Stimuli-Responsive Membranes for Separations

  • Raja GhoshEmail author
Reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


Synthetic membranes are increasingly being used for a varied range of applications, in industry, medicine, agriculture, environmental sciences, geoengineering, and medical diagnostics, to name just a few. In the chemical industry, membranes are more commonly used in separation processes. Such separations are usually carried out based on one of two basic working principles, i.e., relative permeability and relative sorption. Between the two, permeability-based separations are more common. The physical form and functionality of conventional membranes are not expected to change appreciably during a separation process. This is to ensure reliable performance during separation and thereby ensure consistent product quality. However, the ability to alter membrane permeability in a controllable and reproducible manner increases its scope and range of application. This includes membranes for sequential multiple component separation, controlled release membranes, antifouling membranes, self-cleaning membranes, and membranes for biomedical devices. Such unconventional membranes are generally referred to as “stimuli-responsive” or in some case “environment-responsive” or “smart” membranes. This chapter reviews different kinds of stimuli-responsive membranes, including both permeability-based and sorption-based membranes.


  1. 1.
    N.N. Li, A.G. Fane, W.S.W. Ho, T. Matsuura, Advanced Membrane Technology and Applications (Wiley, New York, 2011)Google Scholar
  2. 2.
    W. Ho, K. Sirkar, Membrane Handbook (Springer Science & Business Media, New York, 2012)Google Scholar
  3. 3.
    R. Ghosh, Protein Bioseparation Using Ultrafiltration: Theory, Applications and New Developments (World Scientific, Singapore, 2003)CrossRefGoogle Scholar
  4. 4.
    A.K. Pabby, S.S.H. Rizvi, A.M. Sastre, Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications (CRC Press, Boca Raton, 2015)CrossRefGoogle Scholar
  5. 5.
    S. Judd, The MBR Book: Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment (Elsevier, San Diego, 2010)Google Scholar
  6. 6.
    A.K. Bajpai, S.K. Shukla, S. Bhanu, S. Kankane, Responsive polymers in controlled drug delivery. Prog. Polym. Sci. 33, 1088–1118 (2008)CrossRefGoogle Scholar
  7. 7.
    L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 43, 2317–2348 (2009)CrossRefGoogle Scholar
  8. 8.
    F. Theeuwes, Elementary osmotic pump. J. Pharm. Sci. 64, 1987–1991 (1975)CrossRefGoogle Scholar
  9. 9.
    M.C. Porter, Concentration polarization with membrane ultrafiltration. Ind. Eng. Chem. Prod. Res. Dev. 11, 234–248 (1972)CrossRefGoogle Scholar
  10. 10.
    B.D. Cho, A.G. Fane, Fouling transients in nominally sub-critical flux operation of a membrane bioreactor. J. Membr. Sci. 209, 391–403 (2002)CrossRefGoogle Scholar
  11. 11.
    D. Wandera, S.R. Wickramasinghe, S.M. Husson, Stimuli-responsive membranes. J. Membr. Sci. 357, 6–35 (2010)CrossRefGoogle Scholar
  12. 12.
    L.-Y. Chu, T. Yamaguchi, S. Nakao, A molecular-recognition microcapsule for environmental stimuli-responsive controlled release. Adv. Mater. 14, 386–389 (2002)CrossRefGoogle Scholar
  13. 13.
    R. Huang, L.K. Kostanski, C.D.M. Filipe, R. Ghosh, Environment-responsive hydrogel-based ultrafiltration membranes for protein bioseparation. J. Membr. Sci. 336, 42–49 (2009)CrossRefGoogle Scholar
  14. 14.
    Y.-H. Zhao, K.-H. Wee, R. Bai, A novel electrolyte-responsive membrane with tunable permeation selectivity for protein purification. ACS Appl. Mater. Interfaces 2, 203–211 (2009)CrossRefGoogle Scholar
  15. 15.
