Specialty Application of Functional Biopolymers

  • Raghavendra S. Hebbar
  • Arun M. IsloorEmail author
  • Abdul Wahab Mohammad
Reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


In today’s world, we have been facing global challenges like pollution explosion, resource depletion, changing climate, and demand for food and potable water forcing us to move forward toward sustainable development. Among these hurdles, especially shortage of fresh water across the globe has made us to look toward more efficient, lower-cost, robust technology to decontaminate and disinfect water from the source to the point-of-use. For this, membrane processes play a key role in water treatment technologies, due to their low energy consumption and involve no phase change. Compared to synthetic polymeric membranes, biopolymer-based membranes have drawn the attention of researchers due to its biocompatible, nontoxic, biodegradable, easily available, and environmentally friendly nature. The development of cellulose- and chitosan-based membrane put forward the new benchmark for desalination, heavy metal ion removal, dye rejection, wastewater treatment, drug delivery, wound healing, and other applications. Efforts are in progress to invest more and more time and research to make abundant use of these naturally occurring hydrophilic materials. These materials serve to be a cleaner substitute to the synthetic polymers that are currently in use and are dominating the market. This chapter gives a detailed overview of cellulose, chitosan, and their derivatives for membrane applications. Further, key scientific encounters are adopted on the path to industrially applicable membranes comprising these biopolymeric-based materials.


Biopolymer Blend membrane Pervaporation Heavy metal ions 

List of Abbreviations


Bovine serum albumin


Cellulose acetate


Cellulose acetate butyrate


Cellulose acetate propionate




Ethyleneglycol dimethacrylate


Flux recovery ratio




Hydroxypropyl cellulose


Methanol–methyl tert-butyl ether


Induced phase separation


Poly(vinylpyrrolidone-co-(acrylic acid))


Poly(vinylpyrrolidone-co-(vinyl acetate))


Poly(acrylic acid)




Polyethyleneglycol 200 dimethacrylate


Polyethyleneglycol 600 dimethacrylate




Poly(1,4-phenylene ether ether sulfone)


Poly(vinyl alcohol)




Pure water flux


Reversible addition-fragmentation chain transfer


Surface modifying macromolecules


Triethoxy ethyl methacrylate


Thin film composite




Thermally induced phase separation


Trimesoyl chloride





The authors thank the Director, National Institute of Technology Karnataka, Surathkal, India for providing the facilities.


