Advertisement

Hydrogel Synthesis and Design

  • Michael J. Majcher
  • Todd HoareEmail author
Reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

The capacity to exploit the many possible applications of hydrogels is strongly tied to our capacity to synthesize hydrogels with well-defined chemistries and structures. Herein, we review the major strategies used for the synthesis of hydrogels, focusing on the key choices to be made in terms of the chemical and structural properties of the backbone polymer, the nature of the crosslinking strategy used (in terms of both the mechanism and the permanence of network formation), and the length scale at which network formation is conducted. The impacts of these various choices on the ultimate properties of the hydrogels generated are emphasized in the context of the rational design of hydrogel compositions and structures for target applications.

Abbreviations

AIBME

Dimethyl 2,2′-azobis(2-methylpropionate)

AIBN

Azobisisobutyronitrile

CD

Cyclodextrin

CNCs

Cellulose nanocrystals

CTAB

Cetyltrimethylammonium bromide

CuAAC

Copper(I)-catalyzed alkyne-azide click reaction

CV

Coefficient of variance

DHs

Dendrimer-based hydrogels

GRAS

Generally recognized as safe (FDA)

GelMA

Methacrylated gelatin

HA

Hyaluronic acid, HA

HPMC

Hydroxypropyl methylcellulose

IPN

Interpenetrating polymer network

IUPAC

International Union of Pure and Applied Chemistry

PAA

Poly(acrylic acid)

PAAm

Poly(acrylamide)

PAH

Poly(allylamine hydrochloride)

PAMAM

Poly(amidoamine)

PCL

Poly(ɛ -caprolactone)

PDADMAC

Poly(diallyldimethylammonium chloride)

PDLA

Poly(d-lactic acid)

PEG

Poly(ethylene glycol)

PEO

Poly(ethylene oxide)

PHEMA

Poly(hydroxyethyl methacrylate)

PLA

Poly(lactic acid)

PLL

Poly-l-lysine

PLLA

Poly(l-lactic acid)

PMAA

Poly(methacrylic acid)

PNIPAM

Poly(N-isopropylacrylamide)

POEGMA

Poly(oligoethylene glycol methacrylate)

POLAMA

Poly(oligolactic acid methacrylate)

PPF

Poly(propylene fumarate)

PRINT

Particle replication in non-wetting templates

PSS

Poly(styrene sulfonate)

PU

Poly(urethane)

PVA

Poly(vinyl alcohol)

PVP

Poly(vinylpyrrolidone)

