Inulin Type Fructan: A Versatile Functional Material for Food and Healthcare

  • Muhammad Ajaz HussainEmail author
  • Muhammad Tahir Haseeb
  • Gulzar Muhammad
  • Muhammad Nawaz Tahir
Reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


Inulin type fructan (ITF), a plant derived polysaccharide, is a bio-inspired, versatile, and functional biomaterial. Chemically, ITF is glucopyranosyl-fructofuranoside polymer. ITF is very well-established prebiotics due to its ability to facilitate the growth of beneficial bacteria, i.e., bifidobacteria, lactobacilli, and bacteroides in colon. The detail study of prebiotic activity has been discussed. Furthermore, the ability of ITF as hypolipidemic agent and antioxidant with major applications in gastrointestinal disorders, especially, inflammatory bowel disease, Crohn’s syndrome, and constipation, is the focus of this chapter. Additionally, hepatoprotective, anticancer, and immunomodulatory effects of ITF have made it an important functional food ingredient. Due to these diverse properties, ITF is an important and useful biomaterial for future medicine and pharmaceuticals.


  1. 1.
    M. Roberfroid, J. Slavin, Nondigestible oligosaccharides. Crit. Rev. Food Sci. Nutr. 40, 461–480 (2000)CrossRefGoogle Scholar
  2. 2.
    T. Barclay, M. Ginic-Markovic, P. Cooper, N. Petrovsky, Inulin: A versatile polysaccharide with multiple pharmaceutical and food chemical uses. J. Excipients Food Chem. 1, 27–50 (2010)Google Scholar
  3. 3.
    D.E. Cummings, J.Q. Purnell, R.S. Frayo, K. Schmidova, B.E. Wisse, D.S. Weigle, A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50, 1714–1719 (2001)CrossRefGoogle Scholar
  4. 4.
    C. Morris, G.A. Morris, The effect of inulin and fructo-oligosaccharide supplementation on the textural, rheological and sensory properties of bread and their role in weight management: A review. Food Chem. 133, 237–248 (2012)CrossRefGoogle Scholar
  5. 5.
    J.H. Cummings, G.T. Macfarlane, Colonic microflora: Nutrition and health. Nutrition 13, 476–478 (1997)CrossRefGoogle Scholar
  6. 6.
    M.A. Mensink, H.W. Frijlink, K.V.V. Maarschalk, W.L.J. Hinrichs, Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydr. Polym. 130, 405–419 (2015)CrossRefGoogle Scholar
  7. 7.
    W.F. Tonnis, A.J. Lexmond, H.W. Frijlink, A.H. de Boer, W.L.J. Hinrichs, Devices and formulations for pulmonary vaccination. Expert Opin. Drug Deliv. 10, 1383–1397 (2013)CrossRefGoogle Scholar
  8. 8.
    M.A. Mensink, H.W. Frijlink, K.V.V. Maarschalk, W.L.J. Hinrichs, Inulin, a flexible oligosaccharide. II: Review of its pharmaceutical applications. Carbohydr. Polym. 134, 418–428 (2015)CrossRefGoogle Scholar
  9. 9.
    S.A. Abrams, K.M. Hawthorne, O. Aliu, P.D. Hicks, Z. Chen, I.J. Griffin, An inulin-type fructan enhances calcium absorption primarily via an effect on colonic absorption in humans. J. Nutr. 137, 2208–2212 (2007)CrossRefGoogle Scholar
  10. 10.
    B.R. Balcazar-Munoz, E. Martinez-Abundis, M. Gonzalez-Ortiz, Effect of oral inulin administration on lipid profile and insulin sensitivity in subjects with obesity and dyslipidemia. Rev. Med. Chi. 131, 597–604 (2003)Google Scholar
  11. 11.
    B.L. Pool-Zobel, Inulin-type fructans and reduction in colon cancer risk: Review of experimental and human data. Br. J. Nutr. 93, S73–S90 (2005)CrossRefGoogle Scholar
  12. 12.
    W.A. Mihatsch, J. Hoegel, F. Pohlandt, Prebiotic oligosaccharides reduce stool viscosity and accelerate gastrointestinal transport in preterm infants. Acta Paediatr. 95, 843–848 (2006)CrossRefGoogle Scholar
  13. 13.