  1. 1.
    M.G.A. Vieira, M.A. da Silva, L.O. dos Santos, M.M. Beppu, Natural-based plasticizers and biopolymer films: A review. Eur. Polym. J. 47(3), 254–263 (2011)CrossRefGoogle Scholar
  2. 2.
    X. Qiu, S. Hu, “Smart” materials based on cellulose: A review of the preparations, properties, and applications. Materials 6(3), 738–781 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    H.A. Khalil, A. Bhat, A.I. Yusra, Green composites from sustainable cellulose nanofibrils: A review. Carbohydr. Polym. 87(2), 963–979 (2012)CrossRefGoogle Scholar
  4. 4.
    V.K. Thakur, S.I. Voicu, Recent advances in cellulose and chitosan based membranes for water purification: A concise review. Carbohydr. Polym. 146, 148–165 (2016)PubMedCrossRefGoogle Scholar
  5. 5.
    E.N. Bifari, S. Bahadar Khan, K.A. Alamry, A.M. Asiri, K. Akhtar, Cellulose acetate based nanocomposites for biomedical applications: A review. Curr Pharm. Des. 22(20), 3007–3019 (2016)PubMedCrossRefGoogle Scholar
  6. 6.
    A.K. HPS, C.K. Saurabh, A. Adnan, M.N. Fazita, M. Syakir, Y. Davoudpour, M. Rafatullah, C. Abdullah, M. Haafiz, R. Dungani, A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. Carbohydr. Polym. 150, 216–226 (2016)CrossRefGoogle Scholar
  7. 7.
    J.R. Werber, C.O. Osuji, M. Elimelech, Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016)CrossRefGoogle Scholar
  8. 8.
    T. Matsuura, Progress in membrane science and technology for seawater desalination—A review. Desalination 134(1), 47–54 (2001)CrossRefGoogle Scholar
  9. 9.
    J. Mulder, Basic Principles of Membrane Technology (Springer, Netherlands, 2012)Google Scholar
  10. 10.
    R.W. Baker, Membrane Technology (Wiley Online Library, Hoboken, 2000)Google Scholar
  11. 11.
    R.D. Noble, S.A. Stern, Membrane Separations Technology: Principles and Applications (Elsevier, Amsterdam, 1995)Google Scholar
  12. 12.
    E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. MacKintosh, D. Chatenay, Microrheology of biopolymer-membrane complexes. Phys. Rev. Lett. 85(2), 457 (2000)PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    N. Tapia-Orozco, R. Ibarra-Cabrera, A. Tecante, M. Gimeno, R. Parra, R. Garcia-Arrazola, Removal strategies for endocrine disrupting chemicals using cellulose-based materials as adsorbents: A review. J. Environ. Chem. Eng. 4(3), 3122–3142 (2016)CrossRefGoogle Scholar
  14. 14.
    E. Ruiz-Hitzky, M. Darder, P. Aranda, Functional biopolymer nanocomposites based on layered solids. J. Mater. Chem. 15(35–36), 3650–3662 (2005)CrossRefGoogle Scholar
  15. 15.
    J.S. Lee, S.A. Heo, H.J. Jo, B.R. Min, Preparation and characteristics of cross-linked cellulose acetate ultrafiltration membranes with high chemical resistance and mechanical strength. React. Funct. Polym. 99, 114–121 (2016)CrossRefGoogle Scholar
  16. 16.
    J. Zhou, J. Chen, M. He, J. Yao, Cellulose acetate ultrafiltration membranes reinforced by cellulose nanocrystals: Preparation and characterization. J. Appl. Polym. Sci. 133(39) (2016)Google Scholar
  17. 17.
    A.D. Sabde, M. Trivedi, V. Ramachandhran, M. Hanra, B. Misra, Casting and characterization of cellulose acetate butyrate based UF membranes. Desalination 114(3), 223–232 (1997)CrossRefGoogle Scholar
  18. 18.
    K. Mori, H. Ohya, S.I. Semenova, T. Kawahara, M. Aihara, Y. Negishi, T. Fujimoto, Diffusional characteristics of sodium chloride in symmetrical cellulose acetate membranes measured by an unsteady-state dialysis method. Desalination 127(3), 225–249 (2000)CrossRefGoogle Scholar
  19. 19.
    R. Takagi, M. Hori, K. Gotoh, M. Tagawa, M. Nakagaki, Donnan potential and ζ-potential of cellulose acetate membrane in aqueous sodium chloride solutions. J. Membr. Sci. 170(1), 19–25 (2000)CrossRefGoogle Scholar
  20. 20.
    L.A. Goetz, B. Jalvo, R. Rosal, A.P. Mathew, Superhydrophilic anti-fouling electrospun cellulose acetate membranes coated with chitin nanocrystals for water filtration. J. Membr. Sci. 510, 238–248 (2016)CrossRefGoogle Scholar
  21. 21.
    A. Ahmad, F. Jamshed, T. Riaz, S. Waheed, A. Sabir, A.A. AlAnezi, M. Adrees, T. Jamil, Self-sterilized composite membranes of cellulose acetate/polyethylene glycol for water desalination. Carbohydr. Polym. 149, 207–216 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    P. Kanagaraj, A. Nagendran, D. Rana, T. Matsuura, Separation of macromolecular proteins and removal of humic acid by cellulose acetate modified UF membranes. Int. J. Biol. Macromol. 89, 81–88 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Z. Sun, F. Chen, Hydrophilicity and antifouling property of membrane materials from cellulose acetate/polyethersulfone in DMAc. Int. J. Biol. Macromol. 91, 143–150 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Z. Chen, M. Deng, Y. Chen, G. He, M. Wu, J. Wang, Preparation and performance of cellulose acetate/polyethyleneimine blend microfiltration membranes and their applications. J. Membr. Sci. 235(1), 73–86 (2004)CrossRefGoogle Scholar
