Advertisement

Algebraic K-Theory of Rings of Integers in Local and Global Fields

  • Charles Weibel

Abstract

This survey describes the algebraic K-groups of local and global fields, and the K-groups of rings of integers in these fields. We have used the result of Rost and Voevodsky to determine the odd torsion in these groups.

Keywords

Abelian Group Spectral Sequence Galois Group Chern Class Global Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grzegorz Banaszak, Algebraic K -theory of number fields and rings of integers and the Stickelberger ideal, Ann. of Math. (2) 135 (1992), no. 2, 325–360. MR 93m:11121CrossRefMathSciNetGoogle Scholar
  2. 2.
    Grzegorz Banaszak and Wojciech Gajda, Euler systems for higher K -theory of number fields, J. Number Theory 58 (1996), no. 2, 213–252. MR 97g:11135zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    H. Bass, J. Milnor, and J.-P. Serre, Solution of the congruence subgroup problem for SLn (n 3) and Sp2n (n 2), Inst. Hautes Études Sci. Publ. Math. (1967), no. 33, 59–137. MR 39 #5574Google Scholar
  4. 4.
    H. Bass and J. Tate, The Milnor ring of a global field, Algebraic K-theory, II: “Classical” algebraic K-theory and connections with arithmetic (Proc. Conf., Seattle, Wash., Battelle Memorial Inst., 1972), Springer-Verlag, Berlin, 1973, pp. 349–446. Lecture Notes in Math., vol. 342. MR 56 #449Google Scholar
  5. 5.
    A Beilinson, Letter to Soulé, Not published, Jan. 11, 1996Google Scholar
  6. 6.
    M. Bökstedt and I. Madsen, Algebraic K -theory of local number fields: the unramified case, Prospects in topology (Princeton, NJ, 1994), Ann. of Math. Stud., vol. 138, Princeton Univ. Press, Princeton, NJ, 1995, pp. 28–57. MR 97e:19004Google Scholar
  7. 7.
    Armand Borel, Cohomologie réelle stable de groupes S -arithmétiques classiques, C. R. Acad. Sci. Paris Sér. A–B 274 (1972), A1700–A1702. MR 46 #7400MathSciNetGoogle Scholar
  8. 8.
    J. Browkin and A. Schinzel, On Sylow 2-subgroups of K2OF for quadratic number fields F, J. Reine Angew. Math. 331 (1982), 104–113. MR 83g:12011zbMATHMathSciNetGoogle Scholar
  9. 9.
    Joe Buhler, Richard Crandall, Reijo Ernvall, Tauno Mets¨ankyl¨a, and M. Amin Shokrollahi, Irregular primes and cyclotomic invariants to 12 million, J. Symbolic Comput. 31 (2001), no. 1–2, 89–96, Computational algebra and number theory (Milwaukee, WI, 1996). MR 2001m:11220Google Scholar
  10. 10.
    Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 94i:11105zbMATHGoogle Scholar
  11. 11.
    W. G. Dwyer, E. M. Friedlander, and S. A. Mitchell, The generalized Burnside ring and the K -theory of a ring with roots of unity, K-Theory 6 (1992), no. 4, 285–300. MR 93m:19010zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    W. G. Dwyer and S. A. Mitchell, On the K -theory spectrum of a smooth curve over a finite field, Topology 36 (1997), no. 4, 899–929. MR 98g:19006zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    W. G. Dwyer and S. A. Mitchell, On the K -theory spectrum of a ring of algebraic integers, K-Theory 14 (1998), no. 3, 201–263. MR 99i:19003zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    William G. Dwyer and Eric M. Friedlander, Algebraic and etale K -theory, Trans. Amer. Math. Soc. 292 (1985), no. 1, 247–280. MR 87h:18013zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Philippe Elbaz-Vincent, Herbert Gangl, and Christophe Soulé, Quelques calculs de la cohomologie de GLN(Z) et de la K -théorie de Z, C. R. Math. Acad. Sci. Paris 335 (2002), no. 4, 321–324. MR 2003h:19002zbMATHMathSciNetGoogle Scholar
  16. 16.
    Eric M. Friedlander and Andrei Suslin, The spectral sequence relating algebraic K -theory to motivic cohomology, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 6, 773–875. MR 2004b:19006zbMATHMathSciNetGoogle Scholar
  17. 17.
    Ofer Gabber, K -theory of Henselian local rings and Henselian pairs, Algebraic K-theory, commutative algebra, and algebraic geometry (Santa Margherita Ligure, 1989), Contemp. Math., vol. 126, Amer. Math. Soc., Providence, RI, 1992, pp. 59–70. MR 93c:19005Google Scholar