    D. Bhattacharyya, T. Schäfer, S.R. Wickramasinghe, S. Daunert, Responsive Membranes and Materials (Wiley, Chichester, 2012)CrossRefGoogle Scholar
  16. 16.
    G.V.R. Rao, S. Balamurugan, D.E. Meyer, A. Chilkoti, G.P. López, Hybrid bioinorganic smart membranes that incorporate protein-based molecular switches. Langmuir 18, 1819–1824 (2002)CrossRefGoogle Scholar
  17. 17.
    D.R. Latulippe, A.M. Mika, R.F. Childs, R. Ghosh, C.D.M. Filipe, Flux performance and macrosolute sieving behavior of environment responsive formed-in-place ultrafiltration membranes. J. Membr. Sci. 342, 227–235 (2009)CrossRefGoogle Scholar
  18. 18.
    C.-J. Wu, R. Xie, H.-B. Wei, T.-T. Xu, Z. Liu, W. Wang, X.-J. Ju, L.-Y. Chu, Fabrication of a thermo-responsive membrane with cross-linked smart gates via a ‘grafting-to’ method. RSC Adv. 6, 45428–45433 (2016)CrossRefGoogle Scholar
  19. 19.
    Z. Liu, W. Wang, R. Xie, X.-J. Ju, L.-Y. Chu, Stimuli-responsive smart gating membranes. Chem. Soc. Rev. 45, 460–475 (2016)CrossRefGoogle Scholar
  20. 20.
    A.K. Kota, G. Kwon, W. Choi, J.M. Mabry, A. Tuteja, Hygro-responsive membranes for effective oil–water separation. Nat. Commun. 3, 1025 (2012)CrossRefGoogle Scholar
  21. 21.
    E. Mah, R. Ghosh, Thermo-responsive hydrogels for stimuli-responsive membranes. Processes 1, 238–262 (2013)CrossRefGoogle Scholar
  22. 22.
    N.A. Peppas, Physiologically responsive hydrogels. J. Bioact. Compat. Polym. 6, 241–246 (1991)CrossRefGoogle Scholar
  23. 23.
    Y. Qiu, K. Park, Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 53, 321–339 (2001)CrossRefGoogle Scholar
  24. 24.
    P. Gupta, K. Vermani, S. Garg, Hydrogels: From controlled release to pH-responsive drug delivery. Drug Discov. Today 7, 569–579 (2002)CrossRefGoogle Scholar
  25. 25.
    D. Schmaljohann, Thermo-and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 58, 1655–1670 (2006)CrossRefGoogle Scholar
  26. 26.
    J. Kost, R. Langer, Responsive polymeric delivery systems. Adv. Drug Deliv. Rev. 64, 327–341 (2012)CrossRefGoogle Scholar
  27. 27.
    S. Mura, J. Nicolas, P. Couvreur, Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013)CrossRefGoogle Scholar
  28. 28.
    K. Zhang, X.Y. Wu, Temperature and pH-responsive polymeric composite membranes for controlled delivery of proteins and peptides. Biomaterials 25, 5281–5291 (2004)CrossRefGoogle Scholar
  29. 29.
    Q. Wu, R. Wang, X. Chen, R. Ghosh, Temperature-responsive membrane for hydrophobic interaction based chromatographic separation of proteins in bind-and-elute mode. J. Membr. Sci. 471, 56–64 (2014)CrossRefGoogle Scholar
  30. 30.
    Q. Shi, Y. Su, X. Ning, W. Chen, J. Peng, Z. Jiang, Graft polymerization of methacrylic acid onto polyethersulfone for potential pH-responsive membrane materials. J. Membr. Sci. 347, 62–68 (2010)CrossRefGoogle Scholar
  31. 31.
    S. Kato, M. Aizawa, S. Suzuki, Photo-responsive membranes: I. light-induced potential changes across membranes incorporating a photochromic compound. J. Membr. Sci. 1, 289–300 (1976)CrossRefGoogle Scholar
  32. 32.