  25. 25.
    E. Saljoughi, T. Mohammadi, Cellulose acetate (CA)/polyvinylpyrrolidone (PVP) blend asymmetric membranes: Preparation, morphology and performance. Desalination 249(2), 850–854 (2009)CrossRefGoogle Scholar
  26. 26.
    J. Sikder, C. Pereira, S. Palchoudhury, K. Vohra, D. Basumatary, P. Pal, Synthesis and characterization of cellulose acetate-polysulfone blend microfiltration membrane for separation of microbial cells from lactic acid fermentation broth. Desalination 249(2), 802–808 (2009)CrossRefGoogle Scholar
  27. 27.
    N. Rakhshan, M. Pakizeh, The effect of functionalized SiO 2 nanoparticles on the morphology and triazines separation properties of cellulose acetate membranes. J. Ind. Eng. Chem. 34, 51–60 (2016)CrossRefGoogle Scholar
  28. 28.
    N. El Badawi, A.R. Ramadan, A.M. Esawi, M. El-Morsi, Novel carbon nanotube–cellulose acetate nanocomposite membranes for water filtration applications. Desalination 344, 79–85 (2014)CrossRefGoogle Scholar
  29. 29.
    J. Dasgupta, S. Chakraborty, J. Sikder, R. Kumar, D. Pal, S. Curcio, E. Drioli, The effects of thermally stable titanium silicon oxide nanoparticles on structure and performance of cellulose acetate ultrafiltration membranes. Sep. Purif. Technol. 133, 55–68 (2014)CrossRefGoogle Scholar
  30. 30.
    J. Quirós, S. Gonzalo, B. Jalvo, K. Boltes, J.A. Perdigón-Melón, R. Rosal, Electrospun cellulose acetate composites containing supported metal nanoparticles for antifungal membranes. Sci. Total Environ. 563, 912–920 (2016)PubMedCrossRefGoogle Scholar
  31. 31.
    R.B. Romero, C.A.P. Leite, M. do Carmo Gonçalves, The effect of the solvent on the morphology of cellulose acetate/montmorillonite nanocomposites. Polymer 50(1), 161–170 (2009)CrossRefGoogle Scholar
  32. 32.
    X. Fu, T. Sotani, H. Matsuyama, Effect of membrane preparation method on the outer surface roughness of cellulose acetate butyrate hollow fiber membrane. Desalination 233(1), 10–18 (2008)CrossRefGoogle Scholar
  33. 33.
    B.-U. Nam, K.-D. Min, Y. Son, Investigation of the nanostructure, thermal stability, and mechanical properties of polylactic acid/cellulose acetate butyrate/clay nanocomposites. Mater. Lett. 150, 118–121 (2015)CrossRefGoogle Scholar
  34. 34.
    M. Hashino, K. Hirami, T. Katagiri, N. Kubota, Y. Ohmukai, T. Ishigami, T. Maruyama, H. Matsuyama, Effects of three natural organic matter types on cellulose acetate butyrate microfiltration membrane fouling. J. Membr. Sci. 379(1), 233–238 (2011)CrossRefGoogle Scholar
  35. 35.
    S. Chatterjee, S. De, Adsorptive removal of fluoride by activated alumina doped cellulose acetate phthalate (CAP) mixed matrix membrane. Sep. Purif. Technol. 125, 223–238 (2014)CrossRefGoogle Scholar
  36. 36.
    A. Rahimpour, S. Madaeni, Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: Preparation, morphology, performance and antifouling properties. J. Membr. Sci. 305(1), 299–312 (2007)CrossRefGoogle Scholar
  37. 37.
    S. Yu, Y. Zheng, Q. Zhou, S. Shuai, Z. Lü, C. Gao, Facile modification of polypropylene hollow fiber microfiltration membranes for nanofiltration. Desalination 298, 49–58 (2012)CrossRefGoogle Scholar
  38. 38.
    X. Wang, X. Wang, P. Xiao, J. Li, E. Tian, Y. Zhao, Y. Ren, High water permeable free-standing cellulose triacetate/graphene oxide membrane with enhanced antibiofouling and mechanical properties for forward osmosis. Colloids Surf. A Physicochem. Eng. Asp. 508, 327–335 (2016)CrossRefGoogle Scholar
  39. 39.
    A. Nagendran, A. Vijayalakshmi, D.L. Arockiasamy, K. Shobana, D. Mohan, Toxic metal ion separation by cellulose acetate/sulfonated poly (ether imide) blend membranes: Effect of polymer composition and additive. J. Hazard. Mater. 155(3), 477–485 (2008)PubMedCrossRefGoogle Scholar
  40. 40.
    A. Jayalakshmi, S. Rajesh, S. Senthilkumar, D. Mohan, Epoxy functionalized poly (ether-sulfone) incorporated cellulose acetate ultrafiltration membrane for the removal of chromium ions. Sep. Purif. Technol. 90, 120–132 (2012)CrossRefGoogle Scholar
