internat. Press, Cambridge, MA, 1998.
Google Scholar
J. Tate, Relations between K
2 and Galois ohomology. Invent. Math. 36 (1976), 257–274.
MATH
CrossRef
MathSciNet
Google Scholar
R.W. Thomason, Bott stability in algebraic K-theory. Applications of algebraic K-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), 389–406, Cont. Math. AMS 55, (1986).
Google Scholar
R.W. Thomason, Algebraic K-theory and etale cohomology. Ann. Sci. Ecole Norm. Sup. 18 (1985), 437–552.
MATH
MathSciNet
Google Scholar
R.W. Thomason, Les K-groupes d’un schéma éclaté et une formule d’intersection excédentaire. Invent. Math. 112 (1993), no. 1, 195–215.
MATH
CrossRef
MathSciNet
Google Scholar
R. Thomason, T. Trobaugh, Higher algebraic K-theory of schemes and of derived categories. The Grothendieck Festschrift, Vol. III, 247–435, Progr. Math., 88, Birkhäuser Boston, Boston, MA, 1990.
Google Scholar
B. Totaro, Milnor K-theory is the simplest part of algebraic K-theory. K-Theory 6 (1992), no. 2, 177–189.
MATH
CrossRef
MathSciNet
Google Scholar
V. Voevodsky, Homology of schemes. Selecta Math. (N.S.) 2 (1996), no. 1, 111–153.
MATH
CrossRef
MathSciNet
Google Scholar
V. Voevodsky, Triangulated categories of motives over a field. Cycles, transfers, and motivic homology theories, 188–238, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000.
Google Scholar
V. Voevodsky, On 2-torsion in motivic cohomology. Preprint 2001.
Google Scholar
V. Voevodsky, Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic. Int. Math. Res. Not. 7 (2002), 351–355.
CrossRef
MathSciNet
Google Scholar
V. Voevodsky, On motivic cohomology with Z/l-coefficients. Preprint 2003.
Google Scholar
F. Waldhausen, Algebraic K-theory of generalized free products. I, II. Ann. of Math. (2) 108 (1978), no. 1, 135–204.
CrossRef
MathSciNet
Google Scholar
F. Waldhausen, Algebraic K-theory of spaces. Algebraic and geometric topology (New Brunswick, N.J., 1983), 318–419, Lecture Notes in Math. 1126, Springer-Verlag, Berlin, 1985.
Google Scholar
C. Weibel. An introduction to homological algebra. Cambridge Studies in Advanced Mathematics, 38. Cambridge University Press, Cambridge, 1994.
MATH
Google Scholar
C. Weibel, Products in higher Chow groups and motivic cohomology. Algebraic K-theory (Seattle, WA, 1997), 305–315, Proc. Sympos. Pure Math. 67, Amer. Math. Soc., Providence, RI, 1999.
Google Scholar