Advertisement

The Baum–Connes and the Farrell–Jones Conjectures in K- and L-Theory

  • Wolfgang Lück
  • Holger Reich

Abstract

We give a survey of the meaning, status and applications of the Baum–Connes Conjecture about the topological K-theory of the reduced group C*-algebra and the Farrell–Jones Conjecture about the algebraic K- and L-theory of the group ring of a (discrete) group G.

Keywords

Torsion Free Group Homology Theory Whitehead Group Orbit Category Novikov Conjecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Abels. Parallelizability of proper actions, global K-slices and maximal compact subgroups. Math. Ann., 212:1–19, 1974/75.Google Scholar
  2. 2.
    H. Abels. A universal proper G-space. Math. Z., 159(2):143–158, 1978.zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    U. Abresch. Über das Glätten Riemannscher Metriken. Habilitationsschrift, Bonn, 1988.Google Scholar
  4. 4.
    J. F. Adams. Stable homotopy and generalised homology. University of Chicago Press, Chicago, Ill., 1974. Chicago Lectures in Mathematics.zbMATHGoogle Scholar
  5. 5.
    C. Anantharaman and J. Renault. Amenable groupoids. In Groupoids in analysis, geometry, and physics (Boulder, CO, 1999), volume 282 of Contemp. Math., pages 35–46. Amer. Math. Soc., Providence, RI, 2001.Google Scholar
  6. 6.
    C. Anantharaman-Delaroche and J. Renault. Amenable groupoids, volume 36 of Monographies de L’Enseignement Mathématique. Geneva, 2000. With a foreword by Georges Skandalis and Appendix B by E. Germain.Google Scholar
  7. 7.
    D. R. Anderson, F. X. Connolly, S. C. Ferry, and E. K. Pedersen. Algebraic K-theory with continuous control at infinity. J. Pure Appl. Algebra, 94(1):25–47, 1994.zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    D. R. Anderson and W. C. Hsiang. The functors Ki and pseudo-isotopies of polyhedra. Ann. of Math. (2), 105(2):201–223, 1977.MathSciNetCrossRefGoogle Scholar
  9. 9.
    C. S. Aravinda, F. T. Farrell, and S. K. Roushon. Surgery groups of knot and link complements. Bull. London Math. Soc., 29(4):400–406, 1997.zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    C. S. Aravinda, F. T. Farrell, and S. K. Roushon. Algebraic K-theory of pure braid groups. Asian J. Math., 4(2):337–343, 2000.zbMATHMathSciNetGoogle Scholar
  11. 11.
    M. F. Atiyah. Global theory of elliptic operators. In Proc. Internat. Conf. on Functional Analysis and Related Topics (Tokyo, 1969), pages 21–30. Univ. of Tokyo Press, Tokyo, 1970.Google Scholar
  12. 12.
    M. F. Atiyah. Elliptic operators, discrete groups and von Neumann algebras. Astérisque, 32-33:43–72, 1976.MathSciNetGoogle Scholar
  13. 13.
    A. Bak. Odd dimension surgery groups of odd torsion groups vanish. Topology, 14(4):367–374, 1975.zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Bak. The computation of surgery groups of finite groups with abelian 2-hyperelementary subgroups. In Algebraic K -theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976), pages 384–409. Lecture Notes in Math., Vol. 551. Springer-Verlag, Berlin, 1976.Google Scholar
  15. 15.
    M. Banagl and A. Ranicki. Generalized Arf invariants in algebraic L-theory. arXiv: math.AT/0304362, 2003.Google Scholar
  16. 16.
    A. Bartels. On the domain of the assembly map in algebraic K-theory. Algebr. Geom. Topol.(electronic), 3:1037–1050, 2003.zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    A. Bartels. Squeezing and higher algebraic K-theory. K -Theory, 28(1):19–37, 2003.zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    A.Bartels,F.T.Farrell,L.E.Jones,andH.Reich.Afoliatedsqueezingtheorem for geometric modules. In T. Farrell, L. Göttsche, and W. Lück, editors, High dimensional manifold theory. 2003. Proceedings of the summer school “High dimensional manifold theory” in Trieste May/June 2001.Google Scholar
  19. 19.
    A. Bartels, F. T. Farrell, L. E. Jones, and H. Reich. On the isomorphism conjecture in algebraic K-theory. Topology, 43(1):157–231, 2004.zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Bartels and W. Lück. Isomorphism conjecture for homotopy K-theory and groups acting on trees. Preprintreihe SFB 478 – Geometrische Strukturen in der Mathematik, Heft 342, Münster, arXiv:math.KT/0407489, 2004.Google Scholar
  21. 21.
    A. Bartels and H. Reich. On the Farrell-Jones conjecture for higher algebraic K-theory. Preprintreihe SFB 478 – Geometrische Strukturen in der Mathematik, Heft 282, Münster, to appear in JAMS, 2003.Google Scholar
  22. 22.
    H. Bass. Algebraic K -theory. W. A. Benjamin, Inc., New York-Amsterdam, 1968.Google Scholar
  23. 23.
    H. Bass. Some problems in “classical” algebraic K-theory. In Algebraic K -theory, II: “Classical” algebraic K -theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pages 3–73. Lecture Notes in Math., Vol. 342. Springer-Verlag, Berlin, 1973.Google Scholar
  24. 24.
    H. Bass. Euler characteristics and characters of discrete groups. Invent. Math., 35:155–196, 1976.zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    H. Bass, A. Heller, and R. G. Swan. The Whitehead group of a polynomial extension. Inst. Hautes Études Sci. Publ. Math., (22):61–79, 1964.zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    P. Baum and A. Connes. Chern character for discrete groups. In A fête of topology, pages 163–232. Academic Press, Boston, MA, 1988.Google Scholar
  27. 27.
    P. Baum and A. Connes. Geometric K-theory for Lie groups and foliations. Enseign. Math. (2), 46(1-2):3–42, 2000.Google Scholar
  28. 28.
    P. Baum, A. Connes, and N. Higson. Classifying space for proper actions and K-theory of group C -algebras. In C -algebras: 1943–1993 (San Antonio, TX, 1993), pages 240–291. Amer. Math. Soc., Providence, RI, 1994.Google Scholar
  29. 29.
    P. Baum and R. G. Douglas. K-homology and index theory. In Operator algebras and applications, Part I (Kingston, Ont., 1980), pages 117–173. Amer. Math. Soc., Providence, R.I., 1982.Google Scholar
  30. 30.
    P. Baum, N. Higson, and R. Plymen. Representation theory of p-adic groups: a view from operator algebras. InThe mathematical legacy of Harish-Chandra (Baltimore, MD, 1998), pages 111–149. Amer. Math. Soc., Providence, RI, 2000.Google Scholar
  31. 31.
    P. Baum and M. Karoubi. On the Baum-Connes conjecture in the real case. Q. J. Math., 55(3):231–235, 2004.zbMATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    P. Baum, S. Millington, and R. Plymen. Local-global principle for the Baum-Connes conjecture with coefficients. K -Theory, 28(1):1–18, 2003.zbMATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    E. Berkove, F. T. Farrell, D. Juan-Pineda, and K. Pearson. The Farrell-Jones isomorphism conjecture for finite covolume hyperbolic actions and the algebraic K-theory of Bianchi groups. Trans. Amer. Math. Soc., 352(12):5689–5702, 2000.zbMATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    E. Berkove, D. Juan-Pineda, and K. Pearson. The lower algebraic K-theory of Fuchsian groups. Comment. Math. Helv., 76(2):339–352, 2001.zbMATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    A. J. Berrick. An approach to algebraic K -theory. Pitman (Advanced Publishing Program), Boston, Mass., 1982.zbMATHGoogle Scholar
  36. 36.
    A. J. Berrick, I. Chatterji, and G. Mislin. From acyclic groups to the Bass conjecture for amenable groups. Preprint, to appear in Math. Annalen, 2001.Google Scholar
  37. 37.
    B. Blackadar. K -theory for operator algebras. Springer-Verlag, New York, 1986.zbMATHGoogle Scholar
  38. 38.
    M. Bökstedt, W.C. Hsiang, and I.Madsen. The cyclotomic trace and algebraic K-theory of spaces. Invent. Math., 111(3):465–539, 1993.zbMATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    A. Borel. Stable real cohomology of arithmetic groups. Ann. Sci. École Norm. Sup. (4), 7:235–272 (1975), 1974.Google Scholar
  40. 40.
    A. K. Bousfield and D. M. Kan. Homotopy limits, completions and localizations. Springer-Verlag, Berlin, 1972. Lecture Notes in Mathematics, Vol. 304.zbMATHGoogle Scholar
  41. 41.
    W. Browder. Surgery on simply-connected manifolds. Springer-Verlag, New York, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 65.zbMATHGoogle Scholar
  42. 42.
    M. Burger and A. Valette. Idempotents in complex group rings: theorems of Zalesskii and Bass revisited. J. Lie Theory, 8(2):219–228, 1998.zbMATHMathSciNetGoogle Scholar
  43. 43.
    D. Burghelea and R. Lashof. Stability of concordances and the suspension homomorphism. Ann. of Math. (2), 105(3):449–472, 1977.MathSciNetCrossRefGoogle Scholar
  44. 44.