  41. 41.
    Y. He, G.-M. Li, H. Wang, Z.-W. Jiang, J.-F. Zhao, H.-X. Su, Q.-Y. Huang, Experimental study on the rejection of salt and dye with cellulose acetate nanofiltration membrane. J. Taiwan Inst. Chem. Eng. 40(3), 289–295 (2009)CrossRefGoogle Scholar
  42. 42.
    A. Vijayalakshmi, D.L. Arockiasamy, A. Nagendran, D. Mohan, Separation of proteins and toxic heavy metal ions from aqueous solution by CA/PC blend ultrafiltration membranes. Sep. Purif. Technol. 62(1), 32–38 (2008)CrossRefGoogle Scholar
  43. 43.
    S. Rajesh, P. Maheswari, S. Senthilkumar, A. Jayalakshmi, D. Mohan, Preparation and characterisation of poly (amide-imide) incorporated cellulose acetate membranes for polymer enhanced ultrafiltration of metal ions. Chem. Eng. J. 171(1), 33–44 (2011)CrossRefGoogle Scholar
  44. 44.
    Y.K. Ong, G.M. Shi, N.L. Le, Y.P. Tang, J. Zuo, S.P. Nunes, T.-S. Chung, Recent membrane development for pervaporation processes. Prog. Polym. Sci. 57, 1–31 (2016)CrossRefGoogle Scholar
  45. 45.
    Q. Wang, N. Li, B. Bolto, M. Hoang, Z. Xie, Desalination by pervaporation: A review. Desalination 387, 46–60 (2016)CrossRefGoogle Scholar
  46. 46.
    H. Wu, X. Fang, X. Zhang, Z. Jiang, B. Li, X. Ma, Cellulose acetate–poly (N-vinyl-2-pyrrolidone) blend membrane for pervaporation separation of methanol/MTBE mixtures. Sep. Purif. Technol. 64(2), 183–191 (2008)CrossRefGoogle Scholar
  47. 47.
    K. Zhou, Q.G. Zhang, G.L. Han, A.M. Zhu, Q.L. Liu, Pervaporation of water–ethanol and methanol–MTBE mixtures using poly (vinyl alcohol)/cellulose acetate blended membranes. J. Membr. Sci. 448, 93–101 (2013)CrossRefGoogle Scholar
  48. 48.
    Y. Wang, L. Yang, G. Luo, Y. Dai, Preparation of cellulose acetate membrane filled with metal oxide particles for the pervaporation separation of methanol/methyl tert-butyl ether mixtures. Chem. Eng. J. 146(1), 6–10 (2009)CrossRefGoogle Scholar
  49. 49.
    S.P. Kusumocahyo, T. Kanamori, T. Iwatsubo, K. Sumaru, T. Shinbo, Development of polyion complex membranes based on cellulose acetate modified by oxygen plasma treatment for pervaporation. J. Membr. Sci. 208(1), 223–231 (2002)CrossRefGoogle Scholar
  50. 50.
    M. Zafar, M. Ali, S.M. Khan, T. Jamil, M.T.Z. Butt, Effect of additives on the properties and performance of cellulose acetate derivative membranes in the separation of isopropanol/water mixtures. Desalination 285, 359–365 (2012)CrossRefGoogle Scholar
  51. 51.
    Q.T. Nguyen, C. Léger, P. Billard, P. Lochon, Novel membranes made from a semi-interpenetrating polymer network for ethanol–ETBE separation by pervaporation. Polym. Adv. Technol. 8(8), 487–495 (1997)CrossRefGoogle Scholar
  52. 52.
    G. Luo, M. Niang, P. Schaetzel, Pervaporation separation of ethyl tert-butyl ether and ethanol mixtures with a blended membrane. J. Membr. Sci. 125(2), 237–244 (1997)CrossRefGoogle Scholar
  53. 53.
    B. Smitha, D. Suhanya, S. Sridhar, M. Ramakrishna, Separation of organic–organic mixtures by pervaporation—A review. J. Membr. Sci. 241(1), 1–21 (2004)CrossRefGoogle Scholar
  54. 54.
    B. Cai, Q.T. Nguyen, J.M. Valleton, C. Gao, In situ reparation of defects on the skin layer of reverse osmosis cellulose ester membranes for pervaporation purposes. J. Membr. Sci. 216(1), 165–175 (2003)CrossRefGoogle Scholar
  55. 55.
    Q.-T. Nguyen, R. Clément, I. Noezar, P. Lochon, Performances of poly (vinylpyrrolidone-co-vinyl acetate)-cellulose acetate blend membranes in the pervaporation of ethanol–ethyl tert-butyl ether mixtures: Simplified model for flux prediction. Sep. Purif. Technol. 13(3), 237–245 (1998)CrossRefGoogle Scholar
  56. 56.
    G. Luo, M. Niang, P. Schaetzel, A high performance membrane for sorption and pervaporation separation of ethyl tert-butyl ether and ethanol mixtures. Sep. Sci. Technol. 34(3), 391–401 (1999)CrossRefGoogle Scholar
  57. 57.
    M. Billy, A.R. Da Costa, P. Lochon, R. Clément, M. Dresch, A. Jonquières, Cellulose acetate graft copolymers with nano-structured architectures: Application to the purification of bio-fuels by pervaporation. J. Membr. Sci. 348(1), 389–396 (2010)CrossRefGoogle Scholar
  58. 58.
    H. Qu, Y. Kong, H. Lv, Y. Zhang, J. Yang, D. Shi, Effect of crosslinking on sorption, diffusion and pervaporation of gasoline components in hydroxyethyl cellulose membranes. Chem. Eng. J. 157(1), 60–66 (2010)CrossRefGoogle Scholar
  59. 59.
    L. Lin, Y. Kong, Y. Zhang, Sorption and transport behavior of gasoline components in polyethylene glycol membranes. J. Membr. Sci. 325(1), 438–445 (2008)CrossRefGoogle Scholar