    Q. Yan, J. Yuan, Z. Cai, Y. Xin, Y. Kang, Y. Yin, Voltage-responsive vesicles based on orthogonal assembly of two homopolymers. J. Am. Chem. Soc. 132, 9268–9270 (2010)CrossRefGoogle Scholar
  33. 33.
    Z. Siwy, D. Dobrev, R. Neumann, C. Trautmann, K. Voss, Electro-responsive asymmetric nanopores in polyimide with stable ion-current signal. Appl. Phys. A Mater. Sci. Process. 76, 781–785 (2003)CrossRefGoogle Scholar
  34. 34.
    T.-C. Kuo, L.A. Sloan, J.V. Sweedler, P.W. Bohn, Manipulating molecular transport through nanoporous membranes by control of electrokinetic flow: Effect of surface charge density and Debye length. Langmuir 17, 6298–6303 (2001)CrossRefGoogle Scholar
  35. 35.
    W. Hicks, T. Allington, V. Johnson, Membrane touch switches: Thick-film materials systems and processing options. IEEE Trans. Compon. Hybrids Manuf. Technol. 3, 518–524 (1980)CrossRefGoogle Scholar
  36. 36.
    Q. Liang, Y. Sun, H. Chi, W. Cai, Y. Liu, Stimuli responsive workability retention of cement paste containing polycarboxylate superplasticiser. Adv. Cem. Res. 27, 329–334 (2015)CrossRefGoogle Scholar
  37. 37.
    M. Stoppa, A. Chiolerio, Wearable electronics and smart textiles: A critical review. Sensors 14, 11957–11992 (2014)CrossRefGoogle Scholar
  38. 38.
    H. Feil, Y.H. Bae, J. Feijen, S.W. Kim, Molecular separation by thermosensitive hydrogel membranes. J. Membr. Sci. 64, 283–294 (1991)CrossRefGoogle Scholar
  39. 39.
    I. Tokarev, S. Minko, Multiresponsive, hierarchically structured membranes: New, challenging, biomimetic materials for biosensors, controlled release, biochemical gates, and nanoreactors. Adv. Mater. 21, 241–247 (2009)CrossRefGoogle Scholar
  40. 40.
    I. Tokarev, S. Minko, Stimuli-responsive porous hydrogels at interfaces for molecular filtration, separation, controlled release, and gating in capsules and membranes. Adv. Mater. 22, 3446–3462 (2010)CrossRefGoogle Scholar
  41. 41.
    R. Huang, K.Z. Mah, M. Malta, L.K. Kostanski, C.D.M. Filipe, R. Ghosh, Chromatographic separation of proteins using hydrophobic membrane shielded with an environment-responsive hydrogel. J. Membr. Sci. 345, 177–182 (2009)CrossRefGoogle Scholar
  42. 42.
    K.Z. Mah, R. Ghosh, Paper-based composite lyotropic salt-responsive membranes for chromatographic separation of proteins. J. Membr. Sci. 360, 149–154 (2010)CrossRefGoogle Scholar
  43. 43.
    D. Yu, X. Shang, R. Ghosh, Fractionation of different PEGylated forms of a protein by chromatography using environment-responsive membranes. J. Chromatogr. A 1217, 5595–5601 (2010)CrossRefGoogle Scholar
  44. 44.
    H.H. Himstedt, X. Qian, J.R. Weaver, S.R. Wickramasinghe, Responsive membranes for hydrophobic interaction chromatography. J. Membr. Sci. 447, 335–344 (2013)CrossRefGoogle Scholar
  45. 45.
    J.F. Hester, S.C. Olugebefola, A.M. Mayes, Preparation of pH-responsive polymer membranes by self-organization. J. Membr. Sci. 208, 375–388 (2002)CrossRefGoogle Scholar
  46. 46.
    L. Ying, E.T. Kang, K.G. Neoh, Characterization of membranes prepared from blends of poly (acrylic acid)-graft-poly (vinylidene fluoride) with poly (N-isopropylacrylamide) and their temperature-and pH-sensitive microfiltration. J. Membr. Sci. 224, 93–106 (2003)CrossRefGoogle Scholar
  47. 47.