    S. Cappell, A. Ranicki, and J. Rosenberg, editors. Surveys on surgery theory. Vol. 1. Princeton University Press, Princeton, NJ, 2000. Papers dedicated to C. T. C. Wall.zbMATHGoogle Scholar
  45. 45.
    S. Cappell, A. Ranicki, and J. Rosenberg, editors. Surveys on surgery theory. Vol. 2. Princeton University Press, Princeton, NJ, 2001. Papers dedicated to C. T. C. Wall.zbMATHGoogle Scholar
  46. 46.
    S. E. Cappell. Mayer-Vietoris sequences in hermitian K-theory. In Algebraic K-theory, III: Hermitian K-theory and geometric applications (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pages 478–512. Lecture Notes in Math., Vol. 343. Springer-Verlag, Berlin, 1973.Google Scholar
  47. 47.
    S. E. Cappell. Splitting obstructions for Hermitian forms and manifolds with Z2 π1. Bull. Amer. Math. Soc., 79:909–913, 1973.zbMATHMathSciNetCrossRefGoogle Scholar
  48. 48.
    S. E. Cappell. Manifolds with fundamental group a generalized free product. I. Bull. Amer. Math. Soc., 80:1193–1198, 1974.zbMATHMathSciNetCrossRefGoogle Scholar
  49. 49.
    S. E. Cappell. Unitary nilpotent groups and Hermitian K-theory. I. Bull. Amer. Math. Soc., 80:1117–1122, 1974.zbMATHMathSciNetCrossRefGoogle Scholar
  50. 50.
    S. E. Cappell and J. L. Shaneson. On 4-dimensional s-cobordisms. J. Differential Geom., 22(1):97–115, 1985.zbMATHMathSciNetGoogle Scholar
  51. 51.
    M. Cárdenas and E. K. Pedersen. On the Karoubi filtration of a category. K -Theory, 12(2):165–191, 1997.zbMATHMathSciNetCrossRefGoogle Scholar
  52. 52.
    G. Carlsson. Deloopings in algebraic K-theory. In this Handbook.Google Scholar
  53. 53.
    G. Carlsson. A survey of equivariant stable homotopy theory. Topology, 31(1):1–27, 1992.zbMATHMathSciNetCrossRefGoogle Scholar
  54. 54.
    G. Carlsson. On the algebraic K-theory of infinite product categories. K-theory, 9:305–322, 1995.zbMATHMathSciNetCrossRefGoogle Scholar
  55. 55.
    G. Carlsson and E. K. Pedersen. Controlled algebra and the Novikov conjectures for K- and L-theory. Topology, 34(3):731–758, 1995.zbMATHMathSciNetCrossRefGoogle Scholar
  56. 56.
    G. Carlsson, E. K. Pedersen, and W. Vogell. Continuously controlled algebraic K-theory of spaces and the Novikov conjecture. Math. Ann., 310(1):169–182, 1998.zbMATHMathSciNetCrossRefGoogle Scholar
  57. 57.
    D. W. Carter. Localization in lower algebraic K-theory. Comm. Algebra, 8(7):603–622, 1980.zbMATHMathSciNetCrossRefGoogle Scholar
  58. 58.
    D. W. Carter. Lower K-theory of finite groups. Comm. Algebra, 8(20):1927–1937, 1980.zbMATHMathSciNetCrossRefGoogle Scholar
  59. 59.
    J. Chabert and S. Echterhoff. Permanence properties of the Baum-Connes conjecture. Doc. Math., 6:127–183 (electronic), 2001.zbMATHMathSciNetGoogle Scholar
  60. 60.
    J. Chabert, S. Echterhoff, and R. Nest. The Connes-Kasparov conjecture for almost connected groups and for linear p-adic groups. Preprintreihe SFB 478 – Geometrische Strukturen in der Mathematik, Heft 251, 2003.Google Scholar
  61. 61.
    S. Chang. On conjectures of Mathai and Borel. Geom. Dedicata, 106:161–167, 2004.zbMATHMathSciNetCrossRefGoogle Scholar
  62. 62.
    S. Chang and S. Weinberger. On invariants of Hirzebruch and Cheeger-Gromov. Geom. Topol., 7:311–319 (electronic), 2003.zbMATHMathSciNetCrossRefGoogle Scholar
  63. 63.
    I. Chatterji and K. Ruane. Some geometric groups with rapid decay. preprint, arXiv:math.GT/0310356, 2004.Google Scholar
  64. 64.
    J. Cheeger and M. Gromov. Bounds on the von Neumann dimension of L2 -cohomology and the Gauss-Bonnet theorem for open manifolds. J. Differential Geom., 21(1):1–34, 1985.zbMATHMathSciNetGoogle Scholar
  65. 65.
    J. Cheeger and M. Gromov. On the characteristic numbers of complete manifolds of bounded curvature and finite volume. In Differential geometry and complex analysis, pages 115–154. Springer-Verlag, Berlin, 1985.Google Scholar
  66. 66.
    P.-A. Cherix, M. Cowling, P. Jolissaint, P. Julg, and A. Valette. Groups with the Haagerup property, volume 197 of Progress in Mathematics. Birkhäuser Verlag, Basel, 2001.zbMATHGoogle Scholar
  67. 67.
    G. Cliff and A. Weiss. Moody’s induction theorem. Illinois J. Math., 32(3):489–500, 1988.zbMATHMathSciNetGoogle Scholar
  68. 68.
    T. D. Cochran. Noncommutative knot theory. Algebr. Geom. Topol., 4:347–398, 2004.zbMATHMathSciNetCrossRefGoogle Scholar
  69. 69.
    T. D. Cochran, K. E. Orr, and P. Teichner. Knot concordance, Whitney towers and L2 -signatures. Ann. of Math. (2), 157(2):433–519, 2003.zbMATHMathSciNetCrossRefGoogle Scholar
  70. 70.
    M. M. Cohen. A course in simple-homotopy theory. Springer-Verlag, New York, 1973. Graduate Texts in Mathematics, Vol. 10.zbMATHGoogle Scholar
  71. 71.
    A. Connes. Noncommutative geometry. Academic Press Inc., San Diego, CA, 1994.zbMATHGoogle Scholar
  72. 72.
    A. Connes and H. Moscovici. Cyclic cohomology, the Novikov conjecture and hyperbolic groups. Topology, 29(3):345–388, 1990.zbMATHMathSciNetCrossRefGoogle Scholar
  73. 73.
    F. X. Connolly and M. O. M. da Silva. The groups Nr K0(Z π) are finitely generated Z[N r ]-modules if π is a finite group. K -Theory, 9(1):1–11, 1995.zbMATHMathSciNetCrossRefGoogle Scholar
  74. 74.
    F. X. Connolly and T. Ko´zniewski. Nil groups in K-theory and surgery theory. Forum Math., 7(1):45–76, 1995.zbMATHMathSciNetCrossRefGoogle Scholar
  75. 75.
    F. X. Connolly and S. Prassidis. On the exponent of the cokernel of the forget-control map on K0-groups. Fund. Math., 172(3):201–216, 2002.zbMATHMathSciNetCrossRefGoogle Scholar
  76. 76.
    F. X. Connolly and S. Prassidis. On the exponent of the NK0-groups of virtually infinite cyclic groups. Canad. Math. Bull., 45(2):180–195, 2002.zbMATHMathSciNetGoogle Scholar
  77. 77.
    F. X. Connolly and A. Ranicki. On the calculation of UNIL. arXiv:math.AT/0304016v1, 2003.Google Scholar
  78. 78.
    J. Cuntz. K-theoretic amenability for discrete groups. J. Reine Angew. Math., 344:180–195, 1983.zbMATHMathSciNetGoogle Scholar
  79. 79.
    C. W. Curtis and I. Reiner. Methods of representation theory. Vol. II. John Wiley & Sons Inc., New York, 1987. With applications to finite groups and orders, A Wiley-Interscience Publication.zbMATHGoogle Scholar
  80. 80.
    K. R. Davidson. C -algebras by example, volume 6 of Fields Institute Monographs. American Mathematical Society, Providence, RI, 1996.Google Scholar
  81. 81.
    J. F. Davis. Manifold aspects of the Novikov conjecture. In Surveys on surgery theory, Vol. 1, pages 195–224. Princeton Univ. Press, Princeton, NJ, 2000.Google Scholar
  82. 82.
    J. F. Davis and W. Lück. Spaces over a category and assembly maps in isomorphism conjectures in K- and L-theory. K -Theory, 15(3):201–252, 1998.zbMATHMathSciNetCrossRefGoogle Scholar
  83. 83.
    J. F. Davis and W. Lück. The p-chain spectral sequence. Preprintreihe SFB 478 – Geometrische Strukturen in der Mathematik, Heft 257, Münster. To appear in a special issue of K -Theory dedicated to H. Bass, 2002.Google Scholar
  84. 84.
    P. de la Harpe. Groupes hyperboliques, algèbres d’opérateurs et un théorème de Jolissaint. C. R. Acad. Sci. Paris Sér. I Math., 307(14):771–774, 1988.zbMATHGoogle Scholar
  85. 85.
    R. K. Dennis, M. E. Keating, and M. R. Stein. Lower bounds for the order of K2( G) and Wh2(G). Math. Ann., 223(2):97–103, 1976.zbMATHMathSciNetCrossRefGoogle Scholar
  86. 86.
    S. K. Donaldson. Irrationality and the h-cobordism conjecture. J. Differential Geom., 26(1):141–168, 1987.zbMATHMathSciNetGoogle Scholar
  87. 87.