  60. 60.
    B.V.K. Naidu, K.K. Rao, T.M. Aminabhavi, Pervaporation separation of water+ 1, 4-dioxane and water+ tetrahydrofuran mixtures using sodium alginate and its blend membranes with hydroxyethylcellulose – A comparative study. J. Membr. Sci. 260(1), 131–141 (2005)Google Scholar
  61. 61.
    R. Veerapur, K. Gudasi, T. Aminabhavi, Pervaporation dehydration of isopropanol using blend membranes of chitosan and hydroxypropyl cellulose. J. Membr. Sci. 304(1), 102–111 (2007)CrossRefGoogle Scholar
  62. 62.
    H. Jin, Q. An, Q. Zhao, J. Qian, M. Zhu, Pervaporation dehydration of ethanol by using polyelectrolyte complex membranes based on poly (N-ethyl-4-vinylpyridinium bromide) and sodium carboxymethyl cellulose. J. Membr. Sci. 347(1), 183–192 (2010)CrossRefGoogle Scholar
  63. 63.
    X.-S. Wang, Q.-F. An, F.-Y. Zhao, Q. Zhao, K.-R. Lee, J.-W. Qian, C.-J. Gao, Preparation and separation characteristics of polyelectrolyte complex membranes containing sulfated carboxymethyl cellulose for water–ethanol mixtures at low pH. Cellulose 21(5), 3597–3611 (2014)CrossRefGoogle Scholar
  64. 64.
    E. Salehi, P. Daraei, A.A. Shamsabadi, A review on chitosan-based adsorptive membranes. Carbohydr. Polym. 152, 419–432 (2016)PubMedCrossRefGoogle Scholar
  65. 65.
    A. Usman, K.M. Zia, M. Zuber, S. Tabasum, S. Rehman, F. Zia, Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications. Int. J. Biol. Macromol. 86, 630–645 (2016)PubMedCrossRefGoogle Scholar
  66. 66.
    A. Rafique, K.M. Zia, M. Zuber, S. Tabasum, S. Rehman, Chitosan functionalized poly (vinyl alcohol) for prospects biomedical and industrial applications: A review. Int. J. Biol. Macromol. 87, 141–154 (2016)PubMedCrossRefGoogle Scholar
  67. 67.
    M.-T. Wu, Y.-L. Tsai, C.-W. Chiu, C.-C. Cheng, Synthesis, characterization, and highly acid-resistant properties of crosslinking β-chitosan with polyamines for heavy metal ion adsorption. RSC Adv. 6(106), 104754–104762 (2016)CrossRefGoogle Scholar
  68. 68.
    B.-S. Lee, C.-C. Lee, H.-P. Lin, W.-A. Shih, W.-L. Hsieh, C.-H. Lai, Y. Takeuchi, Y.-W. Chen, A functional chitosan membrane with grafted epigallocatechin-3-gallate and lovastatin enhances periodontal tissue regeneration in dogs. Carbohydr. Polym. 151, 790–802 (2016)PubMedCrossRefGoogle Scholar
  69. 69.
    R. LogithKumar, A. KeshavNarayan, S. Dhivya, A. Chawla, S. Saravanan, N. Selvamurugan, A review of chitosan and its derivatives in bone tissue engineering. Carbohydr. Polym. 151, 172–188 (2016)PubMedCrossRefGoogle Scholar
  70. 70.
    M.N.R. Kumar, A review of chitin and chitosan applications. React. Funct. Polym. 46(1), 1–27 (2000)CrossRefGoogle Scholar
  71. 71.
    H. Sashiwa, N. Kawasaki, A. Nakayama, E. Muraki, H. Yajima, N. Yamamori, Y. Ichinose, J. Sunamoto, S.-i. Aiba, Chemical modification of chitosan. Part 15: Synthesis of novel chitosan derivatives by substitution of hydrophilic amine using N-carboxyethylchitosan ethyl ester as an intermediate. Carbohydr. Res. 338(6), 557–561 (2003)PubMedCrossRefGoogle Scholar
  72. 72.
    E. Loubaki, M. Ourevitch, S. Sicsic, Chemical modification of chitosan by glycidyl trimethylammonium chloride. Characterization of modified chitosan by 13 C-and 1 H-NMR spectroscopy. Eur. Polym. J. 27(3), 311–317 (1991)CrossRefGoogle Scholar
  73. 73.
    M.E. Badawy, Chemical modification of chitosan: Synthesis and biological activity of new heterocyclic chitosan derivatives. Polym. Int. 57(2), 254–261 (2008)CrossRefGoogle Scholar
  74. 74.
    X.-Y. Huang, X.-Y. Mao, H.-T. Bu, X.-Y. Yu, G.-B. Jiang, M.-H. Zeng, Chemical modification of chitosan by tetraethylenepentamine and adsorption study for anionic dye removal. Carbohydr. Res. 346(10), 1232–1240 (2011)PubMedCrossRefGoogle Scholar
  75. 75.
    M. Vakili, M. Rafatullah, M.H. Ibrahim, A.Z. Abdullah, Z. Gholami, B. Salamatinia, Enhancing reactive blue 4 adsorption through chemical modification of chitosan with hexadecylamine and 3-aminopropyl triethoxysilane. J. Water Process Eng. (2016).
  76. 76.
    V. Muñoz, T. Kappes, M. Roeckel, J.C. Vera, K. Fernández, Modification of chitosan to deliver grapes proanthocyanidins: Physicochemical and biological evaluation. LWT-Food Sci. Technol. 73, 640–648 (2016)CrossRefGoogle Scholar
  77. 77.
    D. Hua, J. Tang, J. Cheng, W. Deng, X. Zhu, A novel method of controlled grafting modification of chitosan via RAFT polymerization using chitosan-RAFT agent. Carbohydr. Polym. 73(1), 98–104 (2008)CrossRefGoogle Scholar