QDs

Quantum dots

SPAAC

Strain-promoted alkyne-azide click reactions

STMP

Sodium trimetaphosphate

STPP

Sodium tripolyphosphate

TEM

Transmission electron microscopy

TEMED

Tetramethylethylenediamine

References

  1. 1.
    D. Pasqui, M. De Cagna, R. Barbucci, Polysaccharide-based hydrogels: the key role of water in affecting mechanical properties. Polymers 4(4), 1517–1534 (2012)CrossRefGoogle Scholar
  2. 2.
    F. Muller-Plathe, Different states of water in hydrogels? Macromolecules 31, 6721–6723 (1998)CrossRefGoogle Scholar
  3. 3.
    J.F. Mano, G.A. Silva, H.S. Azevedo, P.B. Malafaya, S.S. Sousa, L.F. Boesel, J.M. Oliveira, T.C. Santos, A.P. Marques, N.M. Neves, R.L. Reis, Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J. R. Soc. Interface 4(17), 999–1030 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    W. Zhao, X. Jin, Y. Cong, Y. Liu, J. Fu, Degradable natural polymer hydrogels for articular cartilage tissue engineering. J. Chem. Tech. Biotech. 88(3), 327–339 (2013)CrossRefGoogle Scholar
  5. 5.
    E.B. Glor, C.H. Miller, D.F. Spandau, Degradation of starch and its hydrolytic products by oral bacteria. J. Dent. Res. 67(1), 75–81 (1998)CrossRefGoogle Scholar
  6. 6.
    M. Alberta Araújo, A.M. Cunha, M. Mota, Enzymatic degradation of starch-based thermoplastic compounds used in protheses: identification of the degradation products in solution. Biomaterials 25(13), 2687–2693 (2004)PubMedCrossRefGoogle Scholar
  7. 7.
    United States Food and Drug Administration, Code of Federal Regulations Title 21 Food and Drugs (Electronic Code of Federal Regulations by Government Publishing Office, 2017). https://www.ecfr.gov/cgi-bin/text-idx?SID=3ee286332416f26a91d9e6d786a604ab&mc=true&tpl=/ecfrbrowse/Title21/21tab_02.tpl
  8. 8.
    G. Camci-Unal, J.W. Nichol, H. Bae, H. Tekin, J. Bischoff, A. Khademhosseini, Hydrogel surfaces to promote attachment and spreading of endothelial progenitor cells. J. Tissue Eng. Regen. Med. 7(5), 337–347 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    D. Tian, P. Chandra, J.S. Lee, C. Lu, J.N. Saddler, A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar. Biotechnol. Biofuels. 10(157), 1–10 (2017)PubMedPubMedCentralGoogle Scholar
  10. 10.
    X. Xu, A.K. Jha, D.A. Harrington, M.C. Farach-Carson, X. Jia, Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks. Soft. Matter 8(12), 3280–3294 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    L.J. del Valle, A. Díaz, J. Puiggalí, Hydrogels for biomedical applications: cellulose, chitosan, and protein/peptide derivatives. Gels 3(27), 1–28 (2017)Google Scholar
  12. 12.
    A. Sannino, C. Demitri, M. Madaghiele, Biodegradable cellulose-based hydrogels: design and applications. Materials 2(2), 353–373 (2009)PubMedCentralCrossRefGoogle Scholar
  13. 13.
    W.N.E. van Dijk-Wolthuis, J.A.M. Hoogeboom, M.J. van Steenbergen, S.K.Y. Tsang, W.E. Hennink, Degradation and release behavior of dextran-based hydrogels. Macromolecules 30, 4639–4645 (1997)CrossRefGoogle Scholar
  14. 14.
    C. Elvira, J.F. Mano, J. San Roman, R.L. Reis, Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems. Biomaterials 23, 1955–1966 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    H. Ismail, M. Irani, Z. Ahmad, Starch-based hydrogels: present status and applications. Int. J. Polym. Mater. 62(7), 411–420 (2013)CrossRefGoogle Scholar
  16. 16.
    J.A. Rowley, G. Madlambayan, D.J. Mooney, Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20, 45–53 (1999)PubMedCrossRefGoogle Scholar
  17. 17.
    A.D. Augst, H.J. Kong, D.J. Mooney, Alginate hydrogels as biomaterials. Macromol. Biosci. 6(8), 623–633 (2006)PubMedCrossRefGoogle Scholar
  18. 18.
    Y. Li, H. Meng, Y. Liu, B.P. Lee, Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. Sci. World J. 2015, 1–10 (2015)Google Scholar
  19. 19.
    M. Strathmann, T. Griebe, H.-C. Flemming, Agarose hydrogels as EPS models. Water. Sci. Tech. 43(6), 169–175 (2001)CrossRefGoogle Scholar
  20. 20.
    S.T. Koshy, R.M. Desai, P. Joly, J. Li, R.K. Bagrodia, S.A. Lewin, N.S. Joshi, D.J. Mooney, Click-crosslinked injectable gelatin hydrogels. Adv. Healthc. Mater. 5(5), 541–547 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    E.E. Antoine, P.P. Vlachos, M.N. Rylander, Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. Tissue Eng. Part B Rev. 20(6), 683–696 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    L. Almany, D. Seliktar, Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials 26(15), 2467–2477 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    P.B. Rapp, A.K. Omar, J.J. Shen, M.E. Buck, Z.G. Wang, D.A. Tirrell, Analysis and control of chain mobility in protein hydrogels. J. Am. Chem. Soc. 139(10), 3796–3804 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    A. Dasgupta, J.H. Mondal, D. Das, Peptide hydrogels. RSC Adv. 3(24), 9117–9149 (2013)CrossRefGoogle Scholar
  25. 25.
    S.R. MacEwan, A. Chilkoti, Elastin-like polypeptides: biomedical applications of tunable biopolymers. Biopolymers 94(1), 60–77 (2010)PubMedCrossRefGoogle Scholar
  26. 26.
    Z. Yang, B. Xu, A simple visual assay based on small molecule hydrogels for detecting inhibitors of enzymes. Chem. Commun. 21, 2424–2425 (2004)CrossRefGoogle Scholar
  27. 27.
    T.J. Deming, Polypeptide hydrogels via a unique assembly mechanism. Soft. Matter 1, 28–35 (2005)CrossRefGoogle Scholar
  28. 28.
    Y. Shao, H. Jia, T. Cao, D. Liu, Supramolecular hydrogels based on DNA self-assembly. Acc. Chem. Res. 50(4), 659–668 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    C.M. Kirschner, K.S. Anseth, Hydrogels in healthcare: from static to dynamic material microenvironments. Acta Mater. 61(3), 931–944 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    H. Tan, K.G. Marra, Injectable, biodegradable hydrogels for tissue engineering applications. Materials 3(3), 1746–1767 (2010)PubMedCentralCrossRefGoogle Scholar
  31. 31.
    N.R. Patel, A.K. Whitehead, J.J. Newman, M.E. Caldorera-Moore, Poly(ethylene glycol) hydrogels with tailorable surface and mechanical properties for tissue engineering applications. ACS Biomater. Sci. Eng. 3(8), 1494–1498 (2016)CrossRefGoogle Scholar
  32. 32.
    B.E. Jensen, I. Davila, A.N. Zelikin, Poly(vinyl alcohol) physical hydrogels: matrix-mediated drug delivery using spontaneously eroding substrate. J. Phys. Chem. B 120(26), 5916–5926 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    E.A. Kamoun, X. Chen, M.S. Mohy Eldin, E.R.S. Kenawry, Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: a review of remarkably blended polymers. Arab. J. Chem. 8(1), 1–14 (2015)CrossRefGoogle Scholar
  34. 34.
    S. Chauhan, Acrylic acid and methacrylic acid based hydrogels-a review. Der Chem. Sin. 6(1), 61–72 (2015)Google Scholar
  35. 35.
    V. Kozlovskaya, E. Kharlampieva, M.L. Mansfield, S.A. Sukhishvili, Poly(methacrylic acid) hydrogel films and capsules: response to pH and ionic strength, and encapsulation of macromolecules. Chem. Mater. 18, 328–336 (2006)CrossRefGoogle Scholar
  36. 36.
    M. Teodorescu, M. Bercea, Poly(vinylpyrrolidone) – a versatile polymer for biomedical and beyond medical applications. Polym. Plast. Technol. Eng. 54(9), 923–943 (2015)CrossRefGoogle Scholar
  37. 37.
    N. Roy, N. Saha, PVP-based hydrogels: synthesis, properties and applications, in Hydrogel Synthesis, Characterization, and Applications, ed. F.V. Câmara, L.J. Ferreira (Nova Science, New York, 2012)Google Scholar
  38. 38.
    J.M.S. Malmonge, S.M. Malmoge, Synthesis of PolyHEMA hydrogels for using as biomaterials: bulk and solution radical-initiated polymerization techniques. Mater. Res. 3(3), 1–5 (2000)Google Scholar
  39. 39.
    M.G. Yasuda, M. Gochin, W. Stone Jr., Hydrogels of poly (hydroxyethyl methacrylate) and hydroxyethyl methacrylate glycerol monomethacrylate copolymers. J. Poly. Sci. A 4, 2913–2927 (1966)CrossRefGoogle Scholar
  40. 40.