    E. Bruzzese, M. Volpicelli, M. Squaglia, A. Tartaglione, A. Guarino, Impact of prebiotics on human health. Dig. Liver Dis. 38, S283–S287 (2006)CrossRefGoogle Scholar
  14. 14.
    G. Kelly, Inulin-type prebiotics: A review (part 2). Altern. Med. Rev. 14, 36–55 (2009)PubMedGoogle Scholar
  15. 15.
    A.L. Waterhouse, N.J. Chatterton, Glossary of fructan terms, in Science and Technology of Fructans, ed. by M. Suzuki, N. J. Chatterton, (CRC Press, Boca Raton, 1993), pp. 2–7Google Scholar
  16. 16.
    P. John, Fructan quality and fructan synthesis. Biochem. Soc. Trans. 19, 569–572 (1991)CrossRefGoogle Scholar
  17. 17.
    M. Suzuki, History of fructan research: Rose to Edelman, in Science and Technology of Fructans, ed. by M. Suzuki, N. J. Chatterton, (CRC Press, Boca Raton, 1993), pp. 21–39Google Scholar
  18. 18.
    G. Hendry, Evolutionary origins and natural functions of fructans. A climatological, biogeographic and mechanistic appraisal. New Phytologist 123, 3–14 (1993)Google Scholar
  19. 19.
    S.J. Kays, S.F. Nottingham, Biology and Chemistry of Jerusalem Artichoke: Helianthus Tuberosus L (CRC Press, Boca Raton, 2007)CrossRefGoogle Scholar
  20. 20.
    M.B. Roberfroid, Inulin-type fructans: Functional food ingredients. J. Nutr. 137, 2493–2502 (2007)CrossRefGoogle Scholar
  21. 21.
    J. van Loo, P. Coussement, L. de Leenheer, H. Hoebregs, G. Smits, On the presence of inulin and oligofructose as natural ingredients in the Western diet. Critic. Rev. Food Sci. Nutr. 35, 525–552 (1995)CrossRefGoogle Scholar
  22. 22.
    L. de Leenheer, H. Hoebregs, Progress in the elucidation of the composition of chicory inulin. Starch 46, 193–196 (1994)Google Scholar
  23. 23.
    M. Kawamara, T. Uchiyama, T. Kuramoto, Y. Tamura, K. Mizutani, Formation of cycloinulo-oligosaccharide from inulin by an extracellular enzyme of Bacillus circulans OKUMZ 31B. Carbohydr. Res. 192, 83–90 (1989)CrossRefGoogle Scholar
  24. 24.
    E.R. Caleffi, G. Krausová, I. Hyršlová, L.L.R. Paredes, M.M. dos Santos, G.L. Sassaki, R.A.C. Gonçalves, A.J.B. de Oliveira, Isolation and prebiotic activity of inulin-type fructan extracted from Pfaffia glomerata (Spreng) Pedersen roots. Int. J. Biol. Macromol. 80, 392–399 (2015)CrossRefGoogle Scholar
  25. 25.
    Y.P. Fu, L.X. Li, B.Z. Zhang, B.S. Paulsen, Z.Q. Yin, C. Huang, B. Feng, X.F. Chen, R.R. Jia, X. Song, X.Q. Ni, B. Jing, F. Wu, Y.F. Zou, Characterization and prebiotic activity in vitro of inulin-type fructan from Codonopsis pilosula roots. Carbohydr. Polym. 193, 212–220 (2018)CrossRefGoogle Scholar
  26. 26.
    P.M. Chandrashekar, K.V.H. Prashanth, Y.P. Venkatesh, Isolation, structural elucidation and immunomodulatory activity of fructans from aged garlic extract. Phytochemistry 72, 255–264 (2011)CrossRefGoogle Scholar
  27. 27.
    J.A. Salazar-Leyva, I. Osuna-Ruiz, V.A. Rodriquez-Tirado, I.E. Zazueta-Patron, H.D. Brito-Rojas, Optimization study of fructans extraction from Agave tequilana Weber azul variety. Food Sci. Technol. 36, 631–637 (2016)CrossRefGoogle Scholar
  28. 28.
    K. Judprasong, S. Tanjor, P. Puwastien, P. Sungpuag, Investigation of Thai plants for potential sources of inulin-type fructans. J. Food Composit. Anal. 24, 642–649 (2011)CrossRefGoogle Scholar
  29. 29.