    A. N. Dranishnikov, G. Gong, V. Lafforgue, and G. Yu. Uniform embeddings into Hilbert space and a question of Gromov. Canad. Math. Bull., 45(1):60–70, 2002.zbMATHMathSciNetGoogle Scholar
  88. 88.
    E. Dror Farjoun. Homotopy and homology of diagrams of spaces. In Algebraic topology (Seattle, Wash., 1985), pages 93–134. Springer-Verlag, Berlin, 1987.Google Scholar
  89. 89.
    M. J. Dunwoody. K2(Zπ) for π a group of order two or three. J. London Math. Soc. (2), 11(4):481–490, 1975.zbMATHMathSciNetCrossRefGoogle Scholar
  90. 90.
    W. Dwyer, T. Schick, and S. Stolz. Remarks on a conjecture of Gromov and Lawson. In High-dimensional manifold topology, pages 159–176. World Sci. Publishing, River Edge, NJ, 2003.CrossRefGoogle Scholar
  91. 91.
    W. Dwyer, M. Weiss, and B. Williams. A parametrized index theorem for the algebraic K-theory Euler class. Acta Math., 190(1):1–104, 2003.zbMATHMathSciNetCrossRefGoogle Scholar
  92. 92.
    B. Eckmann. Cyclic homology of groups and the Bass conjecture. Comment. Math. Helv., 61(2):193–202, 1986.zbMATHMathSciNetCrossRefGoogle Scholar
  93. 93.
    B. Eckmann. Projective and Hilbert modules over group algebras, and finitely dominated spaces. Comment. Math. Helv., 71(3):453–462, 1996.zbMATHMathSciNetCrossRefGoogle Scholar
  94. 94.
    D.S. Farley. Proper isometric actions of Thompson’s groups on Hilbert space. Int. Math. Res. Not., (45):2409–2414, 2003.MathSciNetCrossRefGoogle Scholar
  95. 95.
    F. T. Farrell. The nonfiniteness of Nil. Proc. Amer. Math. Soc., 65(2):215–216, 1977.zbMATHMathSciNetCrossRefGoogle Scholar
  96. 96.
    F. T. Farrell. The exponent of UNil. Topology, 18(4):305–312, 1979.zbMATHMathSciNetCrossRefGoogle Scholar
  97. 97.
    F. T. Farrell and W. C. Hsiang. On the rational homotopy groups of the diffeomorphism groups of discs, spheres and aspherical manifolds. In Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1, Proc. Sympos. Pure Math., XXXII, pages 325–337. Amer. Math. Soc., Providence, R.I., 1978.Google Scholar
  98. 98.
    F.T. Farrell and W.C. Hsiang. The topological-Euclidean space form problem. Invent. Math., 45(2):181–192, 1978.zbMATHMathSciNetCrossRefGoogle Scholar
  99. 99.
    F. T. Farrell and W. C. Hsiang. On Novikov’s conjecture for nonpositively curved manifolds. I. Ann. of Math. (2), 113(1):199–209, 1981.MathSciNetCrossRefGoogle Scholar
  100. 100.
    F. T. Farrell and W. C. Hsiang. The Whitehead group of poly-(finite or cyclic) groups. J. London Math. Soc. (2), 24(2):308–324, 1981.zbMATHMathSciNetCrossRefGoogle Scholar
  101. 101.
    F. T. Farrell and L. E. Jones. h-cobordisms with foliated control. Bull. Amer. Math. Soc. (N.S.), 15(1):69–72, 1986.zbMATHMathSciNetCrossRefGoogle Scholar
  102. 102.
    F. T. Farrell and L. E. Jones. K-theory and dynamics. I. Ann. of Math. (2), 124(3):531–569, 1986.MathSciNetCrossRefGoogle Scholar
  103. 103.
    F.T. Farrell and L.E. Jones. Foliated control with hyperbolic leaves. K -Theory, 1(4):337–359, 1987.zbMATHMathSciNetCrossRefGoogle Scholar
  104. 104.
    F. T. Farrell and L. E. Jones. Foliated control theory. I, II. K -Theory, 2(3):357–430, 1988.zbMATHMathSciNetCrossRefGoogle Scholar
  105. 105.
    F. T. Farrell and L. E. Jones. The surgery L-groups of poly-(finite or cyclic) groups. Invent. Math., 91(3):559–586, 1988.zbMATHMathSciNetCrossRefGoogle Scholar
  106. 106.
    F. T. Farrell and L. E. Jones. Negatively curved manifolds with exotic smooth structures. J. Amer. Math. Soc., 2(4):899–908, 1989.zbMATHMathSciNetCrossRefGoogle Scholar
  107. 107.
    F. T. Farrell and L. E. Jones. A topological analogue of Mostow’s rigidity theorem. J. Amer. Math. Soc., 2(2):257–370, 1989.zbMATHMathSciNetCrossRefGoogle Scholar
  108. 108.
    F. T. Farrell and L. E. Jones. Foliated control without radius of injectivity restrictions. Topology, 30(2):117–142, 1991.zbMATHMathSciNetCrossRefGoogle Scholar
  109. 109.
    F. T. Farrell and L. E. Jones. Rigidity in geometry and topology. In Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), pages 653–663, Tokyo, 1991. Math. Soc. Japan.Google Scholar
  110. 110.
    F. T. Farrell and L. E. Jones. Stable pseudoisotopy spaces of compact nonpositively curved manifolds. J. Differential Geom., 34(3):769–834, 1991.zbMATHMathSciNetGoogle Scholar
  111. 111.
    F. T. Farrell and L. E. Jones. Isomorphism conjectures in algebraic K-theory. J. Amer. Math. Soc., 6(2):249–297, 1993.zbMATHMathSciNetCrossRefGoogle Scholar
  112. 112.
    F. T. Farrell and L. E. Jones. Topological rigidity for compact non-positively curved manifolds. In Differential geometry: Riemannian geometry (Los Angeles, CA, 1990), pages 229–274. Amer. Math. Soc., Providence, RI, 1993.Google Scholar
  113. 113.
    F. T. Farrell and L. E. Jones. The lower algebraic K-theory of virtually infinite cyclic groups. K -Theory, 9(1):13–30, 1995.zbMATHMathSciNetCrossRefGoogle Scholar
  114. 114.
    F. T. Farrell and L. E. Jones. Collapsing foliated Riemannian manifolds. Asian J. Math., 2(3):443–494, 1998.zbMATHMathSciNetGoogle Scholar
  115. 115.
    F. T. Farrell and L. E. Jones. Rigidity for aspherical manifolds with π1 GLm(R). Asian J. Math., 2(2):215–262, 1998.zbMATHMathSciNetGoogle Scholar
  116. 116.
    F. T. Farrell and L. E. Jones. Local collapsing theory. Pacific J. Math., 210(1):1–100, 2003.zbMATHMathSciNetCrossRefGoogle Scholar
  117. 117.
    F. T. Farrell and P. A. Linnell. K-theory of solvable groups. Proc. London Math. Soc. (3), 87(2):309–336, 2003.zbMATHMathSciNetCrossRefGoogle Scholar
  118. 118.
    F. T. Farrell and P. A. Linnell. Whitehead groups and the Bass conjecture. Math. Ann., 326(4):723–757, 2003.zbMATHMathSciNetCrossRefGoogle Scholar
  119. 119.
    F.T. Farrell and S.K. Roushon. The Whitehead groups of braid groups vanish. Internat. Math. Res. Notices, (10):515–526, 2000.Google Scholar
  120. 120.
    T. Farrell. The Borel conjecture. In T. Farrell, L. Göttsche, and W. Lück, editors, High dimensional manifold theory, number 9 in ICTP Lecture Notes, pages 225–298. Abdus Salam International Centre for Theoretical Physics, Trieste, 2002. Proceedings of the summer school “High dimensional manifold theory” in Trieste May/June 2001, Number 1. http://www.ictp.trieste.it/˜pub_off/lectures/vol9.html.Google Scholar
  121. 121.
    T. Farrell, L. Göttsche, and W. Lück, editors. High dimensional manifold theory. Number 9 in ICTP Lecture Notes. Abdus Salam International Centre for Theoretical Physics, Trieste, 2002. Proceedings of the summer school “High dimensional manifold theory” in Trieste May/June 2001, Number 1. http://www.ictp.trieste.it/˜pub_off/lectures/vol9.html.Google Scholar
  122. 122.
    T. Farrell, L. Göttsche, and W. Lück, editors. High dimensional manifold theory. Number 9 in ICTP Lecture Notes. Abdus Salam International Centre for Theoretical Physics, Trieste, 2002. Proceedings of the summer school “High dimensional manifold theory” in Trieste May/June 2001, Number 2. http://www.ictp.trieste.it/˜pub_off/lectures/vol9.html.Google Scholar
  123. 123.
    T. Farrell, L. Jones, and W. Lück. A caveat on the isomorphism conjecture in L-theory. Forum Math., 14(3):413–418, 2002.zbMATHMathSciNetCrossRefGoogle Scholar
  124. 124.
    S. Ferry. The homeomorphism group of a compact Hilbert cube manifold is an anr. Ann. Math. (2), 106(1):101–119, 1977.MathSciNetCrossRefGoogle Scholar
  125. 125.