  18. 18.
    Howard Garland, A finiteness theorem for K2 of a number field, Ann. of Math. (2) 94 (1971), 534–548. MR 45 #6785CrossRefMathSciNetGoogle Scholar
  19. 19.
    Thomas Geisser and Marc Levine, The K -theory of fields in characteristic p, Invent. Math. 139 (2000), no. 3, 459–493. MR 2001f:19002zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Daniel R. Grayson, Finite generation of K -groups of a curve over a finite field (after Daniel Quillen), Algebraic K-theory, Part I (Oberwolfach, 1980), Lecture Notes in Math., vol. 966, Springer-Verlag, Berlin, 1982, pp. 69–90. MR 84f:14018Google Scholar
  21. 21.
    Hinda Hamraoui, Un facteur direct canonique de la K -théorie d’anneaux d’entiers algébriques non exceptionnels, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 11, 957–962. MR 2002e:19006zbMATHMathSciNetGoogle Scholar
  22. 22.
    G. Harder, Die Kohomologie S -arithmetischer Gruppen über Funktionenkörpern, Invent. Math. 42 (1977), 135–175. MR 57 #12780zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    B. Harris and G. Segal, Ki groups of rings of algebraic integers, Ann. of Math. (2) 101 (1975), 20–33. MR 52 #8222CrossRefMathSciNetGoogle Scholar
  24. 24.
    Robin Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, no. 52. MR 57 #3116zbMATHGoogle Scholar
  25. 25.
    Lars Hesselholt and Ib Madsen, On the K -theory of local fields, Ann. of Math. (2) 158 (2003), no. 1, 1–113. MR 1 998 478zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Bruno Kahn, Deux théorèmes de comparaison en cohomologie étale: applications, Duke Math. J. 69 (1993), no. 1, 137–165. MR 94g:14009zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Bruno Kahn, On the Lichtenbaum-Quillen conjecture, Algebraic K-theory and algebraic topology (Lake Louise, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 407, Kluwer Acad. Publ., Dordrecht, 1993, pp. 147–166. MR 97c:19005Google Scholar
  28. 28.
    Bruno Kahn, K -theory of semi-local rings with finite coefficients and étale cohomology, K-Theory 25 (2002), no. 2, 99–138. MR 2003d:19003zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    M. Kolster, T. Nguyen Quang Do, and V. Fleckinger, Correction to: “Twisted S -units, p -adic class number formulas, and the Lichtenbaum conjectures” [Duke Math. J. 84 (1996), no. 3, 679–717; MR 97g:11136], Duke Math. J. 90 (1997), no. 3, 641–643. MR 98k:11172Google Scholar
  30. 30.
    Ernst Eduard Kummer, Collected papers, Springer-Verlag, Berlin, 1975, Volume II: Function theory, geometry and miscellaneous, Edited and with a foreward by André Weil. MR 57 #5650bGoogle Scholar
  31. 31.
    Masato Kurihara, Some remarks on conjectures about cyclotomic fields and K -groups of Z, Compositio Math. 81 (1992), no. 2, 223–236. MR 93a:11091zbMATHMathSciNetGoogle Scholar
  32. 32.
    Marc Levine, Techniques of localization in the theory of algebraic cycles, J. Algebraic Geom. 10 (2001), no. 2, 299–363. MR 2001m:14014zbMATHMathSciNetGoogle Scholar
  33. 33.
    Stephen Lichtenbaum, On the values of zeta and L -functions. I, Ann. of Math. (2) 96 (1972), 338–360. MR 50 #12975CrossRefMathSciNetGoogle Scholar
  34. 34.
    Stephen Lichtenbaum, Values of zeta-functions, étale cohomology, and algebraic K -theory, Algebraic K-theory, II: “Classical” algebraic K-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer-Verlag, Berlin, 1973, pp. 489–501. Lecture Notes in Math., vol. 342. MR 53 #10765Google Scholar
  35. 35.
    Stephen Lichtenbaum, Values of zeta-functions at nonnegative integers, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983), Lecture Notes in Math., vol. 1068, Springer-Verlag, Berlin, 1984, pp. 127–138. MR 756 089Google Scholar
  36. 36.