    M.A.C. Stuart, W.T.S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G.B. Sukhorukov, I. Szleifer, V.V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010)CrossRefGoogle Scholar
  48. 48.
    S.P. Nunes, A.R. Behzad, B. Hooghan, R. Sougrat, M. Karunakaran, N. Pradeep, U. Vainio, K.-V. Peinemann, Switchable pH-responsive polymeric membranes prepared via block copolymer micelle assembly. ACS Nano 5, 3516–3522 (2011)CrossRefGoogle Scholar
  49. 49.
    F. Schacher, M. Ulbricht, A.H.E. Müller, Self-supporting, double stimuli-responsive porous membranes from polystyrene-block-poly (N, N-dimethylaminoethyl methacrylate) diblock copolymers. Adv. Funct. Mater. 19, 1040–1045 (2009)CrossRefGoogle Scholar
  50. 50.
    J.I. Clodt, V. Filiz, S. Rangou, K. Buhr, C. Abetz, D. Höche, J. Hahn, A. Jung, V. Abetz, Double stimuli-responsive isoporous membranes via post-modification of pH-sensitive self-assembled diblock copolymer membranes. Adv. Funct. Mater. 23, 731–738 (2013)CrossRefGoogle Scholar
  51. 51.
    T. Peng, Y.-L. Cheng, Temperature-responsive permeability of porous PNIPAAm-g-PE membranes. J. Appl. Polym. Sci. 70, 2133–2142 (1998)CrossRefGoogle Scholar
  52. 52.
    T. Peng, Y.-L. Cheng, PNIPAAm and PMAA co-grafted porous PE membranes: Living radical co-grafting mechanism and multi-stimuli responsive permeability. Polymer 42, 2091–2100 (2001)CrossRefGoogle Scholar
  53. 53.
    K. Pan, X. Zhang, R. Ren, B. Cao, Double stimuli-responsive membranes grafted with block copolymer by ATRP method. J. Membr. Sci. 356, 133–137 (2010)CrossRefGoogle Scholar
  54. 54.
    Y. Ito, Y. Ochiai, Y.S. Park, Y. Imanishi, pH-sensitive gating by conformational change of a polypeptide brush grafted onto a porous polymer membrane. J. Am. Chem. Soc. 119, 1619–1623 (1997)CrossRefGoogle Scholar
  55. 55.
    Y.-C. Chen, R. Xie, M. Yang, P.-F. Li, X.-L. Zhu, L.-Y. Chu, Gating characteristics of thermo-responsive membranes with grafted linear and crosslinked poly (N-isopropylacrylamide) gates. Chem. Eng. Technol. 32, 622–631 (2009)CrossRefGoogle Scholar
  56. 56.
    P.-F. Li, R. Xie, J.-C. Jiang, T. Meng, M. Yang, X.-J. Ju, L. Yang, L.-Y. Chu, Thermo-responsive gating membranes with controllable length and density of poly (N-isopropylacrylamide) chains grafted by ATRP method. J. Membr. Sci. 337, 310–317 (2009)CrossRefGoogle Scholar
  57. 57.
    X. Qiu, X. Ren, S. Hu, Fabrication of dual-responsive cellulose-based membrane via simplified surface-initiated ATRP. Carbohydr. Polym. 92, 1887–1895 (2013)CrossRefGoogle Scholar
  58. 58.
    J. Ran, L. Wu, Z. Zhang, T. Xu, Atom transfer radical polymerization (ATRP): A versatile and forceful tool for functional membranes. Prog. Polym. Sci. 39, 124–144 (2014)CrossRefGoogle Scholar
  59. 59.
    L. Ying, W.H. Yu, E.T. Kang, K.G. Neoh, Functional and surface-active membranes from poly (vinylidene fluoride)-graft-poly (acrylic acid) prepared via RAFT-mediated graft copolymerization. Langmuir 20, 6032–6040 (2004)CrossRefGoogle Scholar
  60. 60.