  78. 78.
    R. Kumar, A.M. Isloor, A.F. Ismail, T. Matsuura, Synthesis and characterization of novel water soluble derivative of chitosan as an additive for polysulfone ultrafiltration membrane. J. Membr. Sci. 440, 140–147 (2013)CrossRefGoogle Scholar
  79. 79.
    P. Tonglairoum, T. Woraphatphadung, T. Ngawhirunpat, T. Rojanarata, P. Akkaramongkolporn, W. Sajomsang, P. Opanasopit, Development and evaluation of N-naphthyl-N, O-succinyl chitosan micelles containing clotrimazole for oral candidiasis treatment. Pharm. Dev. Technol. 0, 1–7 (2016)Google Scholar
  80. 80.
    A. Heras, N. Rodriguez, V. Ramos, E. Agullo, N-methylene phosphonic chitosan: A novel soluble derivative. Carbohydr. Polym. 44(1), 1–8 (2001)CrossRefGoogle Scholar
  81. 81.
    C.-G. Liu, K.G.H. Desai, X.-G. Chen, H.-J. Park, Linolenic acid-modified chitosan for formation of self-assembled nanoparticles. J. Agric. Food Chem. 53(2), 437–441 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    V. Ramos, N. Rodrıguez, M. Dıaz, M. Rodrıguez, A. Heras, E. Agullo, N-methylene phosphonic chitosan. Effect of preparation methods on its properties. Carbohydr. Polym. 52(1), 39–46 (2003)CrossRefGoogle Scholar
  83. 83.
    G. Huacai, P. Wan, L. Dengke, Graft copolymerization of chitosan with acrylic acid under microwave irradiation and its water absorbency. Carbohydr. Polym. 66(3), 372–378 (2006)CrossRefGoogle Scholar
  84. 84.
    W.J. Lau, A.F. Ismail, N. Misdan, M.A. Kassim, A recent progress in thin film composite membrane: A review. Desalination 287, 190–199 (2012)CrossRefGoogle Scholar
  85. 85.
    C. Ong, P. Goh, W. Lau, N. Misdan, A. Ismail, Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: A review. Desalination 393, 2–15 (2016)CrossRefGoogle Scholar
  86. 86.
    D.A. Musale, A. Kumar, Effects of surface crosslinking on sieving characteristics of chitosan/poly (acrylonitrile) composite nanofiltration membranes. Sep. Purif. Technol. 21(1), 27–37 (2000)CrossRefGoogle Scholar
  87. 87.
    J. Miao, G.-h. Chen, C.-j. Gao, A novel kind of amphoteric composite nanofiltration membrane prepared from sulfated chitosan (SCS). Desalination 181(1), 173–183 (2005)CrossRefGoogle Scholar
  88. 88.
    A. Jafari Sanjari, M. Asghari, A review on chitosan utilization in membrane synthesis. ChemBioEng Reviews 3, 134–158 (2016)CrossRefGoogle Scholar
  89. 89.
    R. Huang, G. Chen, M. Sun, Y. Hu, C. Gao, Studies on nanofiltration membrane formed by diisocyanate cross-linking of quaternized chitosan on poly (acrylonitrile)(PAN) support. J. Membr. Sci. 286(1), 237–244 (2006)CrossRefGoogle Scholar
  90. 90.
    S. Zinadini, A. Zinatizadeh, M. Rahimi, V. Vatanpour, H. Zangeneh, M. Beygzadeh, Novel high flux antifouling nanofiltration membranes for dye removal containing carboxymethyl chitosan coated Fe 3 O 4 nanoparticles. Desalination 349, 145–154 (2014)CrossRefGoogle Scholar
  91. 91.
    A.G. Boricha, Z. Murthy, Preparation of N, O-carboxymethyl chitosan/cellulose acetate blend nanofiltration membrane and testing its performance in treating industrial wastewater. Chem. Eng. J. 157(2), 393–400 (2010)CrossRefGoogle Scholar
  92. 92.
    R. Huang, G. Chen, M. Sun, C. Gao, Preparation and characterization of quaterinized chitosan/poly (acrylonitrile) composite nanofiltration membrane from anhydride mixture cross-linking. Sep. Purif. Technol. 58(3), 393–399 (2008)CrossRefGoogle Scholar
  93. 93.
    J. Zhu, M. Tian, Y. Zhang, H. Zhang, J. Liu, Fabrication of a novel “loose” nanofiltration membrane by facile blending with chitosan–Montmorillonite nanosheets for dyes purification. Chem. Eng. J. 265, 184–193 (2015)CrossRefGoogle Scholar
  94. 94.
    R. Kumar, A.M. Isloor, A.F. Ismail, S.A. Rashid, A. Al Ahmed, Permeation, antifouling and desalination performance of TiO 2 nanotube incorporated PSf/CS blend membranes. Desalination 316, 76–84 (2013)CrossRefGoogle Scholar
  95. 95.
    S. Shenvi, A.F. Ismail, A.M. Isloor, Preparation and characterization study of PPEES/chitosan composite membrane crosslinked with tripolyphosphate. Desalination 344, 90–96 (2014)CrossRefGoogle Scholar
  96. 96.
    D.A. Musale, A. Kumar, Solvent and pH resistance of surface crosslinked chitosan/poly (acrylonitrile) composite nanofiltration membranes. J. Appl. Polym. Sci. 77(8), 1782–1793 (2000)CrossRefGoogle Scholar
  97. 97.
    R. Kumar, A.M. Isloor, A.F. Ismail, T. Matsuura, Performance improvement of polysulfone ultrafiltration membrane using N-succinyl chitosan as additive. Desalination 318, 1–8 (2013)CrossRefGoogle Scholar