    B. Mazur and A. Wiles, Class fields of abelian extensions of Q, Invent. Math. 76 (1984), no. 2, 179–330. MR 85m:11069zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    A. S. Merkurjev, On the torsion in K2 of local fields, Ann. of Math. (2) 118 (1983), no. 2, 375–381. MR 85c:11121CrossRefMathSciNetGoogle Scholar
  38. 38.
    A. S. Merkurjev and A. A. Suslin, The group K3 for a field, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 3, 522–545. MR 91g:19002MathSciNetGoogle Scholar
  39. 39.
    James S. Milne, Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton University Press, Princeton, N.J., 1980. MR 81j:14002zbMATHGoogle Scholar
  40. 40.
    John Milnor, Introduction to algebraic K -theory, Princeton University Press, Princeton, N.J., 1971, Annals of Mathematics Studies, no. 72. MR 50 #2304zbMATHGoogle Scholar
  41. 41.
    John W. Milnor and James D. Stasheff, Characteristic classes, Princeton University Press, Princeton, N. J., 1974, Annals of Mathematics Studies, no. 76. MR 55 #13428zbMATHGoogle Scholar
  42. 42.
    Stephen A. Mitchell, K (1)-local homotopy theory, Iwasawa theory, and algebraic K -theory, The K-theory Handbook, Springer-Verlag, Berlin, 2005Google Scholar
  43. 43.
    Stephen A. Mitchell, On the Lichtenbaum-Quillen conjectures from a stable homotopytheoretic viewpoint, Algebraic topology and its applications, Math. Sci. Res. Inst. Publ., vol. 27, Springer-Verlag, New York, 1994, pp. 163–240. MR 1 268 191Google Scholar
  44. 44.
    Stephen A. Mitchell,Hypercohomology spectra and Thomason’s descent theorem, Algebraic K-theory (Toronto, ON, 1996), Fields Inst. Commun., vol. 16, Amer. Math. Soc., Providence, RI, 1997, pp. 221–277. MR 99f:19002Google Scholar
  45. 45.
    Jürgen Neukirch, Algebraic Number Theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, 1999, Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder. MR 2000m:11104zbMATHGoogle Scholar
  46. 46.
    I. Panin, On a theorem of Hurewicz and K -theory of complete discrete valuation rings, Math. USSR Izvestiya 96 (1972), 552–586Google Scholar
  47. 47.
    Daniel Quillen, On the cohomology and K -theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552–586. MR 47 #3565CrossRefMathSciNetGoogle Scholar
  48. 48.
    Daniel Quillen , Finite generation of the groups Ki of rings of algebraic integers, Lecture Notes in Math., vol. 341, Springer-Verlag, 1973, pp. 179–198Google Scholar
  49. 49.
    Daniel Quillen , Higher algebraic K -theory.I,AlgebraicK-theory,I:HigherK-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer-Verlag, Berlin, 1973, pp. 85–147. Lecture Notes in Math., vol. 341. MR 49 #2895Google Scholar
  50. 50.
    Daniel Quillen , Letter from Quillen to Milnor on Im(π i0 πs i Ki Z), Algebraic K-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976), Springer-Verlag, Berlin, 1976, pp. 182–188. Lecture Notes in Math., vol. 551. MR 58 #2811Google Scholar
  51. 51.
    J. Rognes and C. Weibel, Two-primary algebraic K -theory of rings of integers in number fields, J. Amer. Math. Soc. 13 (2000), no. 1, 1–54, Appendix A by Manfred Kolster. MR 2000g:19001zbMATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    John Rognes, Algebraic K -theory of the two-adic integers, J. Pure Appl. Algebra 134 (1999), no. 3, 287–326. MR 2000e:19004zbMATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    John Rognes, K4(Z) is the trivial group, Topology 39 (2000), no. 2, 267–281. MR 2000i:19009zbMATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    John Rognes and Paul Arne Østvær, Two-primary algebraic K -theory of tworegular number fields, Math. Z. 233 (2000), no. 2, 251–263. MR 2000k:11131zbMATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York, 1979, Translated from the French by Marvin Jay Greenberg. MR 82e:12016zbMATHGoogle Scholar
  56. 56.
    N. J. A. Sloane, ed. On-Line Encyclopedia of Integer Sequences, 2003, published electronically at http://www.research.att.com/˜njas/sequencesGoogle Scholar
  57. 57.