    K.R. Niness, Inulin and oligofructose: What are they? J. Nutr. 129, 1402S–1406S (1999)CrossRefGoogle Scholar
  30. 30.
    P.A. Coussement, Inulin and oligofructose: Safe intakes and legal status. J. Nutr. 129, 1412S–1417S (1999)CrossRefGoogle Scholar
  31. 31.
    G.R. Gibson, M.B. Roberfroid, Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 125, 1401–1412 (1995)CrossRefGoogle Scholar
  32. 32.
    S. Lohner, V. Jakobik, K. Mihalyi, S. Soldi, S. Vasileiadis, S. Theis, M. Sailer, C. Sieland, K. Berenyi, G. Boehm, T. Decsi, Inulin type fructan supplementation of 3 to 6 year-old children is associated with higher fecal bifidobacterium concentrations and fewer febrile episodes requiring medical attention. J. Nutr. (2018).
  33. 33.
    G.R. Gibson, H.M. Probert, J.V. Loo, R.A. Rastall, M.B. Roberfroid, Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev. 17, 259–275 (2004)CrossRefGoogle Scholar
  34. 34.
    C.M. van der Beek, E.E. Canfora, A.M. Kip, S.H.M. Gorissen, S.W.M.O. Damink, H.M. van Eijk, J.J. Holst, E.E. Blaak, C.H.C. Dejong, K. Lenaerts, The prebiotic inulin improves substrate metabolism and promotes short-chain fatty acid production in overweight to obese men. Metabolism 87, 25–35 (2018)CrossRefGoogle Scholar
  35. 35.
    R. Jiang, Y. Qiu, W. Huang, L. Zhang, F. Xue, H. Ni, D. Mei, J. Gao, H. Xu, One step bioprocess of inulin to product inulo-oligosaccharides using Bacillus subtilis secreting an extracellular endo-inulinase. Appl. Biochem. Biotechnol. (2018).
  36. 36.
    G. Kelly, Inulin-type prebiotics-a review: Part 1. Altern. Med. Rev. 13, 315–329 (2008)PubMedGoogle Scholar
  37. 37.
    T. van de Wiele, N. Boon, S. Possemiers, H. Jacobs, W. Verstraete, Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effect. J. Appl. Microbiol. 102, 452–460 (2007)PubMedGoogle Scholar
  38. 38.
    M. Selak, A. Riviere, F. Moens, P. Van den Abbeele, A. Geirnaert, I. Rogelj, F. Leroy, L. De Vuyst, Inulin-type fructan fermentation by bifidobacteria depends on the strain rather than the species and region in the human intestine. Appl. Microbiol. Biotechnol. 100, 4097–4107 (2016)CrossRefGoogle Scholar
  39. 39.
    B. Wilson, K. Whelan, Prebiotic inulin type fructans and galacto-oligosaccharides: Definition, specificity, function, and application in gastrointestinal disorders. J. Gastroenterol. Hepatol. 32, 64–68 (2017)CrossRefGoogle Scholar
  40. 40.
    M. Roberfroid, G.R. Gibson, L. Hoyles, A.L. McCartney, R. Rastall, I. Rowland, D. Wolvers, B. Watzl, H. Szajewska, B. Stahi, F. Guarner, F. Respondek, K. Whelan, V. Coxam, M.J. Davicco, L. Leotoing, Y. Wittrant, N.M. Delzenne, P.D. Cani, A.M. Neyrinck, A. Meheust, Prebiotic effects: Metabolic and health benefits. Br. J. Nutr. 104, S1–S63 (2010)CrossRefGoogle Scholar
  41. 41.
    X. Wang, Effect of Inulin Type Fructans on Protein Fermentation by Gut Bacteria: In Vitro and In Vivo Studies, Ph.D. Thesis (University of Reading, 2018)Google Scholar
  42. 42.
    G. Healey, R. Murphy, C. Butts, L. Brough, K. Whealan, J. Coad, Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: A randomized, double-blind, placebo-controlled, cross-over, human intervention study. Br. J. Nutr. 119, 176–189 (2018)CrossRefGoogle Scholar
  43. 43.
    C. Alexander, T.L. Cross, S. Devendran, G. Neumer, S. Theis, J.M. Ridlon, J.S. Suchodolski, M.R.C. de Godoy, K.S. Swanson, Effects of prebiotic inulin-type fructans on blood metabolite and hormone concentrations and faecal microbiota and metabolites in overweight dogs. Br. J. Nutr. 120, 711–720 (2018)CrossRefGoogle Scholar
  44. 44.