    S. Ferry. A simple-homotopy approach to the finiteness obstruction. InShape theory and geometric topology (Dubrovnik, 1981), pages 73–81. Springer-Verlag, Berlin, 1981.Google Scholar
  126. 126.
    S. Ferry and A. Ranicki. A survey of Wall’s finiteness obstruction. In Surveys on surgery theory, Vol. 2, volume 149 of Ann. of Math. Stud., pages 63–79. Princeton Univ. Press, Princeton, NJ, 2001.Google Scholar
  127. 127.
    S. C. Ferry, A. A. Ranicki, and J. Rosenberg. A history and survey of the Novikov conjecture. In Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), pages 7–66. Cambridge Univ. Press, Cambridge, 1995.Google Scholar
  128. 128.
    S. C. Ferry, A. A. Ranicki, and J. Rosenberg, editors. Novikov conjectures, index theorems and rigidity. Vol. 1. Cambridge University Press, Cambridge, 1995. Including papers from the conference held at the Mathematisches Forschungsinstitut Oberwolfach, Oberwolfach, September 6–10, 1993.Google Scholar
  129. 129.
    S. C. Ferry and S. Weinberger. Curvature, tangentiality, and controlled topology. Invent. Math., 105(2):401–414, 1991.zbMATHMathSciNetCrossRefGoogle Scholar
  130. 130.
    Z. Fiedorowicz. The Quillen-Grothendieck construction and extension of pairings. In Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), I, pages 163–169. Springer-Verlag, Berlin, 1978.Google Scholar
  131. 131.
    M. H. Freedman. The topology of four-dimensional manifolds. J. Differential Geom., 17(3):357–453, 1982.zbMATHMathSciNetGoogle Scholar
  132. 132.
    M. H. Freedman. The disk theorem for four-dimensional manifolds. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), pages 647–663, Warsaw, 1984. PWN.Google Scholar
  133. 133.
    S. M. Gersten. On the spectrum of algebraic K-theory. Bull. Amer. Math. Soc., 78:216–219, 1972.zbMATHMathSciNetCrossRefGoogle Scholar
  134. 134.
    É. Ghys. Groupes al éatoires (d’après Misha Gromov, ... ). Astérisque, (294):viii, 173–204, 2004.Google Scholar
  135. 135.
    D. Grayson. Higher algebraic K-theory. II (after Daniel Quillen). In Algebraic K -theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976), pages 217–240. Lecture Notes in Math., Vol. 551. Springer-Verlag, Berlin, 1976.Google Scholar
  136. 136.
    M. Gromov. Large Riemannian manifolds. In Curvature and topology of Riemannian manifolds (Katata, 1985), pages 108–121. Springer-Verlag, Berlin, 1986.Google Scholar
  137. 137.
    M. Gromov. Asymptotic invariants of infinite groups. In Geometric group theory, Vol. 2 (Sussex, 1991), pages 1–295. Cambridge Univ. Press, Cambridge, 1993.Google Scholar
  138. 138.
    M. Gromov. Spaces and questions. Geom. Funct. Anal., (Special Volume, Part I):118–161, 2000. GAFA 2000 (Tel Aviv, 1999).Google Scholar
  139. 139.
    M. Gromov. Random walk in random groups. Geom. Funct. Anal., 13(1):73–146, 2003.zbMATHMathSciNetCrossRefGoogle Scholar
  140. 140.
    E. Guentner, N. Higson, and S. Weinberger. The Novikov conjecture for linear groups. preprint, 2003.Google Scholar
  141. 141.
    I. Hambleton. Algebraic K- and L-theory and applications to the topology of manifolds. In T. Farrell, L. Göttsche, and W. Lück, editors, High dimensional manifold theory, number 9 in ICTP Lecture Notes, pages 299–369. Abdus Salam International Centre for Theoretical Physics, Trieste, 2002. Proceedings of the summer school “High dimensional manifold theory” in Trieste May/June 2001, Number 1. http://www.ictp.trieste.it/˜pub_off/lectures/vol9.html.Google Scholar
  142. 142.
    I. Hambleton and E. K. Pedersen. Identifying assembly maps in K- and L-theory. Math. Annalen, 328(1):27–58, 2004.zbMATHMathSciNetCrossRefGoogle Scholar
  143. 143.
    I. Hambleton and L. R. Taylor. A guide to the calculation of the surgery obstruction groups for finite groups. In Surveys on surgery theory, Vol. 1, pages 225–274. Princeton Univ. Press, Princeton, NJ, 2000.Google Scholar
  144. 144.
    A. E. Hatcher. Concordance spaces, higher simple-homotopy theory, and applications. In Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1, pages 3–21. Amer. Math. Soc., Providence, R.I., 1978.Google Scholar
  145. 145.
    J.-C. Hausmann. On the homotopy of nonnilpotent spaces. Math. Z., 178(1):115–123, 1981.zbMATHMathSciNetCrossRefGoogle Scholar
  146. 146.
    L. Hesselholt and I. Madsen. On the K-theory of nilpotent endomorphisms. In Homotopy methods in algebraic topology (Boulder, CO, 1999), volume 271 of Contemp. Math., pages 127–140. Amer. Math. Soc., Providence, RI, 2001.Google Scholar
  147. 147.
    N. Higson. The Baum-Connes conjecture. In Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), pages 637–646 (electronic), 1998.Google Scholar
  148. 148.
    N. Higson. Bivariant K-theory and the Novikov conjecture. Geom. Funct. Anal., 10(3):563–581, 2000.zbMATHMathSciNetCrossRefGoogle Scholar
  149. 149.
    N. Higson and G. Kasparov. E-theory and KK-theory for groups which act properly and isometrically on Hilbert space. Invent. Math., 144(1):23–74, 2001.zbMATHMathSciNetCrossRefGoogle Scholar
  150. 150.
    N. Higson, V. Lafforgue, and G. Skandalis. Counterexamples to the Baum-Connes conjecture. Geom. Funct. Anal., 12(2):330–354, 2002.zbMATHMathSciNetCrossRefGoogle Scholar
  151. 151.
    N. Higson, E. K. Pedersen, and J. Roe. C -algebras and controlled topology. K -Theory, 11(3):209–239, 1997.zbMATHMathSciNetCrossRefGoogle Scholar
  152. 152.
    N. Higson and J. Roe. On the coarse Baum-Connes conjecture. In Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), pages 227–254. Cambridge Univ. Press, Cambridge, 1995.Google Scholar
  153. 153.
    N. Higson and J. Roe. Amenable group actions and the Novikov conjecture. J. Reine Angew. Math., 519:143–153, 2000.zbMATHMathSciNetGoogle Scholar
  154. 154.
    N. Higson and J. Roe. Analytic K -homology. Oxford University Press, Oxford, 2000. Oxford Science Publications.zbMATHGoogle Scholar
  155. 155.
    B. Hu. Retractions of closed manifolds with nonpositive curvature. In Geometric group theory (Columbus, OH, 1992), volume 3 of Ohio State Univ. Math. Res. Inst. Publ., pages 135–147. de Gruyter, Berlin, 1995.Google Scholar
  156. 156.
    B. Z. Hu. Whitehead groups of finite polyhedra with nonpositive curvature. J. Differential Geom., 38(3):501–517, 1993.zbMATHMathSciNetGoogle Scholar
  157. 157.
    K. Igusa. The stability theorem for smooth pseudoisotopies. K -Theory, 2(1-2):vi+355, 1988.Google Scholar
  158. 158.
    H. Inassaridze. Algebraic K -theory, volume 311 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1995.zbMATHGoogle Scholar
  159. 159.
    M. Joachim. K-homology of C -categories and symmetric spectra representing K-homology. Math. Annalen, 328:641–670, 2003.MathSciNetCrossRefGoogle Scholar
  160. 160.
    E. Jones. A paper for F.T. Farrell on his 60-th birthday. In T. Farrell, L. Göttsche, and W. Lück, editors, High dimensional manifold theory, pages 200–260. 2003. Proceedings of the summer school “High dimensional manifold theory” in Trieste May/June 2001.Google Scholar
  161. 161.
    L. Jones. A paper for F.T. Farrell on his 60-th birthday. preprint, to appear in the Proceedings of the school/conference on “High-dimensional Manifold Topology” in Trieste, May/June 2001.Google Scholar
  162. 162.
    L.Jones.Foliatedcontroltheoryanditsapplications.InT.Farrell,L.Göttsche, and W. Lück, editors, High dimensional manifold theory, number 9 in ICTP Lecture Notes, pages 405–460. Abdus Salam International Centre for Theoretical Physics, Trieste, 2002. Proceedings of the summer school “High dimensional manifold theory” in Trieste May/June 2001, Number 2. http://www.ictp.trieste.it/˜pub_off/lectures/vol9.html.Google Scholar
  163. 163.
    P. Julg. Remarks on the Baum-Connes conjecture and Kazhdan’s property T. In Operator algebras and their applications (Waterloo, ON, 1994/1995), volume 13 of Fields Inst. Commun., pages 145–153. Amer. Math. Soc., Providence, RI, 1997.Google Scholar
  164. 164.
    P. Julg. Travaux de N. Higson et G. Kasparov sur la conjecture de Baum-Connes. Astérisque, (252):Exp. No. 841, 4, 151–183, 1998. Séminaire Bourbaki. Vol. 1997/98.Google Scholar
  165. 165.