  98. 98.
    Z. Zhao, J. Zheng, M. Wang, H. Zhang, C.C. Han, High performance ultrafiltration membrane based on modified chitosan coating and electrospun nanofibrous PVDF scaffolds. J. Membr. Sci. 394, 209–217 (2012)CrossRefGoogle Scholar
  99. 99.
    S. Boributh, A. Chanachai, R. Jiraratananon, Modification of PVDF membrane by chitosan solution for reducing protein fouling. J. Membr. Sci. 342(1), 97–104 (2009)CrossRefGoogle Scholar
  100. 100.
    F.R. Peligro, I. Pavlovic, R. Rojas, C. Barriga, Removal of heavy metals from simulated wastewater by in situ formation of layered double hydroxides. Chem. Eng. J. 306, 1035–1040 (2016)CrossRefGoogle Scholar
  101. 101.
    Y. Yurekli, Removal of heavy metals in wastewater by using zeolite nano-particles impregnated polysulfone membranes. J. Hazard. Mater. 309, 53–64 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    S. Lapwanit, T. Trakulsujaritchok, P.N. Nongkhai, Chelating magnetic copolymer composite modified by click reaction for removal of heavy metal ions from aqueous solution. Chem. Eng. J. 289, 286–295 (2016)CrossRefGoogle Scholar
  103. 103.
    Y. Zou, X. Wang, A. Khan, P. Wang, Y. Liu, A. Alsaedi, T. Hayat, X. Wang, Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: A review. Environ. Sci. Technol. 50(14), 7290–7304 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    M.J.K. Ahmed, M. Ahmaruzzaman, A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions. J. Water Process Eng. 10, 39–47 (2016)CrossRefGoogle Scholar
  105. 105.
    E. Vunain, A. Mishra, B. Mamba, Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: A review. Int. J. Biol. Macromol. 86, 570–586 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    C. Liu, R. Bai, Adsorptive removal of copper ions with highly porous chitosan/cellulose acetate blend hollow fiber membranes. J. Membr. Sci. 284(1), 313–322 (2006)CrossRefGoogle Scholar
  107. 107.
    R.-S. Juang, R.-C. Shiau, Metal removal from aqueous solutions using chitosan-enhanced membrane filtration. J. Membr. Sci. 165(2), 159–167 (2000)CrossRefGoogle Scholar
  108. 108.
    P. Baroni, R. Vieira, E. Meneghetti, M. Da Silva, M. Beppu, Evaluation of batch adsorption of chromium ions on natural and crosslinked chitosan membranes. J. Hazard. Mater. 152(3), 1155–1163 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    R.S. Vieira, M.M. Beppu, Interaction of natural and crosslinked chitosan membranes with Hg (II) ions. Colloids Surf. A Physicochem. Eng. Asp. 279(1), 196–207 (2006)CrossRefGoogle Scholar
  110. 110.
    G. Steenkamp, K. Keizer, H. Neomagus, H. Krieg, Copper (II) removal from polluted water with alumina/chitosan composite membranes. J. Membr. Sci. 197(1), 147–156 (2002)CrossRefGoogle Scholar
  111. 111.
    M.I. Shariful, S.B. Sharif, J.J.L. Lee, U. Habiba, B.C. Ang, M.A. Amalina, Adsorption of divalent heavy metal ion by mesoporous-high surface area chitosan/poly (ethylene oxide) nanofibrous membrane. Carbohydr. Polym. 157, 57–64 (2017)PubMedCrossRefGoogle Scholar
  112. 112.
    R. Kumar, A.M. Isloor, A. Ismail, Preparation and evaluation of heavy metal rejection properties of polysulfone/chitosan, polysulfone/N-succinyl chitosan and polysulfone/N-propylphosphonyl chitosan blend ultrafiltration membranes. Desalination 350, 102–108 (2014)CrossRefGoogle Scholar
  113. 113.
    P. Kanagaraj, A. Nagendran, D. Rana, T. Matsuura, S. Neelakandan, T. Karthikkumar, A. Muthumeenal, Influence of N-phthaloyl chitosan on poly (ether imide) ultrafiltration membranes and its application in biomolecules and toxic heavy metal ion separation and their antifouling properties. Appl. Surf. Sci. 329, 165–173 (2015)CrossRefGoogle Scholar
  114. 114.
    A. Ghaee, M. Shariaty-Niassar, J. Barzin, A. Zarghan, Adsorption of copper and nickel ions on macroporous chitosan membrane: Equilibrium study. Appl. Surf. Sci. 258(19), 7732–7743 (2012)CrossRefGoogle Scholar
  115. 115.
    E. Salehi, S. Madaeni, L. Rajabi, A. Derakhshan, S. Daraei, V. Vatanpour, Static and dynamic adsorption of copper ions on chitosan/polyvinyl alcohol thin adsorptive membranes: Combined effect of polyethylene glycol and aminated multi-walled carbon nanotubes. Chem. Eng. J. 215, 791–801 (2013)CrossRefGoogle Scholar
  116. 116.
    P. Daraei, S.S. Madaeni, E. Salehi, N. Ghaemi, H.S. Ghari, M.A. Khadivi, E. Rostami, Novel thin film composite membrane fabricated by mixed matrix nanoclay/chitosan on PVDF microfiltration support: Preparation, characterization and performance in dye removal. J. Membr. Sci. 436, 97–108 (2013)CrossRefGoogle Scholar