    I.G. Carabin, W.G. Flamm, Evaluation of safety of inulin and oligofructose as dietary fiber. Regul. Toxicol. Pharmacol. 30, 268–282 (1999)CrossRefGoogle Scholar
  45. 45.
    P.D. Cani, C. Dewever, N.M. Delzenne, Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br. J. Nutr. 92, 521–526 (2004)CrossRefGoogle Scholar
  46. 46.
    E. Catry, L.B. Bindels, A. Tailleux, S. Lestavel, A.M. Neyrinck, J.F. Goossens, I. Lobysheva, H. Plovier, A. Essaghir, J.B. Demoulin, C. Bouzin, B.D. Pachikian, P.D. Cani, B. Staels, C. Dessy, N.M. Delzenne, Targeting the gut microbiota with inulin-type fructans: Preclinical demonstration of a novel approach in the management of endothelial dysfunction. Gut 67, 271–283 (2018)CrossRefGoogle Scholar
  47. 47.
    E.M. Dewulf, P.D. Cani, A.M. Neyrinck, S. Possemiers, A.V. Holle, G.G. Muccioli, L. Deldicque, L.B. Bindels, B.D. Pachikian, F.M. Sohet, E. Mignolet, M. Francaux, Y. Larondelle, N.M. Delzenne, Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPARγ-related adipogenesis in the white adipose tissue of high-fat diet-fed mice. J. Nutr. Biochem. 22, 712–722 (2011)CrossRefGoogle Scholar
  48. 48.
    M.P.L. Guarino, A. Altomare, S. Barera, V. Locato, S. Cocca, C. Franchin, G. Arrigoni, C. Vannini, S. Grossi, P. Campomenosi, V. Pasqualetti, M. Bracale, R. Alloni, L.D. Gara, M. Cicala, Effect of inulin on proteome changes induced by pathogenic lipopolysaccharide in human colon. PLoS One 12, e0169481 (2017)CrossRefGoogle Scholar
  49. 49.
    M.C.B. Ruault, P. Marteau, A.L. Slove, A. Myara, M.F. Gerhardt, C. Franchisseur, F. Bornet, Eripolyp Study Group: Effects of a 3-mo consumption of short-chain fructo-oligosaccharides on parameters of colorectal carcinogenesis in patients with or without small or large colorectal adenomas. Nutr. Cancer 53, 160–168 (2005)CrossRefGoogle Scholar
  50. 50.
    J. Xu, D. Chen, C. Liu, X.Z. Wu, C.X. Dong, J. Zhou, Structural characterization and anti-tumor effects of an inulin-type fructan from Atractylodes chinensis. Int. J. Biol. Macromol. 82, 765–771 (2016)CrossRefGoogle Scholar
  51. 51.
    A. Kapiki, C. Costalos, C. Oikonomidou, A. Triantafyllidou, E. Loukatou, V. Pertrohilou, The effect of a fructo-oligosaccharide supplemented formula on gut flora of preterm infants. Early Hum. Dev. 83, 335–339 (2007)CrossRefGoogle Scholar
  52. 52.
    N. Moore, C. Chao, L.P. Yang, H. Storm, M.O. Hemker, J.M. Saavedra, Effects of fructo-oligosaccharide-supplemented infant cereal: A double-blind, randomized trial. Br. J. Nutr. 90, 581–587 (2003)CrossRefGoogle Scholar
  53. 53.
    A.R. Euler, D.K. Mitchell, R. Kline, L.K. Pickering, Prebiotic effect of fructo-oligosaccharide supplemented term infant formula at two concentrations compared with unsupplemented formula and human milk. J. Pediatr. Gastroenterol. Nutr. 40, 157–164 (2005)CrossRefGoogle Scholar
  54. 54.
    Y. He, C. Wu, J. Li, H. Li, Z. Sun, H. Zhang, P. de Vos, L.L. Pan, J. Sun, Inulin-type fructans modulates pancreatic-gut innate immune responses and gut barrier integrity during experimental acute pancreatitis in a chain length-dependent manner. Front. Immunol. 26, 1209 (2017)CrossRefGoogle Scholar
  55. 55.