    M. Patenaude, T. Hoare, Injectable, mixed natural-synthetic polymer hydrogels with modular properties. Biomacromolecules 13(2), 369–378 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    J. Li, W.R.K. Illeperuma, Z. Suo, J.J. Vlassak, Hybrid hydrogels with extremely high stiffness and toughness. ACS Macro. Lett. 3(6), 520–523 (2014)CrossRefGoogle Scholar
  42. 42.
    C. Tang, S. Ye, H. Liu, Electrospinning of poly(styrene-co-maleic anhydride) (SMA) and water-swelling behavior of crosslinked/hydrolyzed SMA hydrogel nanofibers. Polymer 48(15), 4482–4491 (2007)CrossRefGoogle Scholar
  43. 43.
    C.T. Huynh, M.K. Nguyen, D.S. Lee, Injectable block copolymer hydrogels: achievements and future challenges for biomedical applications. Macromolecules 44(17), 6629–6636 (2011)CrossRefGoogle Scholar
  44. 44.
    X. Zhao, O. Coutelier, H.H. Nguyen, C. Delmas, M. Destarac, J.D. Marty, Effect of copolymer composition of RAFT/MADIX-derived N-vinylcaprolactam/N-vinylpyrrolidone statistical copolymers on their thermoresponsive behavior and hydrogel properties. Polym. Chem. 6(29), 5233–5243 (2015)CrossRefGoogle Scholar
  45. 45.
    A.T. Metters, C.N. Bowman, K.S. Anseth, A. Statistical Kinetic, Model for the bulk degradation of PLA-b-PEG-b-PLA hydrogel networks. J. Phys. Chem. B 104, 7043–7049 (2000)CrossRefGoogle Scholar
  46. 46.
    D. McLean, T. Hoare, Kinetic prediction of functional group distributions in thermosensitive microgels. J. Phys. Chem. B 110, 20327–20336 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    X. Jia, K.L. Kiick, Hybrid multicomponent hydrogels for tissue engineering. Macromol. Biosci. 9(2), 140–156 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    M. Jaiswal, V. Koul, Assessment of multicomponent hydrogel scaffolds of poly(acrylic acid-2-hydroxy ethyl methacrylate)/gelatin for tissue engineering applications. J. Biomater. Appl. 27(7), 848–861 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    A. Sunder, R. Mülhaupt, R. Haag, H. Frey, Hyperbranched polyether polyols: a modular approach to complex polymer architectures. Adv. Mater. 12(3), 235–239 (2000)CrossRefGoogle Scholar
  50. 50.
    P.J. Flory, Principles of Polymer Chemistry. The George Fisher Baker Non-Resident Lectureship in Chemistry at Cornell University (Cornell University Press, Ithaca, 1953)Google Scholar
  51. 51.
    S. Zhu, A. Hamielec, Polymerization kinetic modeling and macromolecular reaction engineering, in Polymer Science: A Comprehensive Reference Ring-Opening Polymerization and Special Polymerization Processes, vol 4 (Elsevier Science, 2012), pp. 779–831Google Scholar
  52. 52.
    A. Thomas, S.S. Muller, H. Frey, Beyond poly(ethylene glycol): linear polyglycerol as a multifunctional polyether for biomedical and pharmaceutical applications. Biomacromolecules 15(6), 1935–1954 (2014)PubMedCrossRefGoogle Scholar
  53. 53.
    H. Frey, R. Haag, Dendritic polyglycerol: a new versatile biocompatible material. Rev. Mol. Biotechnol. 90, 257–267 (2002)CrossRefGoogle Scholar
  54. 54.
    K.M. Kim, M. Jikei, M. Kakimoto, Preparation and properties of novel hyperbranched poly(dimethylsiloxane)s. Polym. J. 34(4), 275–279 (2002)CrossRefGoogle Scholar
  55. 55.
    D. Holtel, A. Burgath, H. Frey, Degree of branching in hyperbranched polymers. Acta Polym. 48, 30–35 (1997)CrossRefGoogle Scholar
  56. 56.
    H. Frey, D. Holter, Degree of branching in hyperbranched polymers. 3 Copolymerization of ABm-monomers with AB and ABn-monomers. Acta Polym. 50, 67–76 (1999)CrossRefGoogle Scholar
  57. 57.
    H. Frey, Degree of branching in hyperbranched polymers. 2. Enhancement of the DB: scope and limitations. Acta Polym. 48, 298–309 (1997)CrossRefGoogle Scholar
  58. 58.
    R. Hanselmann, D. Holter, H. Frey, Hyperbranched polymers prepared via the core-dilution/slow addition technique: computer simulation of molecular weight distribution and degree of branching. Macromolecules 31, 3790–3801 (1998)CrossRefGoogle Scholar
  59. 59.
    A. Sunder, R. Hanselmann, H. Frey, R. Mulhaupt, Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules 32, 4240–4246 (1999)CrossRefGoogle Scholar
  60. 60.
    R.K. Kainthan, E.B. Muliawan, S.G. Hatzikiriakos, D.E. Brooks, Synthesis, characterization, and viscoelastic properties of high molecular weight hyperbranched polyglycerols. Macromolecules 39, 7708–7717 (2006)CrossRefGoogle Scholar
  61. 61.
    W. Hassan, Y. Dong, W. Wang, Encapsulation and 3D culture of human adipose-derived stem cells in an in-situ crosslinked hybrid hydrogel composed of PEG-based hyperbranched copolymer and hyaluronic acid. Stem Cell Res. Ther. 4(32), 1–11 (2013)Google Scholar
  62. 62.
    Y. Liu, F. Zhang, Y. Ru, Hyperbranched phosphoramidate-hyaluronan hybrid: a reduction-sensitive injectable hydrogel for controlled protein release. Carbohydr. Polym. 117, 304–311 (2015)PubMedCrossRefGoogle Scholar
  63. 63.
    S. Deng, H. Xu, X. Jiang, J. Yin, Poly(vinyl alcohol) (PVA)-enhanced hybrid hydrogels of Hyperbranched poly(ether amine) (hPEA) for selective adsorption and separation of dyes. Macromolecules 46(6), 2399–2406 (2013)CrossRefGoogle Scholar
  64. 64.
    M.H. Oudshoorn, R. Rissmann, J.A. Bouwstra, W.E. Hennink, Synthesis and characterization of hyperbranched polyglycerol hydrogels. Biomaterials 27(32), 5471–5479 (2006)PubMedCrossRefGoogle Scholar
  65. 65.
    C.A. Holden, P. Tyagi, A. Thakur, R. Kadam, G. Jadhav, U.B. Kompella, H. Yang, Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs. Nanomedicine 8(5), 776–783 (2012)PubMedCrossRefGoogle Scholar
  66. 66.
    P.N. Desai, Q. Yuan, H. Yang, Synthesis and characterization of photocurable polyamidoamine dendrimer hydrogels as a versatile platform for tissue engineering and drug delivery. Biomacromolecules 11(3), 666–673 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    H. Yang, P. Tyagi, R.S. Kadam, C.A. Holden, U.B. Kompella, Hybrid dendrimer hydrogel/PLGA nanoparticle platform sustains drug delivery for one week and antiglaucoma effects for four days following one-time topical administration. ACS Nano 6(9), 7595–7606 (2012)PubMedCrossRefGoogle Scholar
  68. 68.
    J. Wang, H. He, R.C. Cooper, H. Yang, In situ-forming polyamidoamine dendrimer hydrogels with tunable properties prepared via Aza-Michael addition reaction. ACS Appl. Mater. Interfaces 9(12), 10494–10503 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    T. Sakai, T. Matsunaga, Y. Yamamoto, C. Ito, R. Yoshida, S. Suzuki, N. Saskai, M. Shibayama, U.I. Chung, Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41, 5379–5384 (2008)CrossRefGoogle Scholar
  70. 70.
    J. Henise, B.R. Hearn, G.W. Ashley, D.V. Santi, Biodegradable tetra-PEG hydrogels as carriers for a releasable drug delivery system. Bioconjug. Chem. 26(2), 270–278 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    H. Jia, Z. Huang, Z. Li, Z. Zheng, X. Wang, One-pot synthesis of highly mechanical and redox-degradable polyurethane hydrogels based on tetra-PEG and disulfide/thiol chemistry. RSC Adv. 6(54), 48863–48869 (2016)CrossRefGoogle Scholar
  72. 72.
    J.-F. Lutz, Polymerization of oligo(ethylene glycol) (meth)acrylates: toward new generations of smart biocompatible materials. J. Polym. Sci. A 46(11), 3459–3470 (2008)CrossRefGoogle Scholar
  73. 73.
    J.F. Lutz, O. Akdemir, A. Hoth, Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: is the age of poly(NIPAM) over? J. Am. Chem. Soc. 128, 13046–13047 (2006)PubMedCrossRefGoogle Scholar
  74. 74.
    N.M.B. Smeets, M. Patenaude, D. Kinio, F.M. Yavitt, E. Bakaic, F.C. Yang, M. Rheinstadter, T. Hoare, Injectable hydrogels with in situ-forming hydrophobic domains: oligo(d,l-lactide) modified poly(oligoethylene glycol methacrylate) hydrogels. Polym. Chem. 5(23), 6811–6823 (2014)CrossRefGoogle Scholar
  75. 75.
    M.A. Tasdelen, M.U. Kahveci, Y. Yagci, Telechelic polymers by living and controlled/living polymerization methods. Prog. Polym. Sci. 36(4), 455–567 (2011)CrossRefGoogle Scholar
  76. 76.
    H. Zhou, J.A. Johnson, Photo-controlled growth of telechelic polymers and end-linked polymer gels. Angew. Chem. Int. Ed. Engl. 52(8), 2235–2238 (2013)PubMedCrossRefGoogle Scholar
  77. 77.