    P. Julg. La conjecture de Baum-Connes `a coefficients pour le groupe Sp(n, 1). C. R. Math. Acad. Sci. Paris, 334(7):533–538, 2002.zbMATHMathSciNetGoogle Scholar
  166. 166.
    P. Julg and G. Kasparov. Operator K-theory for the group SU(n, 1). J. Reine Angew. Math., 463:99–152, 1995.zbMATHMathSciNetGoogle Scholar
  167. 167.
    M. Karoubi. Bott periodicity in topological, algebraic and hermitian K-theory. In this Handbook.Google Scholar
  168. 168.
    G. Kasparov. Novikov’s conjecture on higher signatures: the operator K-theory approach. In Representation theory of groups and algebras, pages 79–99. Amer. Math. Soc., Providence, RI, 1993.Google Scholar
  169. 169.
    G. Kasparov and G. Skandalis. Groupes “boliques” et conjecture de Novikov. C. R. Acad. Sci. Paris Sér. I Math., 319(8):815–820, 1994.zbMATHMathSciNetGoogle Scholar
  170. 170.
    G. G. Kasparov. Equivariant KK-theory and the Novikov conjecture. Invent. Math., 91(1):147–201, 1988.zbMATHMathSciNetCrossRefGoogle Scholar
  171. 171.
    G. G. Kasparov. K-theory, group C -algebras, and higher signatures (conspectus). In Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), pages 101–146. Cambridge Univ. Press, Cambridge, 1995.Google Scholar
  172. 172.
    G. G. Kasparov and G. Skandalis. Groups acting on buildings, operator K-theory, and Novikov’s conjecture. K -Theory, 4(4):303–337, 1991.zbMATHMathSciNetCrossRefGoogle Scholar
  173. 173.
    M. A. Kervaire. Le théorème de Barden-Mazur-Stallings. Comment. Math. Helv., 40:31–42, 1965.zbMATHMathSciNetCrossRefGoogle Scholar
  174. 174.
    N. Keswani. Homotopy invariance of relative eta-invariants and C -algebra K-theory. Electron. Res. Announc. Amer. Math. Soc., 4:18–26 (electronic), 1998.zbMATHMathSciNetCrossRefGoogle Scholar
  175. 175.
    N. Keswani. Von Neumann eta-invariants and C -algebra K-theory. J. London Math. Soc. (2), 62(3):771–783, 2000.zbMATHMathSciNetCrossRefGoogle Scholar
  176. 176.
    R. C. Kirby and L. C. Siebenmann. Foundational essays on topological manifolds, smoothings, and triangulations. Princeton University Press, Princeton, N.J., 1977. With notes by J. Milnor and M. F. Atiyah, Annals of Mathematics Studies, No. 88.zbMATHGoogle Scholar
  177. 177.
    M. Kolster. K-theory and arithmetics. Lectures - ICTP Trieste 2002.Google Scholar
  178. 178.
    M. Kreck. Surgery and duality. Ann. of Math. (2), 149(3):707–754, 1999.zbMATHMathSciNetCrossRefGoogle Scholar
  179. 179.
    M. Kreck and W. Lück. The Novikov Conjecture: Geometry and Algebra, volume 33 of Oberwolfach Seminars. Birkhäuser, 2004.Google Scholar
  180. 180.
    P. H. Kropholler and G. Mislin. Groups acting on finite-dimensional spaces with finite stabilizers. Comment. Math. Helv., 73(1):122–136, 1998.zbMATHMathSciNetCrossRefGoogle Scholar
  181. 181.
    A. O. Kuku. Kn, SKn of integral group-rings and orders. In Applications of algebraic K -theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), pages 333–338. Amer. Math. Soc., Providence, RI, 1986.Google Scholar
  182. 182.
    A. O. Kuku and G. Tang. Higher K-theory of group-rings of virtually infinite cyclic groups. Math. Ann., 325(4):711–726, 2003.zbMATHMathSciNetCrossRefGoogle Scholar
  183. 183.
    V. Lafforgue. Une démonstration de la conjecture de Baum-Connes pour les groupes réductifs sur un corps p-adique et pour certains groupes discrets possédant la propriété (T). C. R. Acad. Sci. Paris Sér. I Math., 327(5):439–444, 1998.zbMATHMathSciNetGoogle Scholar
  184. 184.
    V. Lafforgue. A proof of property (RD) for cocompact lattices of SL(3, R) and SL(3, C). J. Lie Theory, 10(2):255–267, 2000.zbMATHMathSciNetGoogle Scholar
  185. 185.
    V. Lafforgue. Banach KK-theory and the Baum-Connes conjecture. In European Congress of Mathematics, Vol. II (Barcelona, 2000), volume 202 of Progr. Math., pages 31–46. Birkhäuser, Basel, 2001.Google Scholar
  186. 186.
    V. Lafforgue. K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes. Invent. Math., 149(1):1–95, 2002.zbMATHMathSciNetCrossRefGoogle Scholar
  187. 187.
    T. Y. Lam. A first course in noncommutative rings. Springer-Verlag, New York, 1991.zbMATHGoogle Scholar
  188. 188.
    E. C. Lance. Hilbert C -modules. Cambridge University Press, Cambridge, 1995. A toolkit for operator algebraists.CrossRefGoogle Scholar
  189. 189.
    R. Lee and R. H. Szczarba. The group K3(Z) is cyclic of order forty-eight. Ann. of Math. (2), 104(1):31–60, 1976.MathSciNetCrossRefGoogle Scholar
  190. 190.
    L. G. Lewis, Jr., J. P. May, M. Steinberger, and J. E. McClure. Equivariant stable homotopy theory. Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure.zbMATHGoogle Scholar
  191. 191.
    P. A. Linnell. Decomposition of augmentation ideals and relation modules. Proc. London Math. Soc. (3), 47(1):83–127, 1983.zbMATHMathSciNetCrossRefGoogle Scholar
  192. 192.
    P. A. Linnell. Division rings and group von Neumann algebras. Forum Math., 5(6):561–576, 1993.zbMATHMathSciNetCrossRefGoogle Scholar
  193. 193.
    E. Lluis-Puebla, J.-L. Loday, H. Gillet, C. Soulé, and V. Snaith. Higher algebraic K -theory: an overview, volume 1491 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1992.zbMATHGoogle Scholar
  194. 194.
    J.-L. Loday. K-théorie algébrique et représentations de groupes. Ann. Sci. École Norm. Sup. (4), 9(3):309–377, 1976.zbMATHMathSciNetGoogle Scholar
  195. 195.
    J. Lott. The zero-in-the-spectrum question. Enseign. Math. (2), 42(3-4):341–376, 1996.zbMATHMathSciNetGoogle Scholar
  196. 196.
    W. Lück. The geometric finiteness obstruction. Proc. London Math. Soc. (3), 54(2):367–384, 1987.zbMATHMathSciNetCrossRefGoogle Scholar
  197. 197.
    W. Lück. Transformation groups and algebraic K -theory. Springer-Verlag, Berlin, 1989. Mathematica Gottingensis.Google Scholar
  198. 198.
    W. Lück. Dimension theory of arbitrary modules over finite von Neumann algebras and L2 -Betti numbers. II. Applications to Grothendieck groups, L2 - Euler characteristics and Burnside groups. J. Reine Angew. Math., 496:213–236, 1998.zbMATHMathSciNetGoogle Scholar
  199. 199.
    W. Lück. The type of the classifying space for a family of subgroups. J. Pure Appl. Algebra, 149(2):177–203, 2000.zbMATHMathSciNetCrossRefGoogle Scholar
  200. 200.
    W. Lück. A basic introduction to surgery theory. In T. Farrell, L. Göttsche, and W. Lück, editors, High dimensional manifold theory, number 9 in ICTP Lecture Notes, pages 1–224. Abdus Salam International Centre for Theoretical Physics, Trieste, 2002. Proceedings of the summer school “High dimensional manifold theory” in Trieste May/June 2001, Number 1. http://www.ictp.trieste.it/˜pub_off/lectures/vol9.html.Google Scholar
  201. 201.
    W. Lück. Chern characters for proper equivariant homology theories and applications to K- and L-theory. J. Reine Angew. Math., 543:193–234, 2002.zbMATHMathSciNetGoogle Scholar
  202. 202.
    W. Lück. L2 -invariants: theory and applications to geometry and K -theory, volume 44 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2002.Google Scholar
  203. 203.
    W. Lück. The relation between the Baum-Connes conjecture and the trace conjecture. Invent. Math., 149(1):123–152, 2002.zbMATHMathSciNetCrossRefGoogle Scholar
  204. 204.
    W. Lück. K-and L-theory of the semi-direct product discrete threedimensional Heisenberg group by Z|4. in preparation, 2003.Google Scholar
  205. 205.
    W. Lück. L2-invariants from the algebraic point of view. Preprintreihe SFB 478 – Geometrische Strukturen in der Mathematik, Heft 295, Münster, arXiv:math.GT/0310489 v1, 2003.Google Scholar
  206. 206.
    W.Lück.Surveyonclassifyingspacesforfamiliesofsubgroups.Preprintreihe SFB 478 – Geometrische Strukturen in der Mathematik, Heft 308, Münster, arXiv:math.GT/0312378 v1, 2004.Google Scholar
  207. 207.
    W. Lück and D. Meintrup. On the universal space for group actions with compact isotropy. In Geometry and topology: Aarhus (1998), pages 293–305. Amer. Math. Soc., Providence, RI, 2000.Google Scholar
  208. 208.