  117. 117.
    A. Mirmohseni, M.S. Dorraji, A. Figoli, F. Tasselli, Chitosan hollow fibers as effective biosorbent toward dye: Preparation and modeling. Bioresour. Technol. 121, 212–220 (2012)PubMedCrossRefGoogle Scholar
  118. 118.
    Z. Karim, A.P. Mathew, M. Grahn, J. Mouzon, K. Oksman, Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: Removal of dyes from water. Carbohydr. Polym. 112, 668–676 (2014)PubMedCrossRefGoogle Scholar
  119. 119.
    J.H. Chen, X.F. Dong, Y.S. He, Investigation into glutaraldehyde crosslinked chitosan/cardo-poly-etherketone composite membrane for pervaporation separation of methanol and dimethyl carbonate mixtures. RSC Adv. 6(65), 60765–60772 (2016)CrossRefGoogle Scholar
  120. 120.
    Y. Zhu, S. Xia, G. Liu, W. Jin, Preparation of ceramic-supported poly (vinyl alcohol)–chitosan composite membranes and their applications in pervaporation dehydration of organic/water mixtures. J. Membr. Sci. 349(1), 341–348 (2010)CrossRefGoogle Scholar
  121. 121.
    J. Ma, M. Zhang, H. Wu, X. Yin, J. Chen, Z. Jiang, Mussel-inspired fabrication of structurally stable chitosan/polyacrylonitrile composite membrane for pervaporation dehydration. J. Membr. Sci. 348(1), 150–159 (2010)CrossRefGoogle Scholar
  122. 122.
    K. Sunitha, S. Satyanarayana, S. Sridhar, Phosphorylated chitosan membranes for the separation of ethanol–water mixtures by pervaporation. Carbohydr. Polym. 87(2), 1569–1574 (2012)CrossRefGoogle Scholar
  123. 123.
    J.H. Chen, Q.L. Liu, X.H. Zhang, Q.G. Zhang, Pervaporation and characterization of chitosan membranes cross-linked by 3-aminopropyltriethoxysilane. J. Membr. Sci. 292(1), 125–132 (2007)Google Scholar
  124. 124.
    W. Zhang, Z. Yu, Q. Qian, Z. Zhang, X. Wang, Improving the pervaporation performance of the glutaraldehyde crosslinked chitosan membrane by simultaneously changing its surface and bulk structure. J. Membr. Sci. 348(1), 213–223 (2010)CrossRefGoogle Scholar
  125. 125.
    Y.T. Ong, A.L. Ahmad, S.H.S. Zein, K. Sudesh, S.H. Tan, Poly (3-hydroxybutyrate)-functionalised multi-walled carbon nanotubes/chitosan green nanocomposite membranes and their application in pervaporation. Sep. Purif. Technol. 76(3), 419–427 (2011)CrossRefGoogle Scholar
  126. 126.
    Y.-J. Han, K.-H. Wang, J.-Y. Lai, Y.-L. Liu, Hydrophilic chitosan-modified polybenzoimidazole membranes for pervaporation dehydration of isopropanol aqueous solutions. J. Membr. Sci. 463, 17–23 (2014)CrossRefGoogle Scholar
  127. 127.
    J.G. Varghese, A.A. Kittur, P.S. Rachipudi, M.Y. Kariduraganavar, Synthesis, characterization and pervaporation performance of chitosan-g-polyaniline membranes for the dehydration of isopropanol. J. Membr. Sci. 364(1), 111–121 (2010)CrossRefGoogle Scholar
  128. 128.
    H. Dogan, N.D. Hilmioglu, Chitosan coated zeolite filled regenerated cellulose membrane for dehydration of ethylene glycol/water mixtures by pervaporation. Desalination 258(1), 120–127 (2010)CrossRefGoogle Scholar
  129. 129.
    T. Uragami, K. Takigawa, Permeation and separation characteristics of ethanol-water mixtures through chitosan derivative membranes by pervaporation and evapomeation. Polymer 31(4), 668–672 (1990)CrossRefGoogle Scholar
  130. 130.
    Y.M. Lee, Modified chitosan membranes for pervaporation. Desalination 90(1), 277–290 (1993)CrossRefGoogle Scholar
  131. 131.
    A. Chanachai, R. Jiraratananon, D. Uttapap, G. Moon, W. Anderson, R. Huang, Pervaporation with chitosan/hydroxyethylcellulose (CS/HEC) blended membranes. J. Membr. Sci. 166(2), 271–280 (2000)CrossRefGoogle Scholar
  132. 132.
    B. Bolto, M. Hoang, Z. Xie, A review of membrane selection for the dehydration of aqueous ethanol by pervaporation. Chem. Eng. Process. Process Intensif. 50(3), 227–235 (2011)CrossRefGoogle Scholar
  133. 133.
    Y. Maeda, M. Kai, Recent progress in pervaporation membranes for water/ethanol separation, in Pervaporation Membrane Separation Processes, vol. 1, (Elsevier, Amsterdam, 1991), pp. 391–435Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Raghavendra S. Hebbar
    • 1
  • Arun M. Isloor
    • 1
    Email author
  • Abdul Wahab Mohammad
    • 2
  1. 1.Membrane Technology Laboratory, Chemistry DepartmentNational Institute of Technology KarnatakaSurathkal, MangaloreIndia
  2. 2.Department of Chemical EngineeringUniversiti Kebangsaan MalaysiaSelangorMalaysia

Personalised recommendations