    T. Zinn, L. Willner, R. Lund, Telechelic polymer hydrogels: relation between the microscopic dynamics and macroscopic viscoelastic response. ACS Macro. Lett. 5(12), 1353–1356 (2016)CrossRefGoogle Scholar
  78. 78.
    I.W. Hamley, G. Cheng, V. Castelletto, A thermoresponsive hydrogel based on telechelic PEG end-capped with hydrophobic dipeptides. Macromol. Biosci. 11(8), 1068–1078 (2011)PubMedCrossRefGoogle Scholar
  79. 79.
    T. Annable, R. Buscall, R. Ettelaie, D. Whittlestone, The rheology of solutions of associating polymers: comparison of experimental behavior with transient network theory. J. Rheol. 37(4), 695–726 (1993)CrossRefGoogle Scholar
  80. 80.
    K.C. Tam, R.D. Jenkins, M.A. Winnik, D.R. Bassett, A structural model of hydrophobically modified urethane-ethoxylate (HEUR) associative polymers in shear flows. Macromolecules 31, 4149–4159 (1998)CrossRefGoogle Scholar
  81. 81.
    R.J. English, I. Ratcliffe, R.L. Blanchard, B.J. Parsons, Effect of polydispersity on fluorescence quenching in micelles formed by telechelic associative polymers. Macromolecules 40, 6699–6708 (2007)CrossRefGoogle Scholar
  82. 82.
    P. Barretta, F. Bordi, C. Rinaldi, G. Paradossi, A. Dynamic Light, Scattering study of hydrogels based on telechelic poly(vinyl alcohol). J. Phys. Chem. B 104, 11019–11026 (2000)CrossRefGoogle Scholar
  83. 83.
    R. Karunakaran, J.P. Kennedy, Synthesis, characterization, and crosslinking of methacrylate-telechelic PDMAAm-b-PDMS-b-PDMAAm copolymers. J. Polym. Sci. A 45(18), 4284–4290 (2007)CrossRefGoogle Scholar
  84. 84.
    N. Stavrouli, T. Aubry, C. Tsitsilianis, Rheological properties of ABA telechelic polyelectrolyte and ABA polyampholyte reversible hydrogels: a comparative study. Polymer 49(5), 1249–1256 (2008)CrossRefGoogle Scholar
  85. 85.
    F. Bossard, T. Aubry, G. Gotzamanis, C. Tsitsilianis, pH-tunable rheological properties of a telechelic cationic polyelectrolyte reversible hydrogel. Soft Matter 2(6), 510–516 (2006)CrossRefGoogle Scholar
  86. 86.
    T. Yan, K. Schroter, F. Herbst, W.H. Binder, T. Thurn-Albrecht, Unveiling the molecular mechanism of self-healing in a telechelic, supramolecular polymer network. Sci. Rep. 6, 1–8 (2016)CrossRefGoogle Scholar
  87. 87.
    K. Kinoshita, T. Takami, Y. Mori, Y. Uchida, Y. Murakami, RAFT-based synthesis and the gelation property of telechelic polymers that can immobilize biomacromolecules. J. Polym. Sci. A 55(8), 1356–1365 (2017)CrossRefGoogle Scholar
  88. 88.
    A.A. Badwan, A. Abumalooh, E. Sallam, A. Abukalaf, O. Jawan, A sustained release drug delivery system using calcium alginate beads. Drug Dev. Ind. Pharm. 11(2–3), 239–256 (2008)Google Scholar
  89. 89.
    A.I. Chou, S.B. Nicoll, Characterization of photocrosslinked alginate hydrogels for nucleus pulposus cell encapsulation. J. Biomed. Mater. Res. A 91(1), 187–194 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    W. Tong, X. Song, C. Gao, Layer-by-layer assembly of microcapsules and their biomedical applications. Chem. Soc. Rev. 41(18), 6103–6124 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    S. Krol, S. del Guerra, M. Grupillo, A. Diaspro, A. Gliozzi, P. Marchetti, Multilayer Nanoencapsulation. New approach for immune protection of human pancreatic islets. Nano Lett. 6(9), 1933–1939 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    J.S. Lee, J. Feijen, Polymersomes for drug delivery: design, formation and characterization. J. Control. Release 161(2), 473–483 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    J.W. Maina, J.J. Richardson, R. Chandrawati, K. Kempe, M.P. van Koeverden, F. Caruso, Capsosomes as long-term delivery vehicles for protein therapeutics. Langmuir 31(28), 7776–7781 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    I.Y. Perevyazko, M. Bauer, G.M. Pavlov, S. Hoppener, S. Schubert, D. Fischer, U.S. Schubert, Polyelectrolyte complexes of DNA and linear PEI: formation, composition and properties. Langmuir 28(46), 16167–16176 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    H. Tsuji, F. Horii, S.H. Hyon, Y. Ikada, Stereocomplex formation between enantiomeric poly(lactic acid)s. 2. Stereocomplex formation in concentrated solutions. Macromolecules 24, 2719–2724 (1991)CrossRefGoogle Scholar
  96. 96.
    K. Kobayashi, H. Sumitomo, T. Itoigawa, Maltopentaose- and maltoheptaose-carrying styrene macromers and their homopolymers. Macromolecules 20, 906–908 (1987)CrossRefGoogle Scholar
  97. 97.
    H. Tsuji, Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol. Biosci. 5(7), 569–597 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    M. Kakuta, M. Hirata, Y. Kimura, Stereoblock polylactides as high-performance bio-based polymers. Polym. Rev. 49(2), 107–140 (2009)CrossRefGoogle Scholar
  99. 99.
    M.J. Webber, E.A. Appel, E.W. Meijer, R. Langer, Supramolecular biomaterials. Nat. Mater. 15(1), 13–26 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    T. Hoare, D. Zurakowski, R. Langer, D.S. Kohane, Rheological blends for drug delivery. I. Characterization in vitro. J. Biomed. Mater. Res. A 92(2), 575–585 (2010)PubMedPubMedCentralGoogle Scholar
  101. 101.
    D.B. Rasale, A.K. Das, Chemical reactions directed peptide self-assembly. Int. J. Mol. Sci. 16(5), 10797–10820 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    J. Kopecek, J. Yang, Smart self-assembled hybrid hydrogel biomaterials. Angew. Chem. Int. Ed. Engl. 51(30), 7396–7417 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    P.Y.W. Dankers, T.M. Hermans, T.W. Baughman, Y. Kamikawa, R.E. Kieltyka, M.M. Bastings, H.M. Janssen, N.A.J.M. Sommerdijk, A. Larsen, M.J.A. van Luyn, A.W. Bosman, E.R. Popa, G. Fytas, E.W. Meijer, Hierarchical formation of supramolecular transient networks in water: a modular injectable delivery system. Adv. Mater. 24(20), 2703–2709 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    J. Roosma, T. Mes, P. Leclere, A.R.A. Palmans, E.W. Meijer, Supramolecular materials from benzene-1,3,5-tricarboxamide-based nanorods. J. Am. Chem. Soc. 130, 1120–1121 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    L.E. Buerkle, H.A. von Recum, S.J. Rowan, Toward potential supramolecular tissue engineering scaffolds based on guanosine derivatives. Chem. Sci. 3(2), 564–572 (2012)CrossRefGoogle Scholar
  106. 106.
    T. Kakuta, Y. Takashima, M. Nakahata, M. Otsubo, H. Yamaguchi, A. Harada, Preorganized hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host-guest-monomers that contain cyclodextrins and hydrophobic guest groups. Adv. Mater. 25(20), 2849–2853 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    O.Y. Posudievsky, S.A. Biskulova, V.D. Pokhodenko, New hybrid guest–host nanocomposites based on polyaniline, poly(ethylene oxide) and V2O5. J. Mater. Chem. 14(9), 1419–1423 (2004)CrossRefGoogle Scholar
  108. 108.
    Y. Zheng, I. Wyman, Supramolecular nanostructures based on cyclodextrin and poly(ethylene oxide): syntheses, structural characterizations and applications for drug delivery. Polymers 8(5), 1–18 (2016)CrossRefGoogle Scholar
  109. 109.
    T. Kakuta, Y. Takashima, A. Harada, Highly elastic supramolecular hydrogels using host–guest inclusion complexes with cyclodextrins. Macromolecules 46(11), 4575–4579 (2013)CrossRefGoogle Scholar
  110. 110.
    E.A. Appel, F. Biedermann, U. Rauwald, S.T. Jones, J.M. Zayed, O.A. Scherman, Supramolecular cross-linked networks via host-guest complexation with cucurbit[8]uril. J. Am. Chem. Soc. 132, 14251–14260 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    M.A. Winnik, A. Yekta, Associative polymers in aqueous solution. Rheology and rheological techniques. Curr. Opin. Colloid Interface Sci. 2(4), 424–436 (1997)CrossRefGoogle Scholar
  112. 112.
    P. Alexandridis, Amphiphilic copolymers and their applications. Curr. Opin. Colloid Interface Sci. 1(4), 490–501 (1996)CrossRefGoogle Scholar
  113. 113.
    L.M. Landoll, Nonionic polymer surfactants. J. Polym. Sci. Polym. Chem. 20, 443–455 (1982)CrossRefGoogle Scholar
  114. 114.
    U.P. Strauss, E.G. Jackson, Polysoaps. I. Viscosity and solubilization studies on an n-dodecyl bromide addition compound of poly-2-vinylpyridine. J. Polym. Sci. 2(5), 649–659 (1951)CrossRefGoogle Scholar