    W. Lück, H. Reich, J. Rognes, and M. Varisco. In preparation, 2003.Google Scholar
  209. 209.
    W. Lück and M. Rørdam. Algebraic K-theory of von Neumann algebras. K -Theory, 7(6):517–536, 1993.zbMATHMathSciNetCrossRefGoogle Scholar
  210. 210.
    W. Lück and T. Schick. Approximating L2 -signatures by their finitedimensional analogues. Preprintreihe SFB 478 – Geometrische Strukturen in der Mathematik, Heft 190, Münster, to appear in Forum, 2001.Google Scholar
  211. 211.
    W. Lück and T. Schick. Various L2 -signatures and a topological L2 -signature theorem. In T. Farrell, L. Göttsche, and W. Lück, editors, High dimensional manifold theory, pages 200–260. 2003. Proceedings of the summer school “High dimensional manifold theory” in Trieste May/June 2001.Google Scholar
  212. 212.
    W. Lück and R. Stamm. Computations of K- and L-theory of cocompact planar groups. K -Theory, 21(3):249–292, 2000.zbMATHMathSciNetCrossRefGoogle Scholar
  213. 213.
    I. Madsen and M. Rothenberg. Equivariant pseudo-isotopies and K−1. In Transformation groups (Osaka, 1987), volume 1375 of Lecture Notes in Math., pages 216–230. Springer-Verlag, Berlin, 1989.Google Scholar
  214. 214.
    V. Mathai. Spectral flow, eta invariants, and von Neumann algebras. J. Funct. Anal., 109(2):442–456, 1992.zbMATHMathSciNetCrossRefGoogle Scholar
  215. 215.
    M. Matthey and G. Mislin. Equivariant K-homology and restriction to finite cyclic subgroups. K -Theory, 32(2):167–179, 2004.zbMATHMathSciNetCrossRefGoogle Scholar
  216. 216.
    D. Meintrup. On the Type of the Universal Space for a Family of Subgroups. PhD thesis, Westfälische Wilhelms-Universität Münster, 2000.Google Scholar
  217. 217.
    D. Meintrup and T. Schick. A model for the universal space for proper actions of a hyperbolic group. New York J. Math., 8:1–7 (electronic), 2002.zbMATHMathSciNetGoogle Scholar
  218. 218.
    J. Milnor. On manifolds homeomorphic to the 7-sphere. Ann. of Math. (2), 64:399–405, 1956.MathSciNetCrossRefGoogle Scholar
  219. 219.
    J. Milnor. Lectures on the h -cobordism theorem. Princeton University Press, Princeton, N.J., 1965.zbMATHGoogle Scholar
  220. 220.
    J. Milnor. Whitehead torsion. Bull. Amer. Math. Soc., 72:358–426, 1966.zbMATHMathSciNetCrossRefGoogle Scholar
  221. 221.
    J. Milnor. Introduction to algebraic K -theory. Princeton University Press, Princeton, N.J., 1971. Annals of Mathematics Studies, No. 72.zbMATHGoogle Scholar
  222. 222.
    I. Mineyev and G. Yu. The Baum-Connes conjecture for hyperbolic groups. Invent. Math., 149(1):97–122, 2002.zbMATHMathSciNetCrossRefGoogle Scholar
  223. 223.
    A. S. Miščenko and A. T. Fomenko. The index of elliptic operators over C -algebras. Izv. Akad. Nauk SSSR Ser. Mat., 43(4):831–859, 967, 1979. English translation in Math. USSR-Izv. 15 (1980), no. 1, 87–112.Google Scholar
  224. 224.
    G. Mislin. Wall’s finiteness obstruction. In Handbook of algebraic topology, pages 1259–1291. North-Holland, Amsterdam, 1995.CrossRefGoogle Scholar
  225. 225.
    G. Mislin and A. Valette. Proper group actions and the Baum-Connes Conjecture. Advanced Courses in Mathematics CRM Barcelona. Birkhäuser, 2003.Google Scholar
  226. 226.
    S. A. Mitchell. On the Lichtenbaum-Quillen conjectures from a stable homotopy-theoretic viewpoint. In Algebraic topology and its applications, volume 27 of Math. Sci. Res. Inst. Publ., pages 163–240. Springer-Verlag, New York, 1994.Google Scholar
  227. 227.
    J. A. Moody. Brauer induction for G0 of certain infinite groups. J. Algebra, 122(1):1–14, 1989.zbMATHMathSciNetCrossRefGoogle Scholar
  228. 228.
    G. J. Murphy. C -algebras and operator theory. Academic Press Inc., Boston, MA, 1990.Google Scholar
  229. 229.
    J. Neukirch, A. Schmidt, and K. Wingberg. Cohomology of number fields. Springer-Verlag, Berlin, 2000.zbMATHGoogle Scholar
  230. 230.
    A. J. Nicas. On the higher Whitehead groups of a Bieberbach group. Trans. Amer. Math. Soc., 287(2):853–859, 1985.zbMATHMathSciNetCrossRefGoogle Scholar
  231. 231.
    R. Oliver. Projective class groups of integral group rings: a survey. In Orders and their applications (Oberwolfach, 1984), volume 1142 of Lecture Notes in Math., pages 211–232. Springer-Verlag, Berlin, 1985.Google Scholar
  232. 232.
    R. Oliver. Whitehead groups of finite groups. Cambridge University Press, Cambridge, 1988.zbMATHCrossRefGoogle Scholar
  233. 233.
    H. Oyono-Oyono. Baum-Connes Conjecture and extensions. J. Reine Angew. Math., 532:133–149, 2001.zbMATHMathSciNetGoogle Scholar
  234. 234.
    H. Oyono-Oyono. Baum-Connes conjecture and group actions on trees. K -Theory, 24(2):115–134, 2001.zbMATHMathSciNetCrossRefGoogle Scholar
  235. 235.
    D. S. Passman. Infinite crossed products. Academic Press Inc., Boston, MA, 1989.zbMATHGoogle Scholar
  236. 236.
    K. Pearson. Algebraic K-theory of two-dimensional crystallographic groups. K -Theory, 14(3):265–280, 1998.zbMATHMathSciNetCrossRefGoogle Scholar
  237. 237.
    E. Pedersen and C. Weibel. A non-connective delooping of algebraic K-theory. In Algebraic and Geometric Topology; proc. conf. Rutgers Uni., New Brunswick 1983, volume 1126 of Lecture notes in mathematics, pages 166–181. Springer-Verlag, 1985.Google Scholar
  238. 238.
    E. K. Pedersen. On the Ki-functors. J. Algebra, 90(2):461–475, 1984.zbMATHMathSciNetCrossRefGoogle Scholar
  239. 239.
    E. K. Pedersen. On the bounded and thin h-cobordism theorem parameterized by R k . In Transformation groups, Pozna´n 1985, volume 1217 of Lecture Notes in Math., pages 306–320. Springer-Verlag, Berlin, 1986.CrossRefGoogle Scholar
  240. 240.
    E. K. Pedersen. Controlled methods in equivariant topology, a survey. In Current trends in transformation groups, volume 7 of K -Monogr. Math., pages 231–245. Kluwer Acad. Publ., Dordrecht, 2002.Google Scholar
  241. 241.
    E. K. Pedersen and C. A. Weibel. K-theory homology of spaces. In Algebraic topology (Arcata, CA, 1986), pages 346–361. Springer-Verlag, Berlin, 1989.Google Scholar
  242. 242.
    G. K. Pedersen. C -algebras and their automorphism groups. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1979.Google Scholar
  243. 243.
    M. Pimsner and D. Voiculescu. K-groups of reduced crossed products by free groups. J. Operator Theory, 8(1):131–156, 1982.zbMATHMathSciNetGoogle Scholar
  244. 244.
    M. V. Pimsner. KK-groups of crossed products by groups acting on trees. Invent. Math., 86(3):603–634, 1986.zbMATHMathSciNetCrossRefGoogle Scholar
  245. 245.
    R. T. Powers. Simplicity of the C -algebra associated with the free group on two generators. Duke Math. J., 42:151–156, 1975.zbMATHMathSciNetCrossRefGoogle Scholar
  246. 246.
    M. Puschnigg. The Kadison-Kaplansky conjecture for word-hyperbolic groups. Invent. Math., 149(1):153–194, 2002.zbMATHMathSciNetCrossRefGoogle Scholar
  247. 247.
    D. Quillen. On the cohomology and K-theory of the general linear groups over a finite field. Ann. of Math. (2), 96:552–586, 1972.MathSciNetCrossRefGoogle Scholar
  248. 248.
    D. Quillen. Finite generation of the groups Ki of rings of algebraic integers. In Algebraic K -theory, I: Higher K -theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pages 179–198. Lecture Notes in Math., Vol. 341. Springer-Verlag, Berlin, 1973.Google Scholar
  249. 249.
    D. Quillen. Higher algebraic K-theory. I. In Algebraic K -theory, I: Higher K -theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pages 85–147. Lecture Notes in Math., Vol. 341. Springer-Verlag, Berlin, 1973.Google Scholar
  250. 250.
    F. Quinn. Ageometric formulation of surgery. In Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), pages 500–511. Markham, Chicago, Ill., 1970.Google Scholar
  251. 251.