    C. Soulé, Addendum to the article: “On the torsion in K (Z)” (Duke Math. J. 45 (1978), no. 1, 101–129) by R. Lee and R. H. Szczarba, Duke Math. J. 45 (1978), no. 1, 131–132. MR 58 #11074bGoogle Scholar
  58. 58.
    C. Soulé, K -théorie des anneaux d’entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979), no. 3, 251–295. MR 81i:12016zbMATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    C. Soulé, Operations on étale K -theory. Applications, Algebraic K-theory, Part I (Oberwolfach, 1980), Lecture Notes in Math., vol. 966, Springer-Verlag, Berlin, 1982, pp. 271–303. MR 85b:18011Google Scholar
  60. 60.
    Andrei A. Suslin, On the K -theory of algebraically closed fields, Invent. Math. 73 (1983), no. 2, 241–245. MR 85h:18008azbMATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    Andrei A. Suslin, Homology of GLn , characteristic classes and Milnor K -theory, Algebraic K-theory, number theory, geometry and analysis (Bielefeld, 1982), Lecture Notes in Math., vol. 1046, Springer-Verlag, Berlin, 1984, pp. 357–375. MR 86f:11090aGoogle Scholar
  62. 62.
    Andrei A. Suslin, Algebraic K -theory of fields, Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Berkeley, Calif., 1986) (Providence, RI), Amer. Math. Soc., 1987, pp. 222–244. MR 89k:12010Google Scholar
  63. 63.
    Andrei A. Suslin, Higher Chow groups and etale cohomology, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 239–254. MR 1 764 203Google Scholar
  64. 64.
    John Tate, Symbols in arithmetic, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Gauthier-Villars, Paris, 1971, pp. 201–211. MR 54 #10204Google Scholar
  65. 65.
    John Tate, Relations between K2 and Galoiscohomology, Invent. Math. 36 (1976), 257–274. MR 55 #2847zbMATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    John Tate, On the torsion in K2 of fields, Algebraic number theory (Kyoto Internat. Sympos., Res. Inst. Math. Sci., Univ. Kyoto, Kyoto, 1976), Japan Soc. Promotion Sci., Tokyo, 1977, pp. 243–261. MR 57 #3104Google Scholar
  67. 67.
    R. W. Thomason, Algebraic K -theory and étale cohomology, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 3, 437–552. MR 87k:14016zbMATHMathSciNetGoogle Scholar
  68. 68.
    Vladimir Voevodsky, On motivic cohomology with Z| -coefficients, Preprint, June 16, 2003, K-theory Preprint Archives, http://www.math.uiuc.edu/K-theory/0639/Google Scholar
  69. 69.
    Vladimir Voevodsky, Motivic cohomology with Z |2-coefficients, Publ. Math. Inst. Hautes Études Sci. (2003), no. 98, 59–104. MR 2 031 199Google Scholar
  70. 70.
    J. B. Wagoner, Continuous cohomology and p -adic K -theory, Algebraic K-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976), Springer-Verlag, Berlin, 1976, pp. 241–248. Lecture Notes in Math., vol. 551. MR 58 #16609Google Scholar
  71. 71.
    Lawrence C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. MR 85g:11001zbMATHGoogle Scholar
  72. 72.
    Charles Weibel, Algebraic K -theory, http://math.rutgers.edu/~weibel/Google Scholar
  73. 73.
    Charles Weibel, Higher wild kernels and divisibility in the K -theory of number fields, Preprint, July 15, 2004, K-theory Preprint Archives, http://www.math.uiuc.edu/K-theory/699Google Scholar
  74. 74.
    Charles Weibel, Étale Chern classes at the prime 2, Algebraic K-theory and algebraic topology (Lake Louise, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 407, Kluwer Acad. Publ., Dordrecht, 1993, pp. 249–286. MR 96m: 19013Google Scholar
  75. 75.
    Charles Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 95f:18001zbMATHGoogle Scholar
  76. 76.
    Charles Weibel, The 2-torsion in the K -theory of the integers, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 6, 615–620. MR 98h:19001zbMATHMathSciNetGoogle Scholar
  77. 77.
    A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131 (1990), no. 3, 493–540. MR 91i:11163CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Charles Weibel
    • 1
  1. 1.Department of MathematicsRutgers UniversityNew BrunswickUSA

Personalised recommendations