    K. Whelan, Mechanisms and effectiveness of prebiotics in modifying the gastrointestinal microbiota for the management of digestive disorders. Proc. Nutr. Soc. 72, 288–298 (2013)CrossRefGoogle Scholar
  56. 56.
    B. Kleessen, M. Blaut, Modulation of gut mucosal biofilms. Br. J. Nutr. 93, S35–S40 (2005)CrossRefGoogle Scholar
  57. 57.
    B. Kleessen, B. Sykura, H.J. Zunft, M. Blaut, Effects of inulin and lactose on fecal microflora, microbial activity, and bowel habit in elderly constipated persons. Am. J. Clin. Nutr. 65, 1397–1402 (1997)CrossRefGoogle Scholar
  58. 58.
    D. Vandeputte, G. Falony, S.V. Silva, J. Wang, M. Sailer, S. Theis, K. Verbeke, J. Raes, Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut 66, 1968–1974 (2017)CrossRefGoogle Scholar
  59. 59.
    C. Duggan, M.E. Penny, P. Hibberd, A. Gil, A. Huapaya, A. Cooper, F. Coletta, C. Emenhiser, R.E. Kleinman, Oligofructose-supplemented infant cereal: 2 randomized, blinded, community-based trials in Peruvian infants. Am. J. Clin. Nutr. 77, 937–942 (2003)CrossRefGoogle Scholar
  60. 60.
    D. Paineau, F. Payen, S. Panserieu, G. Coulombier, A. Sobaszek, I. Lartigau, M. Brabet, J.P. Galmiche, D. Tripodi, S.S. Huvelin, V. Chapalain, The effects of regular consumption of short-chain fructo-oligosaccharides on digestive comfort of subjects with minor functional bowel disorders. Br. J. Nutr. 99, 311–318 (2008)CrossRefGoogle Scholar
  61. 61.
    F. Casellas, N. Borruel, A. Torrejon, E. Varela, M. Antolin, F. Guarner, J.R. Malagelada, Oral oligofructose-enriched inulin supplementation in acute ulcerative colitis is well tolerated and associated with lowered faecal calprotectin. Aliment. Pharmacol. Ther. 25, 1061–1067 (2007)CrossRefGoogle Scholar
  62. 62.
    J. Li, T. Wang, Z. Zhu, F. Yang, L. Cao, J. Gao, Structure features and anti-gastric ulcer effects of inulin-type fructan CP-A from the roots of Codonopsis pilosula (Franch.) Nannf. Molecules 22, 2258 (2017)CrossRefGoogle Scholar
  63. 63.
    J.O. Lindsay, K. Whelan, A.J. Stagg, P. Gobin, H.O. Al-Hassi, N. Rayment, M.A. Kamm, S.C. Knight, A. Forbes, Clinical, microbiological, and immunological effects of fructo-oligosaccharide in patients with Crohn’s disease. Gut 55, 348–355 (2006)CrossRefGoogle Scholar
  64. 64.
    W. van Dokkum, B. Wezendonk, T.S. Srikumar, E.G. van den Heuvel, Effect of nondigestible oligosaccharides on large-bowel functions, blood lipid concentrations and glucose absorption in young healthy male subjects. Eur. J. Clin. Nutr. 53, 1–7 (1999)CrossRefGoogle Scholar
  65. 65.
    D. Letexier, F. Diraison, M. Beylot, Addition of inulin to a moderately high-carbohydrate diet reduces hepatic lipogenesis and plasma triacylglycerol concentrations in humans. Am. J. Clin. Nutr. 77, 559–564 (2003)CrossRefGoogle Scholar
  66. 66.
    R. Giacco, G. Clemente, D. Luongo, G. Lasorella, I. Fiume, F. Brouns, F. Bornet, L. Patti, P. Cipriano, A.A. Rivellese, G. Riccardi, Effects of short-chain fructo-oligosaccharides on glucose and lipid metabolism in mild hypercholesterolaemic individuals. Clin. Nutr. 23, 331–340 (2004)CrossRefGoogle Scholar
  67. 67.
    J. Luo, M.V. Yperselle, S.W. Rizkalla, F. Rossi, F.R. Bornet, G. Slama, Chronic consumption of short-chain fructooligosaccharides does not affect basal hepatic glucose production or insulin resistance in type 2 diabetics. J. Nutr. 130, 1572–1577 (2000)CrossRefGoogle Scholar
  68. 68.