    F. Quinn. Ends of maps. I. Ann. of Math. (2), 110(2):275–331, 1979.MathSciNetCrossRefGoogle Scholar
  252. 252.
    F. Quinn. Ends of maps. II. Invent. Math., 68(3):353–424, 1982.zbMATHMathSciNetCrossRefGoogle Scholar
  253. 253.
    A. Ranicki. Foundations of algebraic surgery. In T. Farrell, L. Göttsche, and W. Lück, editors, High dimensional manifold theory, number 9 in ICTP Lecture Notes, pages 491–514. Abdus Salam International Centre for Theoretical Physics, Trieste, 2002. Proceedings of the summer school “High dimensional manifold theory” in Trieste May/June 2001, Number 2. http://www.ictp.trieste.it/˜pub_off/lectures/vol9.html.Google Scholar
  254. 254.
    A. A. Ranicki. Algebraic L-theory. II. Laurent extensions. Proc. London Math. Soc. (3), 27:126–158, 1973.MathSciNetCrossRefGoogle Scholar
  255. 255.
    A. A. Ranicki. Algebraic L-theory. III. Twisted Laurent extensions. In Algebraic K-theory, III: Hermitian K-theory and geometric application (Proc. Conf. Seattle Res. Center, Battelle Memorial Inst., 1972), pages 412–463. Lecture Notes in Mathematics, Vol. 343. Springer-Verlag, Berlin, 1973.Google Scholar
  256. 256.
    A. A. Ranicki. Exact sequences in the algebraic theory of surgery. Princeton University Press, Princeton, N.J., 1981.zbMATHGoogle Scholar
  257. 257.
    A. A. Ranicki. The algebraic theory of finiteness obstruction. Math. Scand., 57(1):105–126, 1985.zbMATHMathSciNetGoogle Scholar
  258. 258.
    A. A. Ranicki. Algebraic L -theory and topological manifolds. Cambridge University Press, Cambridge, 1992.zbMATHGoogle Scholar
  259. 259.
    A. A. Ranicki. Lower K - and L -theory. Cambridge University Press, Cambridge, 1992.zbMATHCrossRefGoogle Scholar
  260. 260.
    A. A. Ranicki. On the Novikov conjecture. In Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), pages 272–337. Cambridge Univ. Press, Cambridge, 1995.Google Scholar
  261. 261.
    H. Reich. L2 -Betti numbers, isomorphism conjectures and noncommutative localization. Preprintreihe SFB 478 – Geometrische Strukturen in der Mathematik, Heft 250, Münster, to appear in the Proceedings of the Workshop on Noncommutative Localization - ICMS Edinburgh, April 2002, 2003.Google Scholar
  262. 262.
    I. Reiner. Class groups and Picard groups of group rings and orders. pages iv+44, Providence, R. I., 1976. American Mathematical Society. Conference Board of the Mathematical Sciences, Regional Conference Series in Mathematics, No. 26.Google Scholar
  263. 263.
    J. Roe. Index theory, coarse geometry, and topology of manifolds. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1996.Google Scholar
  264. 264.
    J. Rognes. K4(Z) is the trivial group. Topology, 39(2):267–281, 2000.zbMATHMathSciNetCrossRefGoogle Scholar
  265. 265.
    J. Rognes and C. Weibel. Two-primary algebraic K-theory of rings of integers in number fields. J. Amer. Math. Soc., 13(1):1–54, 2000. Appendix A by Manfred Kolster.zbMATHMathSciNetCrossRefGoogle Scholar
  266. 266.
    J. Rosenberg. K-theory and geometric topology. In this Handbook.Google Scholar
  267. 267.
    J. Rosenberg. C -algebras, positive scalar curvature and the Novikov conjecture. III. Topology, 25:319–336, 1986.zbMATHMathSciNetCrossRefGoogle Scholar
  268. 268.
    J. Rosenberg. Algebraic K -theory and its applications. Springer-Verlag, New York, 1994.zbMATHGoogle Scholar
  269. 269.
    J. Rosenberg. Analytic Novikov for topologists. In Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), pages 338–372. Cambridge Univ. Press, Cambridge, 1995.Google Scholar
  270. 270.
    J. Rosenberg and S. Stolz. A “stable” version of the Gromov-Lawson conjecture. In The ˇCech centennial (Boston, MA, 1993), pages 405–418. Amer. Math. Soc., Providence, RI, 1995.Google Scholar
  271. 271.
    D. Rosenthal. Splitting with continuous control in algebraic K-theory. K -Theory, 32(2):139–166, 2004.zbMATHMathSciNetCrossRefGoogle Scholar
  272. 272.
    C. P. Rourke and B. J. Sanderson. Introduction to piecewise-linear topology. Springer-Verlag, Berlin, 1982. Reprint.zbMATHGoogle Scholar
  273. 273.
    L. H. Rowen. Ring theory. Vol. II. Academic Press Inc., Boston, MA, 1988.Google Scholar
  274. 274.
    R. Roy. The trace conjecture—a counterexample. K -Theory, 17(3):209–213, 1999.zbMATHMathSciNetCrossRefGoogle Scholar
  275. 275.
    R. Roy. A counterexample to questions on the integrality property of virtual signature. Topology Appl., 100(2-3):177–185, 2000.zbMATHMathSciNetCrossRefGoogle Scholar
  276. 276.
    J. Sauer. K-theory for proper smooth actions of totally disconnected groups. Ph.D. thesis, 2002.Google Scholar
  277. 277.
    T. Schick. Finite group extensions and the Baum-Connes conjecture. in preparation.Google Scholar
  278. 278.
    T. Schick. A counterexample to the (unstable) Gromov-Lawson-Rosenberg conjecture. Topology, 37(6):1165–1168, 1998.zbMATHMathSciNetCrossRefGoogle Scholar
  279. 279.
    T. Schick. Operator algebras and topology. In T. Farrell, L. Göttsche, and W. Lück, editors, High dimensional manifold theory, number 9 in ICTP Lecture Notes, pages 571–660. Abdus Salam International Centre for Theoretical Physics, Trieste, 2002. Proceedings of the summer school “High dimensional manifold theory” in Trieste May/June 2001, Number 2. http://www.ictp.trieste.it/˜pub_off/lectures/vol9.html.Google Scholar
  280. 280.
    P. Schneider. Über gewisse Galoiscohomologiegruppen. Math. Z., 168(2):181–205, 1979.zbMATHMathSciNetCrossRefGoogle Scholar
  281. 281.
    H. Schröder. K -theory for real C -algebras and applications. Longman Scientific & Technical, Harlow, 1993.Google Scholar
  282. 282.
    J.-P. Serre. Cohomologie des groupes discrets. In Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970), pages 77–169. Ann. of Math. Studies, No. 70. Princeton Univ. Press, Princeton, N.J., 1971.Google Scholar
  283. 283.
    J.-P. Serre. Linear representations of finite groups. Springer-Verlag, New York, 1977. Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42.zbMATHGoogle Scholar
  284. 284.
    J. L. Shaneson. Wall’s surgery obstruction groups for G × Z. Ann. of Math. (2), 90:296–334, 1969.MathSciNetCrossRefGoogle Scholar
  285. 285.
    W.-X. Shi. Deforming the metric on complete Riemannian manifolds. J. Differential Geom., 30(1):223–301, 1989.zbMATHMathSciNetGoogle Scholar
  286. 286.
    J. R. Silvester. Introduction to algebraic K -theory. Chapman & Hall, London, 1981. Chapman and Hall Mathematics Series.zbMATHGoogle Scholar
  287. 287.
    G. Skandalis. Une notion de nucléarité en K-théorie (d’après J. Cuntz). K -Theory, 1(6):549–573, 1988.zbMATHMathSciNetCrossRefGoogle Scholar
  288. 288.
    G. Skandalis. Progrès récents sur la conjecture de Baum-Connes. Contribution de Vincent Lafforgue. Astérisque, (276):105–135, 2002. Séminaire Bourbaki, Vol. 1999/2000.Google Scholar
  289. 289.
    G. Skandalis, J. L. Tu, and G. Yu. The coarse Baum-Connes conjecture and groupoids. Topology, 41(4):807–834, 2002.zbMATHMathSciNetCrossRefGoogle Scholar
  290. 290.
    C. Soulé. On higher p-adic regulators. In Algebraic K -theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980), volume 854 of Lecture Notes in Math., pages 372–401. Springer-Verlag, Berlin, 1981.Google Scholar
  291. 291.
    C. Soulé. Éléments cyclotomiques en K-théorie. Astérisque, (147-148):225–257, 344, 1987. Journées arithmétiques de Besançon (Besançon, 1985).Google Scholar
  292. 292.
    V. Srinivas. Algebraic K -theory. Birkhäuser Boston Inc., Boston, MA, 1991.zbMATHGoogle Scholar
  293. 293.
    C. Stark. Topological rigidity theorems. In R. Daverman and R. Sher, editors, Handbook of Geometric Topology, chapter 20. Elsevier, 2002.Google Scholar
  294. 294.
    C. W. Stark. Surgery theory and infinite fundamental groups. In Surveys on surgery theory, Vol. 1, volume 145 of Ann. of Math. Stud., pages 275–305. Princeton Univ. Press, Princeton, NJ, 2000.Google Scholar
  295. 295.
    N. E. Steenrod. A convenient category of topological spaces. Michigan Math. J., 14:133–152, 1967.zbMATHMathSciNetCrossRefGoogle Scholar
  296. 296.