  115. 115.
    D.N. Schulz, J.J. Kaladas, J.J. Maurer, J. Bock, S.J. Pace, W.W. Schulz, Copolymers of acrylamide and surfactant macromonomers: synthesis and solution properties. Polymer 28, 2110–2115 (1987)CrossRefGoogle Scholar
  116. 116.
    D.N. Schulz, J. Bock, Synthesis and fluid properties of associating polymer systems. J. Macromol. Sci. A 28(11–12), 1235–1243 (1991)CrossRefGoogle Scholar
  117. 117.
    I. Lee, K. Akiyoshi, Single molecular mechanics of a cholesterol-bearing pullulan nanogel at the hydrophobic interfaces. Biomaterials 25(15), 2911–2918 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    P. Sheikholeslami, B. Muirhead, D.S. Baek, H. Wang, X. Zhao, D. Sivakumaran, S. Boyd, H. Sheardown, T. Hoare, Hydrophobically-modified poly(vinyl pyrrolidone) as a physically-associative, shear-responsive ophthalmic hydrogel. Exp. Eye Res. 137, 18–31 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    S. Doktorovova, E.B. Souto, Nanostructured lipid carrier-based hydrogel formulations for drug delivery: a comprehensive review. Expert Opin. Drug Deliv. 6(2), 165–176 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    T.R. Hoare, D.S. Kohane, Hydrogels in drug delivery: progress and challenges. Polymer 49(8), 1993–2007 (2008)CrossRefGoogle Scholar
  121. 121.
    S. Malli, C. Bories, B. Pradines, K. Bouchemal, In situ forming pluronic(R) F127/chitosan hydrogel limits metronidazole transmucosal absorption. Eur. J. Pharm. Biopharm. 112, 143–147 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    I.M. Diniz, C. Chen, X. Xu, S. Ansari, H.H. Zadeh, M.M. Marques, S. Shi, A. Moshaverinia, Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells. J. Mater. Sci. Mater. Med. 26(3), 152–162 (2015)CrossRefGoogle Scholar
  123. 123.
    H. Namazi, M. Adeli, Novel linear–globular thermoreversible hydrogel ABA type copolymers from dendritic citric acid as the A blocks and poly(ethyleneglycol) as the B block. Eur. Polym. J. 39(7), 1491–1500 (2003)CrossRefGoogle Scholar
  124. 124.
    A.L.Z. Lee, S. Venkataraman, C.H. Fox, D.J. Coady, C.W. Frank, J.L. Hedrick, Y.Y. Yang, Modular composite hydrogels from cholesterol-functionalized polycarbonates for antimicrobial applications. J. Mater. Chem. B 3(34), 6953–6963 (2015)CrossRefGoogle Scholar
  125. 125.
    D.A. Hoagland, S.P. Gido, S. Pudjijanto, L.W. Kleiner, S. Venkatraman, Microstructure of poly(vinyl alcohol) hydrogels produced by freeze/thaw cycling. J. Polym. Sci. B 37, 3438–3454 (1999)CrossRefGoogle Scholar
  126. 126.
    P. Giannouli, E.R. Morris, Cryogelation of xanthan. Food Hydrocoll. 17(4), 495–501 (2003)CrossRefGoogle Scholar
  127. 127.
    C.R. Martinez, B.L. Iverson, Rethinking the term “pi-stacking”. Chem. Sci. 3(7), 2191–2201 (2012)CrossRefGoogle Scholar
  128. 128.
    A.N. Rissanou, E. Georgilis, E. Kasotakis, A. Mitraki, V. Harmandaris, Effect of solvent on the self-assembly of dialanine and diphenylalanine peptides. J. Phys. Chem. B 117(15), 3962–3975 (2013)PubMedCrossRefGoogle Scholar
  129. 129.
    C. Guo, Y. Luo, R. Zhou, G. Wei, Probing the self-assembly mechanism of diphenylalanine-based peptide nanovesicles and nanotubes. ACS Nano 6(5), 3907–3918 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    V. Singh, K. Snigdha, C. Singh, S. Neeraj, A.K. Thakur, Understanding the self-assembly of Fmoc-phenylalanine to hydrogel formation. Soft Matter 11(26), 5353–5364 (2015)PubMedCrossRefGoogle Scholar
  131. 131.
    A.M. Smith, R.J. Williams, C. Tang, P. Coppo, R.F. Collins, M.L. Turner, A. Saiani, R.V. Ulijn, Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on π–π interlocked β-sheets. Adv. Mater. 20(1), 37–41 (2008)CrossRefGoogle Scholar
  132. 132.
    R.J. Williams, A.M. Smith, R. Collins, N. Hodson, A.K. Das, R.V. Ulijn, Enzyme-assisted self-assembly under thermodynamic control. Nat. Nanotechnol. 4(1), 19–24 (2009)PubMedCrossRefGoogle Scholar
  133. 133.
    H. Wang, C. Ren, Z. Song, L. Wang, X. Chen, Z. Yang, Enzyme-triggered self-assembly of a small molecule: a supramolecular hydrogel with leaf-like structures and an ultra-low minimum gelation concentration. Nanotechnology 21(22), 225606 (2010)PubMedCrossRefGoogle Scholar
  134. 134.
    Y.-H. Fu, C.-Y. Chen, C.-T. Chen, Tuning of hydrogen peroxide-responsive polymeric micelles of biodegradable triblock polycarbonates as a potential drug delivery platform with ratiometric fluorescence signaling. Polym. Chem. 6(47), 8132–8143 (2015)CrossRefGoogle Scholar
  135. 135.
    R. Nozawa, H. Tanaka, W.Y. Cha, Y. Hong, I. Hisaki, S. Shimizu, J.Y. Shin, T. Kowalczyk, S. Irle, D. Kim, H. Shinokubo, Stacked antiaromatic porphyrins. Nat. Commun. 7, 1–7 (2016)Google Scholar
  136. 136.
    R.J. Williams, T.E. Hall, V. Glattauer, J. White, P.J. Pasic, A.B. Sorensen, L. Wassington, K.M. McLean, P.D. Currie, P.G. Hartley, The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel. Biomaterials 32(22), 5304–5310 (2011)PubMedCrossRefGoogle Scholar
  137. 137.
    F.A. Cotton, G. Wilkinson, C.A. Murillo, M.C.A.M. Bochmann, Advanced Inorganic Chemistry, 6th edn. (Wiley, New York, 1999)Google Scholar
  138. 138.
    G.L. Miessler, D.A. Tarr, Inorganic Chemistry (Prentice Hall, Upper Saddle River, 1999)Google Scholar
  139. 139.
    N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd edn. (Butterworth-Heinemann, Oxford, 1997)Google Scholar
  140. 140.
    Y. Chujo, K. Sada, T. Saegus, Cobalt(III) bipyridyl-branched polyoxazoline complex as a thermally and redox reversible hydrogel. Macromolecules 26(24), 6320–6323 (1993)CrossRefGoogle Scholar
  141. 141.
    Y. Chujo, K. Sada, T. Saegus, Iron(II) bipyridyl-branched polyoxazoline complex as a thermally reversible hydrogel. Macromolecules 26(24), 6315–6319 (1993)CrossRefGoogle Scholar
  142. 142.
    G.L. Fiore, J.L. Klinkenberg, A. Pfister, C.L. Fraser, Iron tris(bipyridine) PEG hydrogels with covalent and metal coordinate cross-links. Biomacromolecules 10, 128–133 (2009)PubMedCrossRefGoogle Scholar
  143. 143.
    M. Chiper, S. Hoeppener, U.S. Schubert, C.A. Fustin, J.F. Gohy, Self-assembly behavior of bis(terpyridine) and metallo-bis(terpyridine) pluronics in dilute aqueous solutions. Macromol. Chem. Phys. 211(21), 2323–2330 (2010)CrossRefGoogle Scholar
  144. 144.
    S.J. Buwalda, P.J. Dijkstra, J. Feijen, Poly(ethylene glycol)-poly(l-lactide) star block copolymer hydrogels crosslinked by metal-ligand coordination. J. Polym. Sci. A 50(9), 1783–1791 (2012)CrossRefGoogle Scholar
  145. 145.
    X. Wang, T. He, L. Yang, H. Wu, R. Zhang, Z. Zhang, R. Shen, J. Xiang, Y. Zhang, C. Wei, A Co2+-selective and chirality-sensitive supermolecular metallohydrogel with a nanofiber network skeleton. Nanoscale 8(12), 6479–6483 (2016)PubMedCrossRefGoogle Scholar
  146. 146.
    W. Fang, Z. Sun, T. Tu, Novel supramolecular thixotropic metallohydrogels consisting of rare metal–organic nanoparticles: synthesis, characterization, and mechanism of aggregation. J. Phys. Chem. C 117(47), 25185–25194 (2013)CrossRefGoogle Scholar
  147. 147.
    X. Yan, S. Li, T.R. Cook, X. Ji, Y. Yao, B. Pollock, Y. Shi, G. Yu, J. Li, F. Huang, P.J. Stang, Hierarchical self-assembly: well-defined supramolecular nanostructures and metallohydrogels via amphiphilic discrete organoplatinum(II) metallacycles. J. Am. Chem. Soc. 135(38), 14036–14039 (2013)PubMedCrossRefGoogle Scholar
  148. 148.
    X. Wang, T. He, L. Yang, H. Wu, J. Yin, R. Shen, J. Xiang, C. Wei, Designing isometrical gel precursors to identify the gelation pathway for nickel-selective metallohydrogels. Dalton Trans. 45(46), 18438–18442 (2016)PubMedCrossRefGoogle Scholar
  149. 149.
    R. Laishram, U. Maitra, A stimuli-responsive metallohydrogel exhibiting cyclohexane-like hydrophobicity. Chem. Asian J. 12(12), 1267–1271 (2017)PubMedCrossRefGoogle Scholar
  150. 150.
    X. Wang, C. Wei, T. He, L. Yang, H. Wu, J. Yin, R. Shen, J. Xiang, Y. Zhang, Pb2+-specific metallohydrogel based on tryptophan-derivatives: preparation, characterization, multi-stimuli responsiveness and potential applications in wastewater and soil treatment. RSC Adv. 6(84), 81341–81345 (2016)CrossRefGoogle Scholar
  151. 151.
    S. Chatterjee, U. Maitra, A novel strategy towards designing a CdSe quantum dot-metallohydrogel composite material. Nanoscale 8(32), 14979–14985 (2016)PubMedCrossRefGoogle Scholar
  152. 152.
    J.S. Katz, J.A. Burdick, Synthetic biomaterials, in Molecular Cellular and Tissue Engineering, ed. by J.D. Bronzio, D.R. Peterson (CRC Press, Boca Raton, 2015)Google Scholar
  153. 153.
    P.W. Drapala, B. Jiang, Y.C. Chiu, W.F. Mieler, E.M. Brey, J.J. Kang-Mieler, V.H. Perez-Luna, The effect of glutathione as chain transfer agent in PNIPAAm-based thermo-responsive hydrogels for controlled release of proteins. Pharm. Res. 31(3), 742–753 (2014)PubMedCrossRefGoogle Scholar
  154. 154.
    A.S. Sarvestani, X. He, E. Jabbari, Viscoelastic characterization and modeling of gelation kinetics of injectable in situ cross-linkable poly(lactide-co-ethylene oxide-co-fumarate) hydrogels. Biomacromolecules 8, 406–415 (2007)PubMedCrossRefGoogle Scholar
  155. 155.
    M. Patenaude, N.M.B. Smeets, T. Hoare, Designing injectable, covalently cross-linked hydrogels for biomedical applications. Macromol. Rapid Commun. 35(6), 598–617 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    G. Hamdi, G. Ponchel, D. Duchene, Formulation of epichlorohydrin cross-linked starch microspheres. J. Microencapsul. 18(3), 373–383 (2001)PubMedCrossRefGoogle Scholar
  157. 157.
    J. Wojtasz, J. Carlstedt, P. Fyhr, V. Kocherbitov, Hydration and swelling of amorphous cross-linked starch microspheres. Carbohydr. Polym. 135, 225–233 (2016)PubMedCrossRefGoogle Scholar
  158. 158.
    L.X. Gao, J.I. Chen, X.W. Han, S.X. Yan, Y. Zhang, W.Q. Zhang, Z.W. Gao, Electro-response characteristic of starch hydrogel crosslinked with glutaraldehyde. J. Biomater. Sci. Polym. Ed. 26(9), 545–557 (2015)PubMedCrossRefGoogle Scholar
  159. 159.
    K. Pal, A.K. Banthia, D.K. Majumdar, Effect of heat treatment of starch on the properties of the starch hydrogels. Mater. Lett. 62(2), 215–218 (2008)CrossRefGoogle Scholar
  160. 160.
    A. Hassan, M.B.K. Miazi, A. Hussain, S. Farrukh, T. Ahmad, Development of anti-bacterial PVA/starch based hydrogel membrane for wound dressing. J. Polym. Environ. (2017).  https://doi.org/10.1007/s10924-017-0944-2
  161. 161.
    Z. Malekpour, M. Hojatoleslamy, H. Molvai, J. Keramat, A.G. Yazdi, M.A. Shariati, Effects of cross-linking modification with phosphoryl chloride (POCl3) on physiochemical properties of barley starch. Potravinarstvo 10(1), 195–201 (2016)Google Scholar
  162. 162.
    L. Mirmoghtadaie, M. Kadivar, M. Shahedi, Effects of cross-linking and acetylation on oat starch properties. Food Chem. 116(3), 709–713 (2009)CrossRefGoogle Scholar
  163. 163.
    S.H. Koo, K.Y. Lee, H.G. Lee, Effect of cross-linking on the physicochemical and physiological properties of corn starch. Food Hydrocoll. 24(6–7), 619–625 (2010)CrossRefGoogle Scholar
  164. 164.
    F.M. Carbinatto, A.D. de Castro, B.S. Cury, A. Magalhaes, R.C. Evangelista, Physical properties of pectin-high amylose starch mixtures cross-linked with sodium trimetaphosphate. Int. J. Pharm. 423(2), 281–288 (2012)PubMedCrossRefGoogle Scholar
  165. 165.
    K. Woo, P.A. Seib, Cross-linking of wheat starch and hydroxypropylated wheat starch in alkaline slurry with sodium trimetaphosphate. Carbohydr. Polym. 33, 263–271 (1997)CrossRefGoogle Scholar
  166. 166.
    Y.-Y. Fang, L.J. Wang, D. Li, B.Z. Li, B. Bhandari, X.D. Chen, Z.H. Mao, Preparation of crosslinked starch microspheres and their drug loading and releasing properties. Carbohydr. Polym. 74(3), 379–384 (2008)CrossRefGoogle Scholar
  167. 167.
    M.W. Rutenberg, D. Solarek, Starch derivatives: production and uses, in Starch: Chemistry and Technology, ed. R.L. Whistler (Academic, Orlando, 1984)Google Scholar
  168. 168.
    G.T. Hermanson, Bioconjugate Techniques, 3rd edn. (Academic, London, 2013)Google Scholar
  169. 169.
    I. Mironi-Harpaz, D.Y. Wang, S. Venkatraman, D. Seliktar, Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity. Acta Biomater. 8(5), 1838–1848 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    J. Baier Leach, K.A. Bivens, C.W. Patrick, C.E. Schmidt, Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol. Bioeng. 82(5), 578–589 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    J. Hedin, Å. Östlund, M. Nydén, UV induced cross-linking of starch modified with glycidyl methacrylate. Carbohydr. Polym. 79(3), 606–613 (2010)CrossRefGoogle Scholar
  172. 172.
    M. Diolosa, I. Donati, G. Turco, M. Cadenaro, R. Di Lenarda, L. Breschi, S. Paoletti, Use of methacrylate-modified chitosan to increase the durability of dentine bonding systems. Biomacromolecules 15(12), 4606–4613 (2014)PubMedCrossRefGoogle Scholar
  173. 173.
    J. Han, K. Wang, D. Yang, J. Nie, Photopolymerization of methacrylated chitosan/PNIPAAm hybrid dual-sensitive hydrogels as carrier for drug delivery. Int. J. Biol. Macromol. 44(3), 229–235 (2009)PubMedCrossRefGoogle Scholar
  174. 174.
    M.F. Akhtar, M. Hanif, N.M. Ranjha, Methods of synthesis of hydrogels … a review. Saudi Pharm. J. 24(5), 554–559 (2016)PubMedCrossRefGoogle Scholar
  175. 175.
    K.E. Pfitzner, J.E. Mofatt, Sulfoxide-carbodiimide reactions. I. A facile oxidation of alcohols. J. Am. Chem. Soc. 87(24), 5661–5670 (1965)CrossRefGoogle Scholar
  176. 176.
    T. Iwasawa, P. Wash, C. Gibson, J. Rebek, Reaction of an introverted carboxylic acid with carbodiimide. Tetrahedron 63(28), 6506–6511 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Y. Sekine, Y. Moritani, T. Ikeda-Fukazawa, Y. Sasaki, K. Akiyoshi, A hybrid hydrogel biomaterial by nanogel engineering: bottom-up design with nanogel and liposome building blocks to develop a multidrug delivery system. Adv. Healthc. Mater. 1(6), 722–728 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    L. Capretto, S. Focaroli, X.L. Zhang, S. Mazzitelli, C. Nastruzzi, Production of low cost microfluidic chips by a “shrinking” approach: applications to emulsion and microparticle production. J. Control. Release 148(1), 26–28 (2010)CrossRefGoogle Scholar
  179. 179.
    A.M. Kloxin, C.J. Kloxin, C.N. Bowman, K.S. Anseth, Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv. Mater. 22(31), 3484–3494 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    R. Censi, P.J. Fieten, P. di Martino, W.E. Hennink, T. Vermonden, In situ forming hydrogels by tandem thermal gelling and Michael addition reaction between thermosensitive triblock copolymers and thiolated hyaluronan. Macromolecules 43(13), 5771–5778 (2010)CrossRefGoogle Scholar
  181. 181.
    J. Kim, Y. Park, G. Tae, K.B. Lee, C.M. Hwang, S.J. Hwang, I.S. Kim, I. Noh, K. Sun, Characterization of low-molecular-weight hyaluronic acid-based hydrogel and differential stem cell responses in the hydrogel microenvironments. J. Biomed. Mater. Res. A 88(4), 967–975 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    C. Chen, L. Wang, L. Deng, R. Hu, A. Dong, Performance optimization of injectable chitosan hydrogel by combining physical and chemical triple crosslinking structure. J. Biomed. Mater. Res. A 101(3), 684–693 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    J.W. DuBose, C. Cutshall, A.T. Metters, Controlled release of tethered molecules via engineered hydrogel degradation: model development and validation. J. Biomed. Mater. Res. A 74(1), 104–116 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    S. Cai, Y. Liu, X. Zheng Shu, G.D. Prestwich, Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials 26(30), 6054–6067 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    N.J. Darling, Y.S. Hung, S. Sharma, T. Segura, Controlling the kinetics of thiol-maleimide Michael-type addition gelation kinetics for the generation of homogenous poly(ethylene glycol) hydrogels. Biomaterials 101, 199–206 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    S. Allazetta, T.C. Hausherr, M.P. Lutolf, Microfluidic synthesis of cell-type-specific artificial extracellular matrix hydrogels. Biomacromolecules 14(4), 1122–1131 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    S.-C. Han, W.D. He, J. Li, L.Y. Li, X.L. Sun, B.Y. Zhang, T.T. Pan, Reducible polyethylenimine hydrogels with disulfide crosslinkers prepared by michael addition chemistry as drug delivery carriers: synthesis, properties, and in vitro release. J. Polym. Sci. A 47(16), 4074–4082 (2009)CrossRefGoogle Scholar
  188. 188.
    Y. Liang, T.W. Jensen, E.J. Roy, C. Cha, R.J. Devolder, R.E. Kohman, B.Z. Zhang, K.B. Textor, L.A. Rund, L.B. Schook, Y.W. Tong, H. Kong, Tuning the non-equilibrium state of a drug-encapsulated poly(ethylene glycol) hydrogel for stem and progenitor cell mobilization. Biomaterials 32(7), 2004–2012 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    J.L. Court, R.P. Redman, J.H. Wang, S.W. Leppard, V.J. Obyrne, S.A. Small, A.L. Lewis, S.A. Jones, P.W. Stratford, A novel phosphorylcholine-coated contact lens for extended wear use. Biomaterials 22, 3261–3272 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    A.T. Cameron, M.S. Hollenberg, The relative toxicity of halides and certain other anions. J. Gener. Physiol. 4(4), 411–422 (1921)CrossRefGoogle Scholar
  191. 191.
    G.-Z. Li, R.K. Randev, A.H. Soeriyadi, G. Rees, C. Boyer, Z. Tong, T.P. Davis, C.R. Becer, D.M. Haddleton, Investigation into thiol-(meth)acrylate Michael addition reactions using amine and phosphine catalysts. Polym. Chem. 1(8), 1196–1204 (2010)CrossRefGoogle Scholar
  192. 192.
    Y. Yu, C. Deng, F. Meng, Q. Shi, J. Feijen, Z. Zhong, Novel injectable biodegradable glycol chitosan-based hydrogels crosslinked by Michael-type addition reaction with oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo(acryloyl carbonate) copolymers. J. Biomed. Mater. Res. A 99(2), 316–326 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Y. Dong, A.O. Saeed, W. Hassan, C. Keigher, Y. Zheng, H. Tai, A. Pandit, W. Wang, “One-step” preparation of thiol-ene clickable PEG-based thermoresponsive hyperbranched copolymer for in situ crosslinking hybrid hydrogel. Macromol. Rapid Commun. 33(2), 120–126 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    M. Koritzinsky, F. Levitin, T. van den Beucken, R.A. Rumantir, N.J. Harding, K.C. Chu, P.C. Boutros, I. Braakman, B.G. Wouters, Two phases of disulfide bond formation have differing requirements for oxygen. J. Cell Biol. 203(4), 615–627 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    K.P. Vercruysse, D.M. Marecak, J.F. Marecek, G.D. Prestwich, Synthesis and in vitro degradation of new polyvalent hydrazide cross-linked hydrogels of hyaluronic acid. Bioconjug. Chem. 8, 686–694 (1997)PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    F. Rubino, Toxicity of glutathione-binding metals: a review of targets and mechanisms. Toxics 3(1), 20–62 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    D.-C. Wu, J.-L. Xian, Y.-L. Wu, C.-L. Lay, Y. Liu, ‘Living’ controlled in situ gelling systems: thiol-disulfide exchange method toward tailor-made biodegradable hydrogels. J. Am. Chem. Soc. 132, 15140–15143 (2010)PubMedCrossRefGoogle Scholar
  198. 198.
    S.Y. Choh, D. Cross, C. Wang, Facile synthesis and characterization of disulfide-cross-linked hyaluronic acid hydrogels for protein delivery and cell encapsulation. Biomacromolecules 12(4), 1126–1136 (2011)PubMedCrossRefGoogle Scholar
  199. 199.
    H. Zhang, A. Qadeer, W. Chen, In situ gelable interpenetrating double network hydrogel formulated from binary components: thiolated chitosan and oxidized dextran. Biomacromolecules 12(5), 1428–1437 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    G. Godeau, T. Darmanin, F. Guittard, Switchable surfaces from highly hydrophobic to highly hydrophilic using covalent imine bonds. J. Appl. Polym. Sci. 133, 43130 (2016).  https://doi.org/10.1002/app.43130CrossRefGoogle Scholar
  201. 201.
    K.C. Leung, S. Xuan, C.M. Lo, Reversible switching between hydrophilic and hydrophobic superparamagnetic iron oxide microspheres via one-step supramolecular dynamic dendronization: exploration of dynamic wettability. ACS Appl. Mater. Interfaces 1(9), 2005–2012 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    E.H. Vernot, J.D. MacEwen, R.H. Bruner, C.C. Haun, E.R. Kinkead, D.E. Prentice, A. Hall III, R.E. Schmidt, R.L. Eason, G.B. Hubbard, J.T. Young, Long-term inhalation toxicity of hydrazine. Fundam. Appl. Toxicol. 5, 1050–1064 (1984)CrossRefGoogle Scholar
  203. 203.
    E. Bakaic, N.M.B. Smeets, M. Badv, M. Dodd, O. Barrigar, E. Siebers, M. Lawlor, H. Sheardown, T. Hoare, Injectable and degradable poly(oligoethylene glycol methacrylate) hydrogels with tunable charge densities as adhesive peptide-free cell scaffolds. ACS Biomater Sci. Eng. (2017).  https://doi.org/10.1021/acsbiomaterials.7b00397
  204. 204.
    P. Bulpitt, D. Aeschlimann, New strategy for chemical modification of hyaluronic acid: preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. In Situ Polymerizable Hyaluronic Acid Hydrogel Materials. J. Biomed. Mater. Res. 47(2), 152–169 (1999)Google Scholar
  205. 205.
    J.M. Garver, S. Gronert, V.M. Bierbaum, Experimental validation of the alpha-effect in the gas phase. J. Am. Chem. Soc. 133(35), 13894–13897 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    K.Y. Lee, K.H. Bouhadir, D.J. Mooney, Degradation behavior of covalently cross-linked poly(aldehyde guluronate) hydrogels. Macromolecules 33, 97–101 (2000)CrossRefGoogle Scholar
  207. 207.
    M. Vetrik, M. Hruby, M. Pradny, J. Michaelek, A new type of irreversibly reductively biodegradable hydrogel. Polym. Degrad. Stab. 96(5), 892–897 (2011)CrossRefGoogle Scholar
  208. 208.
    A. Dirksen, P.E. Dawson, Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling. Bioconjug. Chem. 19, 2543–2548 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    M. Patenaude, S. Campbell, D. Kinio, T. Hoare, Tuning gelation time and morphology of injectable hydrogels using ketone-hydrazide cross-linking. Biomacromolecules 15(3), 781–790 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    J. Kalia, R.T. Raines, Hydrolytic stability of hydrazones and oximes. Angew. Chem. Int. Ed. 47(39), 7523–7526 (2008)CrossRefGoogle Scholar
  211. 211.
    G.N. Grover, H.D. Maynard, Protein-polymer conjugates: synthetic approaches by controlled radical polymerizations and interesting applications. Curr. Opin. Chem. Biol. 14(6), 818–827 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    T. Sladek, J. Filkuka, S. Dolezel, J. Vasku, B. Hartmannova, J. Travnickova, The border zone of the early myocardial infarction in dogs; its characteristics and viability. Basic Res. Cardiol. 79, 344–349 (1984)PubMedCrossRefPubMedCentralGoogle Scholar
  213. 213.
    S.A. Stewart, M. Backholm, N.A.D. Burke, H.D.H. Stover, Cross-linked hydrogels formed through Diels-Alder coupling of furan- and maleimide-modified poly(methyl vinyl ether-alt-maleic acid). Langmuir 32(7), 1863–1870 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    H.-L. Wei, J. Yang, H.J. Chu, Z. Yang, C.C. Ma, K. Yao, Diels-Alder reaction in water for the straightforward preparation of thermoresponsive hydrogels. J. Appl. Polym. Sci. 120(2), 974–980 (2011)CrossRefGoogle Scholar
  215. 215.
    J. Zhang, Y. Niu, C. Huang, L. Xiao, Z. Chen, K. Yang, Y. Wang, Self-healable and recyclable triple-shape PPDO–PTMEG co-network constructed through thermoreversible Diels–Alder reaction. Polym. Chem. 3(6), 1390–1393 (2012)CrossRefGoogle Scholar
  216. 216.
    C.M. Nimmo, S.C. Owen, M.S. Shoichet, Diels-Alder click cross-linked hyaluronic acid hydrogels for tissue engineering. Biomacromolecules 12(3), 824–830 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    H. Tan, J.P. Rubin, K.G. Marra, Direct synthesis of biodegradable polysaccharide derivative hydrogels through aqueous Diels-Alder chemistry. Macromol. Rapid Commun. 32(12), 905–911 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    H.-L. Wei, K. Yao, Z. Yang, H.J. Chu, J. Zhu, C.C. Ma, Z.X. Zhao, Preparation of thermosensitive hydrogels by means of tandem physical and chemical crosslinking. Macromol. Res. 19(3), 294–299 (2011)CrossRefGoogle Scholar
  219. 219.
    R. Huisgen, 1,3-dipolar cycloadditions past and future. Angew. Chem. Int. Ed. 2(10), 565–632 (1963)CrossRefGoogle Scholar
  220. 220.
    Q. Wang, T.R. Chan, R. Hilgraf, V.V. Fokin, K.B. Sharpless, M.G. Finn, Bioconjugation by copper(I)-catalyzed Azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125, 3192–3193 (2002)CrossRefGoogle Scholar
  221. 221.
    D.A. Ossipov, J. Hilborn, Poly(vinyl alcohol)-based hydrogels formed by “click chemistry”. Macromolecules 39, 1709–1718 (2006)CrossRefGoogle Scholar
  222. 222.
    X. Su, L. Bu, H. Dong, S. Fu, R. Zhuo, Z. Zhong, An injectable PEG-based hydrogel synthesized by strain-promoted alkyne–azide cycloaddition for use as an embolic agent. RSC Adv. 6(4), 2904–2909 (2016)CrossRefGoogle Scholar
  223. 223.
    V. Crescenzi, L. Cornelio, C.D. Meo, S. Nardecchia, R. Lamanna, Novel hydrogels via click chemistry: synthesis and potential biomedical applications. Biomacromolecules 8, 1844–1850 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    A. Koschella, M. Hartlieb, T. Heinze, A “click-chemistry” approach to cellulose-based hydrogels. Carbohydr. Polym. 86(1), 154–161 (2011)CrossRefGoogle Scholar
  225. 225.
    X. Hu, D. Li, F. Zhou, C. Gao, Biological hydrogel synthesized from hyaluronic acid, gelatin and chondroitin sulfate by click chemistry. Acta Biomater. 7(4), 1618–1626 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  226. 226.
    M. van Dijk, Synthesis and characterization of biodegradable peptide-based polymers prepared by microwave-assisted click chemistry. Biomacromolecules 9, 2834–2843 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    S.M. Hodgson, E. Bakaic, S.A. Stewart, T. Hoare, A. Adronov, Properties of poly(ethylene glycol) hydrogels cross-linked via strain-promoted alkyne-azide cycloaddition (SPAAC). Biomacromolecules 17(3), 1093–1100 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  228. 228.
    Y.A. Mørch, I. Donati, B.L. Strand, G. Skjak-Braek, Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7, 1471–1480 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  229. 229.
    M.M. Flake, P.K. Hguyen, R.A. Scott, L.R. Vandiverm, R.K. Willits, D.L. Elbert, Poly(ethylene glycol) microparticles produced by precipitation polymerization in aqueous solution. Biomacromolecules 12(3), 844–850 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    O. Khanna, J.C. Larson, M.L. Mova, E.C. Opara, E.M. Brey, Generation of alginate microspheres for biomedical applications. J. Vis. Exp. 66, e3388 (2012).  https://doi.org/10.3791/3388CrossRefGoogle Scholar
  231. 231.
    B.B. Lee, P. Ravindra, E.S. Chan, Size and shape of calcium alginate beads produced by extrusion dripping. Chem. Eng. Tech. 36(10), 1627–1642 (2013)Google Scholar
  232. 232.
    E.-S. Chan, Preparation of ca-alginate beads containing high oil content: influence of process variables on encapsulation efficiency and bead properties. Carbohydr. Polym. 84(4), 1267–1275 (2011)CrossRefGoogle Scholar
  233. 233.
    Y. Xu, C. Zhan, L. Fan, L. Wang, H. Zheng, Preparation of dual crosslinked alginate-chitosan blend gel beads and in vitro controlled release in oral site-specific drug delivery system. Int. J. Pharm. 336(2), 329–337 (2007)PubMedCrossRefGoogle Scholar
  234. 234.
    D. Saeki, S. Sugiura, T. Kanamori, S. Sato, S. Ichikawa, Formation of monodisperse calcium alginate microbeads by rupture of water-in-oil-in-water droplets with an ultra-thin oil phase layer. Lab. Chip. 10(17), 2292–2295 (2010)PubMedCrossRefGoogle Scholar
  235. 235.
    W.H. Tan, S. Takeuchi, Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv. Mater. 19(18), 2696–2701 (2007)CrossRefGoogle Scholar
  236. 236.
    K. Liu, H.J. Ding, J. Liu, Y. Chen, X.Z. Zhao, Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device. Langmuir 22, 9453–9457 (2006)PubMedCrossRefGoogle Scholar
  237. 237.
    T.R. Arunraj, N. Sanoj Rejinold, N.A. Kumar, R. Jayakumar, Doxorubicin-chitin-poly(caprolactone) composite nanogel for drug delivery. Int. J. Biol. Macromol. 62, 35–43 (2013)PubMedCrossRefGoogle Scholar
  238. 238.
    J. Xu, D.H. Wong, J.D. Bryne, K. Chen, C. Bowerman, J.M. DeSimone, Future of the particle replication in nonwetting templates (PRINT) technology. Angew. Chem. Int. Ed. Engl. 52(26), 6580–6589 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    L.W. Chen, B.Z. Yang, M.L. Wu, Synthesis and kinetics of microgel in inverse emulsion polymerization of acrylamide. Progr. Org. Coat. 31(4), 393–399 (1997)CrossRefGoogle Scholar
  240. 240.
    S.M. Joscelyne, G. Trägårdh, Membrane emulsification – a literature review. J. Membr. Sci. 169, 107–117 (2000)CrossRefGoogle Scholar
  241. 241.
    P. Chibante, R.H. Pelton, Preparation of aqueous latices with N-isopropylacrylamide. Colloids Surf. 20, 241–256 (1986)Google Scholar
  242. 242.
    M. Kashiwabara, K. Fujimoto, H. Kawaguchi, Preparation of monodisperse, reactive hydrogel microspheres and their amphoterization. Colloid Polym. Sci. 273, 339–345 (1995)CrossRefGoogle Scholar
  243. 243.
    S.J. Rendevski, A.N. Andonovski, Reaggregation of sodium alginate microgel structures after shear-induced deaggregation at filtering. Polym. Bull. 54(1–2), 93–100 (2005)CrossRefGoogle Scholar
  244. 244.
    N. Morimoto, S. Hirano, H. Takahashi, S. Loethen II, D.H. Thompson, K. Akitoshi, Self-assembled pH-sensitive cholesteryl pullulan nanogel as a protein delivery vehicle. Biomacromolecules 14(1), 56–63 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  245. 245.
    W. McPhee, K.C. Tam, R. Pelton, Poly(N-isopropylacrylamide) latices prepared with sodium dodecyl sulfate. J. Colloid Interface Sci. 156, 24–30 (1993)CrossRefGoogle Scholar
  246. 246.
    C. Mandrycky, Z. Wang, K. Kim, D.K. Kim, 3D bioprinting for engineering complex tissues. Biotechnol. Adv. 34(4), 422–434 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  247. 247.
    K. Pataky, T. Braschler, A. Negro, P. Renaud, Microdrop printing of hydrogel bioinks into 3D tissue-like geometries. Adv. Mater. 24(3), 391–396 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  248. 248.
    L.A. Hockaday, K.H. Kang, N.W. Colangelo, P.Y. Cheung, B. Duan, E. Malone, J. Wu, L.N. Girardi, L.J. Bonassar, H. Lipson, C.C. Chu, J.T. Butcher, Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4(3), 035005 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  249. 249.
    F. Xu, H. Sheardown, T. Hoare, Reactive electrospinning of degradable poly(oligoethylene glycol methacrylate)-based nanofibrous hydrogel networks. Chem. Commun. 52(7), 1451–1454 (2016)CrossRefGoogle Scholar
  250. 250.
    R. Lalani, L. Liu, Electrospun zwitterionic poly(sulfobetaine methacrylate) for nonadherent, superabsorbent, and antimicrobial wound dressing applications. Biomacromolecules 13(6), 1853–1863 (2012)PubMedCrossRefGoogle Scholar
  251. 251.
    J.B. Lee, X. Wang, S. Faley, B. Baer, D.A. Balikov, H.J. Sung, L.M. Bellan, Development of 3D microvascular networks within gelatin hydrogels using thermoresponsive sacrificial microfibers. Adv. Healthc. Mater. 5(7), 781–785 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  252. 252.
    T.J. Hinton, Q. Jallerat, R.N. Palchesko, J.H. Park, M.S. Grodzicki, H.J. Shue, M.H. Ramadan, A.R. Hudson, A.W. Feinberg, Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 1(9), e1500758 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    I.T. Ozbolat, M. Hospodiuk, Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76, 321–343 (2016)PubMedCrossRefGoogle Scholar
  254. 254.
    Y. He, F.F. Yang, H.M. Zho, Q. Gao, B. Xia, J.Z. Fu, Research on the printability of hydrogels in 3D bioprinting. Sci. Rep. 6, 29977 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    S.H. Kim, S.-H. Kim, S. Nair, E. Moore, Reactive electrospinning of cross-linked poly(2-hydroxyethyl methacrylate) nanofibers and elastic properties of individual hydrogel nanofibers in aqueous solutions. Macromolecules 38, 3719–3723 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringMcMaster UniversityHamiltonCanada

Personalised recommendations