    H.-Y. Yu, W. Li, J. Zhou, J.-S. Gu, L. Huang, Z.-Q. Tang, X.-W. Wei, Thermo-and pH-responsive polypropylene microporous membrane prepared by the photoinduced RAFT-mediated graft copolymerization. J. Membr. Sci. 343, 82–89 (2009)CrossRefGoogle Scholar
  61. 61.
    A.M. Mika, R.F. Childs, J.M. Dickson, B.E. McCarry, D.R. Gagnon, A new class of polyelectrolyte-filled microfiltration membranes with environmentally controlled porosity. J. Membr. Sci. 108, 37–56 (1995)CrossRefGoogle Scholar
  62. 62.
    A.M. Mika, R.F. Childs, J.M. Dickson, B.E. McCarry, D.R. Gagnon, Porous, polyelectrolyte-filled membranes: Effect of cross-linking on flux and separation. J. Membr. Sci. 135, 81–92 (1997)CrossRefGoogle Scholar
  63. 63.
    A.K. Pandey, R.F. Childs, M. West, J.N.A. Lott, B.E. McCarry, J.M. Dickson, Formation of pore-filled ion-exchange membranes with in situ crosslinking: Poly (vinylbenzyl ammonium salt)-filled membranes. J. Polym. Sci. A Polym. Chem. 39, 807–820 (2001)CrossRefGoogle Scholar
  64. 64.
    S. Suryanarayan, A.M. Mika, R.F. Childs, The effect of gel layer thickness on the salt rejection performance of polyelectrolyte gel-filled nanofiltration membranes. J. Membr. Sci. 290, 196–206 (2007)CrossRefGoogle Scholar
  65. 65.
    D.M. Kanani, E. Komkova, T. Wong, A. Mika, R.H. Childs, R. Ghosh, Separation of human plasma proteins HSA and HIgG using high-capacity macroporous gel-filled membranes. Biochem. Eng. J. 35, 295–300 (2007)CrossRefGoogle Scholar
  66. 66.
    N. Adrus, M. Ulbricht, Novel hydrogel pore-filled composite membranes with tunable and temperature-responsive size-selectivity. J. Mater. Chem. 22, 3088–3098 (2012)CrossRefGoogle Scholar
  67. 67.
    D. Yu, X. Chen, R. Pelton, R. Ghosh, Paper-PEG-based membranes for hydrophobic interaction chromatography: Purification of monoclonal antibody. Biotechnol. Bioeng. 99, 1434–1442 (2008)CrossRefGoogle Scholar
  68. 68.
    R. Ghosh, Novel cascade ultrafiltration configuration for continuous, high-resolution protein–protein fractionation: A simulation study. J. Membr. Sci. 226, 85–99 (2003)CrossRefGoogle Scholar
  69. 69.
    J. Meng, Z. Cao, L. Ni, Y. Zhang, X. Wang, X. Zhang, E. Liu, A novel salt-responsive TFC RO membrane having superior antifouling and easy-cleaning properties. J. Membr. Sci. 461, 123–129 (2014)CrossRefGoogle Scholar
  70. 70.
    X. Chen, Y. Su, F. Shen, Y. Wan, Antifouling ultrafiltration membranes made from PAN-b-PEG copolymers: Effect of copolymer composition and PEG chain length. J. Membr. Sci. 384, 44–51 (2011)CrossRefGoogle Scholar
  71. 71.
    B.P. Tripathi, N.C. Dubey, S. Choudhury, F. Simon, M. Stamm, Antifouling and antibiofouling pH responsive block copolymer based membranes by selective surface modification. J. Mater. Chem. B 1, 3397–3409 (2013)CrossRefGoogle Scholar
  72. 72.
    R. Ghosh, Protein separation using membrane chromatography: Opportunities and challenges. J. Chromatogr. A 952, 13–27 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringMcMaster UniversityHamiltonCanada

Personalised recommendations