    M. R. Stein. Excision and K2 of group rings. J. Pure Appl. Algebra, 18(2):213–224, 1980.zbMATHMathSciNetCrossRefGoogle Scholar
  297. 297.
    S. Stolz. Manifolds of positive scalar curvature. In T. Farrell, L. Göttsche, and W. Lück, editors, High dimensional manifold theory, number 9 in ICTP Lecture Notes, pages 661–708. Abdus Salam International Centre for Theoretical Physics, Trieste, 2002. Proceedings of the summer school “High dimensional manifold theory” in Trieste May/June 2001, Number 2. http://www.ictp.trieste.it/˜pub_off/lectures/vol9.html.Google Scholar
  298. 298.
    R. G. Swan. Induced representations and projective modules. Ann. of Math. (2), 71:552–578, 1960.MathSciNetCrossRefGoogle Scholar
  299. 299.
    R. G. Swan. K -theory of finite groups and orders. Springer-Verlag, Berlin, 1970. Lecture Notes in Mathematics, Vol. 149.zbMATHGoogle Scholar
  300. 300.
    R. G. Swan. Higher algebraic K-theory. In K -theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992), volume 58 of Proc. Sympos. Pure Math., pages 247–293. Amer. Math. Soc., Providence, RI, 1995.Google Scholar
  301. 301.
    R. M. Switzer. Algebraic topology–homotopy and homology. Springer-Verlag, New York, 1975. Die Grundlehren der mathematischen Wissenschaften, Band 212.zbMATHGoogle Scholar
  302. 302.
    R. W. Thomason. Beware the phony multiplication on Quillen’s A−1 A. Proc. Amer. Math. Soc., 80(4):569–573, 1980.zbMATHMathSciNetCrossRefGoogle Scholar
  303. 303.
    T. tom Dieck. Orbittypen und äquivariante Homologie. I. Arch. Math. (Basel), 23:307–317, 1972.zbMATHMathSciNetGoogle Scholar
  304. 304.
    T. tom Dieck. Transformation groups. Walter de Gruyter & Co., Berlin, 1987.zbMATHGoogle Scholar
  305. 305.
    J.-L. Tu. The Baum-Connes conjecture and discrete group actions on trees. K -Theory, 17(4):303–318, 1999.zbMATHMathSciNetCrossRefGoogle Scholar
  306. 306.
    S. Upadhyay. Controlled algebraic K-theory of integral group ring of SL(3, Z). K -Theory, 10(4):413–418, 1996.zbMATHMathSciNetCrossRefGoogle Scholar
  307. 307.
    A. Valette. Introduction to the Baum-Connes conjecture. Birkhäuser Verlag, Basel, 2002. Fromnotes taken by Indira Chatterji, With an appendix by Guido Mislin.zbMATHGoogle Scholar
  308. 308.
    K. Varadarajan. The finiteness obstruction of C. T. C. Wall. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons Inc., New York, 1989. A Wiley-Interscience Publication.zbMATHGoogle Scholar
  309. 309.
    W. Vogell. Algebraic K-theory of spaces, with bounded control. Acta Math., 165(3-4):161–187, 1990.zbMATHMathSciNetCrossRefGoogle Scholar
  310. 310.
    W. Vogell. Boundedly controlled algebraic K-theory of spaces and its linear counterparts. J. Pure Appl. Algebra, 76(2):193–224, 1991.zbMATHMathSciNetCrossRefGoogle Scholar
  311. 311.
    W. Vogell. Continuously controlled A-theory. K -Theory, 9(6):567–576, 1995.zbMATHMathSciNetCrossRefGoogle Scholar
  312. 312.
    J. B. Wagoner. Delooping classifying spaces in algebraic K-theory. Topology, 11:349–370, 1972.zbMATHMathSciNetCrossRefGoogle Scholar
  313. 313.
    F. Waldhausen. Algebraic K-theory of generalized free products. I, II. Ann. of Math. (2), 108(1):135–204, 1978.MathSciNetCrossRefGoogle Scholar
  314. 314.
    F. Waldhausen. Algebraic K-theory of topological spaces. I. In Algebraic and geometrictopology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1, Proc. Sympos. Pure Math., XXXII, pages 35–60. Amer. Math. Soc., Providence, R.I., 1978.Google Scholar
  315. 315.
    F. Waldhausen. Algebraic K-theory of spaces. In Algebraic and geometric topology (New Brunswick, N.J., 1983), pages 318–419. Springer-Verlag, Berlin, 1985.Google Scholar
  316. 316.
    F. Waldhausen. Algebraic K-theory of spaces, concordance, and stable homotopy theory. In Algebraic topology and algebraic K -theory (Princeton, N.J., 1983), pages 392–417. Princeton Univ. Press, Princeton, NJ, 1987.Google Scholar
  317. 317.
    C. T. C. Wall. Finiteness conditions for CW-complexes. Ann. of Math. (2), 81:56–69, 1965.MathSciNetCrossRefGoogle Scholar
  318. 318.
    C. T. C. Wall. Finiteness conditions for CW complexes. II. Proc. Roy. Soc. Ser. A, 295:129–139, 1966.MathSciNetCrossRefGoogle Scholar
  319. 319.
    C. T. C. Wall. Poincaré complexes. I. Ann. of Math. (2), 86:213–245, 1967.MathSciNetCrossRefGoogle Scholar
  320. 320.
    C. T. C. Wall. Surgery on compact manifolds. American Mathematical Society, Providence, RI, second edition, 1999. Edited and with a foreword by A. A. Ranicki.Google Scholar
  321. 321.
    N. E. Wegge-Olsen. K -theory and C -algebras. The Clarendon Press Oxford University Press, New York, 1993. A friendly approach.Google Scholar
  322. 322.
    C. Weibel. Algebraic K-theory of rings of integers in local and global fields. In this Handbook.Google Scholar
  323. 323.
    C. Weibel. An introduction to algebraic K-theory. In preparation, see http://math.rutgers.edu/˜weibel/Kbook.html.Google Scholar
  324. 324.
    C. A. Weibel. K-theory and analytic isomorphisms. Invent. Math., 61(2):177–197, 1980.zbMATHMathSciNetCrossRefGoogle Scholar
  325. 325.
    C.A.Weibel.Mayer-VietorissequencesandmodulestructuresonNK . In Algebraic K -theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980), volume 854 of Lecture Notes in Math., pages 466–493. Springer-Verlag, Berlin, 1981.Google Scholar
  326. 326.
    M. Weiss. Excision and restriction in controlled K-theory. Forum Math., 14(1):85–119, 2002.zbMATHMathSciNetCrossRefGoogle Scholar
  327. 327.
    M. Weiss and B. Williams. Automorphisms of manifolds and algebraic K-theory. I. K -Theory, 1(6):575–626, 1988.zbMATHMathSciNetCrossRefGoogle Scholar
  328. 328.
    M. Weiss and B. Williams. Assembly. In Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), pages 332–352. Cambridge Univ. Press, Cambridge, 1995.Google Scholar
  329. 329.
    M. Weiss and B. Williams. Automorphisms of manifolds. In Surveys on surgery theory, Vol. 2, volume 149 of Ann. of Math. Stud., pages 165–220. Princeton Univ. Press, Princeton, NJ, 2001.Google Scholar
  330. 330.
    G. W. Whitehead. Elements of homotopy theory. Springer-Verlag, New York, 1978.zbMATHGoogle Scholar
  331. 331.
    B. Wilking. Rigidity of group actions on solvable Lie groups. Math. Ann., 317(2):195–237, 2000.zbMATHMathSciNetCrossRefGoogle Scholar
  332. 332.
    B. Williams. K-theory and surgery. In this Handbook.Google Scholar
  333. 333.
    M. Yamasaki. L-groups of crystallographic groups. Invent. Math., 88(3):571–602, 1987.zbMATHMathSciNetCrossRefGoogle Scholar
  334. 334.
    G. Yu. On the coarse baum-connes conjecture. K-theory, 9:199–221, 1995.zbMATHMathSciNetCrossRefGoogle Scholar
  335. 335.
    G. Yu. Localization algebras and the coarse Baum-Connes conjecture. K -Theory, 11(4):307–318, 1997.zbMATHMathSciNetCrossRefGoogle Scholar
  336. 336.
    G. Yu. Asymptotic Fredholm modules, vector bundles with small variation and a nonvanishing theorem for K-theoretic indices. K -Theory, 13(4):331–346, 1998.zbMATHMathSciNetCrossRefGoogle Scholar
  337. 337.
    G. Yu. The Novikov conjecture for groups with finite asymptotic dimension. Ann. of Math. (2), 147(2):325–355, 1998.zbMATHMathSciNetCrossRefGoogle Scholar
  338. 338.
    G. Yu. The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math., 139(1):201–240, 2000.zbMATHMathSciNetCrossRefGoogle Scholar
  339. 339.
    G. L. Yu. Baum-Connes conjecture and coarse geometry. K -Theory, 9(3):223–231, 1995.zbMATHMathSciNetCrossRefGoogle Scholar
  340. 340.
    G. L. Yu. Coarse Baum-Connes conjecture. K -Theory, 9(3):199–221, 1995.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Wolfgang Lück
    • 1
  • Holger Reich
    • 1
  1. 1.Fachbereich MathematikUniversität MünsterMünsterGermany

Personalised recommendations