    K. Chen, H. Chen, M.M. Faas, B.J. de Haan, J. Li, P. Xiao, H. Zhang, J. Diana, P. de Vos, J. Sun, Specific inulin-type fructan fibers protect against autoimmune diabetes by modulating gut immunity, barrier function, and microbiota homeostasis. Mol. Nutr. Food Res. 61 (2017).
  69. 69.
    L. Vogt, D. Meyer, G. Pullens, M. Faas, M. Smelt, K. Venema, U. Ramasamy, H.A. Schols, P. De Vos, Immunological properties of inulin-type fructans. Crit. Rev. Food Sci. Nutr. 55, 414–436 (2015)CrossRefGoogle Scholar
  70. 70.
    J. Vulevic, A. Juric, G.E. Walton, S.P. Claus, G. Tzortzis, R.E. Toward, G.R. Gibson, Influence of galacto-oligosaccharide mixture (B-GOS) on gut microbiota, immune parameters and metabonomics in elderly persons. Br. J. Nutr. 114, 586–595 (2015)CrossRefGoogle Scholar
  71. 71.
    J. Luo, S.W. Rizkalla, C. Alamowitch, A. Boussairi, A. Blayo, J.L. Barry, A. Laffitte, F. Guyon, F.R. Bornet, G. Slama, Chronic consumption of short-chain fructooligosaccharides by healthy subjects decreased basal hepatic glucose production but had no effect on insulin-stimulated glucose metabolism. Am. J. Clin. Nutr. 63, 939–945 (1996)CrossRefGoogle Scholar
  72. 72.
    M.S. Alles, N.M. de Roos, J.C. Bakx, E. van de Lisdonk, P.L. Zock, J.G. Hautvast, Consumption of fructooligosaccharides does not favorably affect blood glucose and serum lipid concentrations in patients with type 2 diabetes. Am. J. Clin. Nutr. 69, 64–69 (1999)CrossRefGoogle Scholar
  73. 73.
    S.A. Abrams, I.J. Griffin, K.M. Hawthorne, K.J. Ellis, Effect of prebiotic supplementation and calcium intake on body mass index. J. Pediatr. 151, 293–298 (2007)CrossRefGoogle Scholar
  74. 74.
    S.A. Reis, L.L. Conceicao, D.D. Rosa, M.M. Dias, C. Peluzio Mdo, Mechanisms used by inulin-type fructans to improve the lipid profile. Nutr. Hosp. 31, 528–534 (2015)Google Scholar
  75. 75.
    M.L.C. Ferreira, M.H. Verdan, F.A.D.R. Livero, L.F. Galuppo, J.E.Q. Telles, M.E.A. Stefanello, A. Acco, C.L.D.O. Petkowicz, Inulin-type fructan and infusion of Artemisia vulgaris protect the liver against carbon tetrachloride-induced liver injury. Phytomedicine 24, 68–76 (2017)CrossRefGoogle Scholar
  76. 76.
    N. Li, C. Shi, S. Shi, H. Wang, J. Yan, S. Wang, An inulin-type fructan isolated from Artemisia japonica and its anti-arthritic effects. J. Funct. Foods 29, 29–36 (2017)CrossRefGoogle Scholar
  77. 77.
    E. Delgadillo, R.I. Corona, G. Toriz, H.J. Contreras, H. Sadeghifar, W. Baobing, G. Yang, L.A. Lucia, E. Delgado, Coacervated liposoluble fructan based host guest microspheres as unique drug delivery materials. RSC Adv. 5, 67759–67766 (2015)CrossRefGoogle Scholar
  78. 78.
    A.C. Apolinario, B.P.G. de Lima Damasceno, N.E. de Macedo Beltrao, A. Pessoa, A. Converti, J.A. da Silva, Inulin-type fructans: A review on different aspects of biochemical and pharmaceutical technology. Carbohydr. Polym. 101, 368–378 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Muhammad Ajaz Hussain
    • 1
    Email author
  • Muhammad Tahir Haseeb
    • 2
  • Gulzar Muhammad
    • 3
  • Muhammad Nawaz Tahir
    • 4
  1. 1.Ibn-e-Sina Block, Department of ChemistryUniversity of SargodhaSargodhaPakistan
  2. 2.College of PharmacyUniversity of SargodhaSargodhaPakistan
  3. 3.Department of ChemistryGC UniversityLahorePakistan
  4. 4.Chemistry DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations