Advertisement

Applications of Hydrogels

  • Michael J. Majcher
  • Todd HoareEmail author
Reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

Hydrogels offer multiple unique properties in terms of their porosities, mechanics, interfacial dynamics, and biological responses that make them highly relevant to a broad range of potential applications. Herein, we review how hydrogels can address key challenges in biomedical, personal care, cosmetic, bioseparations, environmental (including natural resource extraction), catalytic, and agricultural applications, with an emphasis on how hydrogels can be rationally engineered in each case for optimal performance. Biomedical applications of hydrogels in drug delivery, tissue engineering, cell encapsulation, wound healing, and biological barrier materials are particularly highlighted in the context of how various approaches to hydrogel synthesis and fabrication influence hydrogel performance in such applications.

Abbreviations

AAc

Acrylic acid

AAm

Acrylamide

AAS

Atomic absorption spectroscopy

AgNPs

Silver nanoparticles

AMPS

2-Acrylamido-2-methyl-1-propanesulfonic acid

APO-1

Apoptosis antigen-1

APTMACl

(3-Acrylamidopropyl)trimethylammonium chloride

CD95

Cluster of differentiation 95

CMC

Carboxymethyl cellulose

CRF

Controlled release fertilizer

ECM

Extracellular matrix

EHS

Engelbreth-Holm-Swarm

FDA

US Food and Drug Administration

GAG

Glycosaminoglycan

HA

Hyaluronic acid

HPMA

2-Hydroxypropyl methacrylate

HPMC

Hydroxypropylmethyl cellulose

Hydrogel-M

Hydrogel-embedded metal catalyst

MMPs

Metallomatrix proteinases

MW

Molecular weight

NPs

Nanoparticles

PA

Peptide amphiphile

PAA

Poly(acrylic acid)

PAAm

Poly(acrylamide)

PAGE

Poly(acrylamide) gel electrophoresis

PCL

Poly(ɛ-caprolactone)

PDADMAC

Poly(diallyldimethylammonium chloride)

PEG

Poly(ethylene glycol)

PEO

Poly(ethylene oxide)

PGA

Poly(glycolic acid)

PHEMA

Poly(hydroxyethyl methacrylate)

PLA

Poly(lactic acid)

PLGA

Poly(lactic-co-glycolic) acid

PNIPAM

Poly(N-isopropylacrylamide)

PPO

Poly(p-phenylene oxide)

PU

Poly(urethane)

PVA

Poly(vinyl alcohol),

RGD

Arginylglycylaspartic acid

SAPs

Superabsorbent polymers

SDS

Sodium dodecyl sulfate

SPHs

Superporous hydrogels

SPIONs

Superparamagnetic iron oxide nanoparticles

SRF

Slow release fertilizer

TNFRSF6

Tumor necrosis factor receptor superfamily member 6

UV

Ultraviolet

VEGF

Vascular endothelial growth factor

References

  1. 1.
    O. Wichterle, D. Lim, Hydrophilic gels for biological use. Nature 185, 117–118 (1960)CrossRefGoogle Scholar
  2. 2.
    R. Hepp, In the pipeline: line-field OCT. Rev. Optom. 154(9), 3–4 (2017)Google Scholar
  3. 3.
    J. Zhu, R.E. Marchant, Design properties of hydrogel tissue-engineering scaffolds. Expert Rev. Med. Devices 8(5), 607–626 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    F. Brandl, F. Sommer, A. Goepferich, Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. Biomaterials 28(2), 134–146 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    E.L. Baker, R.T. Bonnecaze, M.H. Zaman, Extracellular matrix stiffness and architecture govern intracellular rheology in cancer. Biophys. J. 97(4), 1013–1021 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    J.E. Scott, Extracellular matrix, supramolecular organization and shape. J. Anat. 187, 259–269 (1995)PubMedPubMedCentralGoogle Scholar
  7. 7.
    H. Geckil, F. Xu, X. Zhang, S. Moon, U. Demirci, Engineering hydrogels as extracellular matrix mimics. Nanomedicine 5(3), 469–484 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    G. Camci-Unal, J.W. Nichol, H. Bae, H. Tekin, J. Bischoff, A. Khademhosseini, Hydrogel surfaces to promote attachment and spreading of endothelial progenitor cells. J. Tissue Eng. Regen. Med. 7(5), 337–347 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    J. Zhu, C. Tang, K. Kottke-Marchant, R.E. Marchant, Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides. Bioconjug. Chem. 20(2), 333–339 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Y. Tsubota, H. Mizushima, T. Hirosaki, S. Higashi, H. Yasumitsu, K. Miyazaki, Isolation and activity of proteolytic fragment of laminin-5 α3 chain. Biochem. Biophys. Res. Commun. 278(3), 614–620 (2000)PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    S. Halstenberg, A. Panitch, S. Rizzi, H. Hall, J.A. Hubbell, Biologically engineered protein-graft poly(ethylene glycol) hydrogels: a cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules 3(4), 710–723 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    S.H. Lee, J.J. Moon, J.S. Miller, J.L. West, Poly(ethylene glycol) hydrogels conjugated with a collagenase-sensitive fluorogenic substrate to visualized collagenase activity during three dimensional cell migration. Biomaterials 28(20), 3163–3170 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    J. Taipale, J. Keski-Oja, Growth factors in the extracellular matrix. FASEB J. 11(1), 51–59 (1997)PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    R.R. Chen, D.J. Mooney, Polymeric growth factor delivery strategies for tissue engineering. Pharm. Res. 20(80), 1103–1112 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    H.J. Lee, J.S. Lee, T. Chansakul, C. Yu, J.H. Elisseef, S.M. Yu, Collagen mimetic peptide-conjugated photopolymerizable PEG hydrogel. Biomaterials 27(30), 5268–5276 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    C.N. Salinas, K.S. Anseth, Decorin moieties tethered into PEG networks induce chondrogenesis of human mesenchymal stem cells. J. Biomed. Mater. Res. A 90(2), 456–464 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    H. Tan, K.G. Marra, Injectable, biodegradable hydrogels for tissue engineering applications. Materials 3(3), 1746–1767 (2010)PubMedCentralCrossRefGoogle Scholar
  18. 18.
    Y. Li, J. Rodrigues, H. Tomas, Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 41(6), 2193–2221 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    I. Mironi-Harpaz, D.Y. Wang, S. Venkatraman, D. Seliktar, Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity. Acta Biomater. 8(5), 1838–1848 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    S.S. Stalling, S.O. Akintoye, S.B. Nicoll, Development of photocrosslinked methylcellulose hydrogels for soft tissue reconstruction. Acta Biomater. 5(6), 1911–1918 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    K.J. De France, F. Xu, T. Hoare, Structured macroporous hydrogels: progress, challenges, and opportunities. Adv. Healthc. Mater. (2017).  https://doi.org/10.1002/adhm.201700927
  22. 22.
    K. Chatterjee, M.F. Young, C.G. Simon, Fabricating gradient hydrogel scaffolds for 3D cell culture. Comb. Chem. High Throughput Screen. 14(4), 227–236 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    J.A. Burdick, A. Khademhosseini, R. Langer, Fabrication of gradient hydrogels using a microfluidics/photopolymerization process. Langmuir 20(13), 5153–5156 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    A. Sergeeva, N. Feoktistova, V. Prokopovic, D. Gorin, D. Volodkin, Design of porous alginate hydrogels by sacrificial CaCO3 templates: formation mechanism. Adv. Mater. Interfaces 2(18), 1500386 (2015)CrossRefGoogle Scholar
  25. 25.
    S. Liu, M. Jin, Y. Chen, H. Gao, X. Shi, W. Cheng, L. Ren, Y. Wang, High internal phase emulsions stabilised by supramolecular cellulose nanocrystals and their application as cell-adhesive microporous hydrogel monoliths. J. Mater. Chem. B 5, 2671 (2017)CrossRefGoogle Scholar
  26. 26.
    C. Ji, N. Annabi, A. Khademhosseini, F. Dehghani, Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomater. 7(4), 1653–1664 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    R.Y. Tam, S.A. Fisher, A.E.G. Baker, M.S. Shoichet, Transparent porous polysaccharide cryogels provide biochemically defined, biomimetic matrices for tunable 3D cell culture. Chem. Mater. 28(11), 3762–3770 (2016)CrossRefGoogle Scholar
  28. 28.
    C.B. Highley, C.B. Rodell, J.A. Burdick, Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv. Mater. 27(34), 5075–5079 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    S. Nedjari, A. Hébraud, S. Eap, G. Schlatter, Electrostatic template-assisted deposition of microparticles on electrospun nanofibers: towards microstructured functional biochips for screening applications. Mater. Lett. 142, 83600–83607 (2015).  https://doi.org/10.1039/C5RA15931H
  30. 30.
    J.D. Ehrick, S.K. Deo, T.W. Browning, L.G. Bachas, M.J. Madou, S. Daunert, Genetically engineered protein in hydrogels tailors stimuli-responsive characteristic. Nat. Mater. 4(4), 298–302 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    D. Sengupta, S.C. Heilshorn, Protein-engineered biomaterials: highly tunable tissue engineering scaffolds. Tissue Eng. B 16(3), 285–293 (2010)CrossRefGoogle Scholar
  32. 32.
    J. Baier Leach, K.A. Bivens, C.W. Patrick, C.E. Schmidt, Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol. Bioeng. 82(5), 578–589 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    B.K. Denizli, H.K. Can, Z.M.O. Rzaev, A. Guner, Preparation conditions and swelling equilibria of dextran hydrogels prepared by some crosslinked agents. Polymer 45(19), 6431–6435 (2004)CrossRefGoogle Scholar
  34. 34.
    C.M. Nimmo, S.C. Owen, M.S. Shoichet, Diels-Alder click cross-linked hyaluronic acid hydrogels for tissue engineering. Biomacromolecules 12(3), 824–830 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Y. Lei, S. Gojgini, J. Lam, T. Segura, The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels. Biomaterials 32(1), 39–47 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    N. Davidenko, J.J. Campbell, E.S. Thian, C.J. Watson, R.E. Cameron, Collagen-hyaluronic acid scaffolds for adipose tissue engineering. Acta Biomater. 6(10), 3957–3968 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    S.E. Stabenfeldt, A. Garcia, M.C. LaPlaca, Thermoreversible laminin-functionalized hydrogel for neural tissue engineering. J. Biomed. Mater. Res. A 77(4), 718–725 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    A. Shikanov, M. Xu, T.K. Woodruff, L.D. Shea, Interpenetrating fibrin-alginate matrices for in vitro ovarian follicle development. Biomaterials 30(29), 5476–5485 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    N. Park, J.S. Kahn, E.J. Rice, M.R. Hartman, H. Funabashi, J. Xu, S.H. Um, D. Luo, High-yield cell-free protein production from P-gel. Nat. Protoc. 4(12), 1759–1770 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    C.K. Lee, S.R. Shin, S.H. Lee, J.H. Jeon, I. So, T.M. Kang, S.I. Kim, J.Y. Mun, S.S. Han, G.M. Spinks, G.G. Wallace, S.J. Kim, DNA hydrogel fiber with self-entanglement prepared by using an ionic liquid. Angew. Chem. Int. Ed. 47(13), 2470–2474 (2008)CrossRefGoogle Scholar
  41. 41.
    H.K. Kleinman, G.R. Martin, Matrigel: basement membrane matrix with biological activity. Semin. Cancer Biol. 15(5), 378–386 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    A.N. Morritt, S.K. Bortolotto, R.J. Dilley, X.L. Han, A.R. Kompa, D. McCombe, C.E. Wright, S. Itescu, J.A. Angus, W.A. Morrison, Cardiac tissue engineering in an in vivo vascularized chamber. Circulation 115(3), 353–360 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    R.H. Schmedlen, K. Masters, J.L. West, Photocrosslinked polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials 23(22), 4325–4332 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    J. Lee, M.J. Cuddihy, N.A. Kotov, Three-dimensional cell culture matrices: state of the art. Tissue Eng. B 14(1), 61–86 (2008)CrossRefGoogle Scholar
  45. 45.
    S. Varghese, J.H. Elisseeff, Hydrogels for musculoskeletal tissue engineering. Adv. Polym. Sci. 203, 95–144 (2006)CrossRefGoogle Scholar
  46. 46.
    D.L. Hern, J.A. Hubbell, Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J. Biomed. Mater. Res. 39(2), 266–276 (1998)PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    H. Shin, S. Jo, A.G. Mikos, Biomimetic materials for tissue engineering. Biomaterials 24(24), 4353–4364 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    J. Kopecek, J. Yang, Smart self-assembled hybrid hydrogel biomaterials. Angew. Chem. Int. Ed. 51(30), 7396–7417 (2012)CrossRefGoogle Scholar
  49. 49.
    C. Guo, Y. Luo, R. Zhou, G. Wei, Probing the self-assembly mechanism of diphenylalanine-based peptide nanovesicles and nanotubes. ACS Nano 6(5), 3907–3918 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    V. Jayawarna, M. Ali, T.A. Jowitt, A.F. Miller, A. Saiani, J.E. Gough, R.V. Uljin, Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl–dipeptides. Adv. Mater. 18(5), 611–614 (2006)CrossRefGoogle Scholar
  51. 51.
    A.K.A. Silva, C. Richard, M. Bessodes, D. Scherman, O.W. Merten, Growth factor delivery approaches in hydrogels. Biomacromolecules 10(1), 9–18 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    T.E. Brown, K.S. Anseth, Spatiotemporal hydrogel biomaterials for regenerative medicine. Chem. Soc. Rev. (2017).  https://doi.org/10.1039/C7CS00445A
  53. 53.
    A.P. Nowak, V. Breedveld, L. Pakstis, B. Ozbas, D.J. Pine, D. Pochan, T.J. Deming, Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417, 424–428 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    S.H. Kim, S.-H. Kim, S. Nair, E. Moore, Reactive electrospinning of cross-linked poly(2-hydroxyethyl methacrylate) nanofibers and elastic properties of individual hydrogel nanofibers in aqueous solutions. Macromolecules 38, 3719–3723 (2005)CrossRefGoogle Scholar
  55. 55.
    F. Xu, H. Sheardown, T. Hoare, Reactive electrospinning of degradable poly(oligoethylene glycol methacrylate)-based nanofibrous hydrogel networks. Chem. Commun. 52(7), 1451–1454 (2016)CrossRefGoogle Scholar
  56. 56.
    S.V. Murphy, A. Atala, 3D bioprinting of tissues and organs. Nat. Biotechnol. 32(8), 773–785 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    J.I. Rodriguez-Devora, B. Zhang, D. Reyna, Z.D. Shi, T. Xu, High throughput miniature drug-screening platform using bioprinting technology. Biofabrication 4(3), 035001 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    X. Ma, X. Qu, W. Zhu, Y.S. Li, S. Yuan, H. Zhang, J. Liu, P. Wang, C.S.E. Lai, F. Zanella, G.S. Feng, F. Sheikh, S. Chien, S. Chen, Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc. Natl. Acad. Sci. 113(8), 2206–2211 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    C. Mandrycky, Z. Wang, K. Kim, D.K. Kim, 3D bioprinting for engineering complex tissues. Biotechnol. Adv. 34(4), 422–434 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    C.A. DeForest, K.S. Anseth, Advances in bioactive hydrogels to probe and direct cell fate. Annu. Rev. Chem. Biomol. Eng. 3, 421–444 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    J. Malda, J. Visser, F.P. Melchels, T. Jungst, W.E. Hennink, W.J. Dhert, J. Groll, D.W. Hutmacher, 25th anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 25(36), 5011–5028 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    S. Khalil, W. Sun, Bioprinting endothelial cells with alginate for 3D tissue constructs. J. Biomech. Eng. 131, 111002 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    A. Tirella, A. Orsini, G. Vozzi, A. Ahluwalia, A phase diagram for microfabrication of geometrically controlled hydrogel scaffolds. Biofabrication 1(4), 045002 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    K. Pataky, T. Braschler, A. Negro, P. Renaud, Microdrop printing of hydrogel bioinks into 3D tissue-like geometries. Adv. Mater. 24(3), 391–396 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    N.C. Hunt, L.M. Grover, Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol. Lett. 32(6), 733–742 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    S.W. Liao, J. Rawson, K. Omori, K. Ishiyama, D. Mozhdehi, A.R. Oancea, T. Ito, Z. Guan, Y. Mullen, Maintaining functional islets through encapsulation in an injectable saccharide-peptide hydrogel. Biomaterials 34(16), 3984–3991 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    E. Santos, J.L. Pedraz, R.M. Hernandez, G. Orive, Therapeutic cell encapsulation: ten steps towards clinical translation. J. Control. Release 170(1), 1–14 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Y.A. Mørch, I. Donati, B.L. Strand, G. Skjak-Braek, Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7, 1471–1480 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    K.M. Gattas-Asfura, C.A. Fraker, C.L. Stabler, Perfluorinated alginate for cellular encapsulation. J. Biomed. Mater. Res. A 100(8), 1963–1971 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    C.-G. Yang, R.-Y. Pan, Z.-R. Xu, A single-cell encapsulation method based on a microfluidic multi-step droplet splitting system. Chin. Chem. Lett. 26(12), 1450–1454 (2015)CrossRefGoogle Scholar
  71. 71.
    S.Q. Liu, Q. Tian, L. Wang, J.L. Hedrick, J.H. Hui, Y.Y. Yang, P.L. Ee, Injectable biodegradable poly(ethylene glycol)/RGD peptide hybrid hydrogels for in vitro chondrogenesis of human mesenchymal stem cells. Macromol. Rapid Commun. 31(13), 1148–1154 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    P.S. Hume, K.S. Anseth, Inducing local T cell apoptosis with anti-Fas-functionalized polymeric coatings fabricated via surface-initiated photopolymerizations. Biomaterials 31(12), 3166–3174 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    W. Yanbin, S. Joseph, N.R. Aluru, Effect of cross-linking on the diffusion of water, ions, and small molecules in hydrogels. J. Phys. Chem. B 113, 3512–3520 (2009)CrossRefGoogle Scholar
  74. 74.
    Y. Peng, L.E. Tellier, J.S. Temenoff, Heparin-based hydrogels with tunable sulfation & degradation for anti-inflammatory small molecule delivery. Biomater. Sci. 4(9), 1371–1380 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    C.T. Gustafson, F. Boakye-Agyeman, C.L. Brinkman, J.M. Reid, R. Patel, Z. Bajzer, M. Dadestan, M.J. Yaszemski, Controlled delivery of vancomycin via charged hydrogels. PLoS One 11(1), e0146401 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    M. McKenzie, D. Betts, A. Suh, K. Bui, L.D. Kim, H. Cho, Hydrogel-based drug delivery systems for poorly water-soluble drugs. Molecules 20(11), 20397–20408 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    D. Gu, A.J. O’Connor, G.H. Qiao, K. Ladewig, Hydrogels with smart systems for delivery of hydrophobic drugs. Expert Opin. Drug Deliv. 14(7), 879–895 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    T.R. Hoare, D.S. Kohane, Hydrogels in drug delivery: progress and challenges. Polymer 49(8), 1993–2007 (2008)CrossRefGoogle Scholar
  79. 79.
    C.T. Huynh, D.S. Lee, Controlled release, in Encyclopedia of Polymeric Nanomaterials, ed. by S. Kobayashi, K. Müllen, vol 1116 (Springer-Verlag Berlin Heidelberg, 2015), pp. 439–449. https://www.springer.com/gp/book/9783642296475
  80. 80.
    A. Mohanan, B. Vishalakshi, S. Ganesh, Swelling and diffusion characteristics of stimuli-responsive N-isopropylacrylamide and j-Carrageenan semi-IPN hydrogels. Int. J. Polym. Mater. 60(10), 787–798 (2011)CrossRefGoogle Scholar
  81. 81.
    J.E. Mockel, B.C. Lippold, Zero-order drug release from hydrocolloid matrices. Pharm. Res. 10(7), 1066–1070 (1993)PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    S. Stithit, W. Chen, J.C. Price, Development and characterization of buoyant theophylline microspheres with near zero order release kinetics. J. Microencapsul. 15(6), 725–737 (1998)PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    P. Costa, J.M.S. Lobo, Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 13(2), 123–133 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    P.L. Ritger, N.A. Peppas, A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Control. Release 5(1), 37–42 (1987)CrossRefGoogle Scholar
  85. 85.
    B. Falk, S. Garramone, S. Shivkumar, Diffusion coefficient of paracetamol in a chitosan hydrogel. Mater. Lett. 58(26), 3261–3265 (2004)CrossRefGoogle Scholar
  86. 86.
    E.T. Cole, Liquid-filled and -sealed hard gelatin capsule technologies, in Modified-Release Drug Delivery Technology, ed. by J.H. Michael, J. Rathbone, M.S. Roberts (CRC Press, Boca Raton, 2002)Google Scholar
  87. 87.
    S. Dubey, S.K. Bajpai, Poly(methacrylamide-co-acrylic acid) hydrogels for gastrointestinal delivery of theophylline. I. Swelling characterization. J. Appl. Polym. Sci. 101(5), 2995–3008 (2006)CrossRefGoogle Scholar
  88. 88.
    A. Dafe, H. Etemadi, A. Dilmaghani, G.R. Mahdavinia, Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria. Int. J. Biol. Macromol. 97, 536–543 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    K.C. Hemant Yadav, C.S. Satish, H.G. Shivakumar, Preparation and evaluation of chitosan-poly (acrylic acid) hydrogels as stomach specific delivery for amoxicillin and metronidazole. Indian J. Pharm. Sci. 69(1), 91–95 (2007).CrossRefGoogle Scholar
  90. 90.
    N.S. Malik, M. Ahmad, M.U. Minhas, Cross-linked beta-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir. PLoS One 12(2), e0172727 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    S.G. Choi, S.E. Lee, B.K. Kang, C.L. Ng, E. Davaa, J.S. Park, Thermosensitive and mucoadhesive sol-gel composites of paclitaxel/dimethyl-beta-cyclodextrin for buccal delivery. PLoS One 9(9), e109090 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    S. Sarabahi, Recent advances in topical wound care. Indian J. Plast. Surg. 45(2), 379–387 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    J.S. Boateng, K.H. Matthews, H.N. Stevens, G.M. Eccleston, Wound healing dressings and drug delivery systems: a review. J. Pharm. Sci. 97(8), 2892–2923 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    M.G. Arafa, B.M. Ayoub, DOE optimization of nano-based carrier of pregabalin as hydrogel: new therapeutic & chemometric approaches for controlled drug delivery systems. Sci. Rep. 7, 41503 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    W. Fong Yen, M. Basri, M. Ahmad, M. Ismail, Formulation and evaluation of galantamine gel as drug reservoir in transdermal patch delivery system. Sci. World J. 2015, 495271 (2015)CrossRefGoogle Scholar
  96. 96.
    H.E. Boddé, E.A.C. van Aalten, H.E. Junginger, Hydrogel patches for transdermal drug delivery; in-vivo water exchange and skin compatibility. J. Pharm. Pharmacol. 41(3), 152–155 (1989)PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    R.F. Donnelly, T.R.R. Singh, M.J. Garland, K. Migalska, R. Majithiya, C.M. McCrudden, P.L. Kole, T.W.T. Mahmood, H.O. McCarthy, A.D. Woolfson, Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv. Funct. Mater. 22(23), 4879–4890 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    T. Furst, M. Piette, A. Lechanteur, B. Evrard, G. Piel, Mucoadhesive cellulosic derivative sponges as drug delivery system for vaginal application. Eur. J. Pharm. Biopharm. 95A, 128–135 (2015)CrossRefGoogle Scholar
  99. 99.
    K. Bouchemal, A. Aka-Any-Grah, N. Dereuddre-Bosquet, L. Martin, V. Lievin-Le-Moal, R. Le Grand, V. Nicholas, D. Gibellini, D. Lembo, C. Pous, A. Koffi, G. Ponchel, Thermosensitive and mucoadhesive pluronic-hydroxypropylmethylcellulose hydrogel containing the mini-CD4 M48U1 is a promising efficient barrier against HIV diffusion through macaque cervicovaginal mucus. Antimicrob. Agents Chemother. 59(4), 2215–2222 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    S. Malli, C. Bories, B. Pradines, K. Bouchemal, In situ forming pluronic(R) F127/chitosan hydrogel limits metronidazole transmucosal absorption. Eur. J. Pharm. Biopharm. 112, 143–147 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Z. Pavelic, N. Skalko-Basnet, R. Schubert, Liposomal gels for vaginal drug delivery. Int. J. Pharm. 219, 139–149 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    K.M. Gupta, S.R. Barnes, R.A. Tangaro, M.C. Roberts, D.H. Owen, D.F. Katz, P.F. Kiser, Temperature and pH sensitive hydrogels: an approach towards smart semen-triggered vaginal microbicidal vehicles. J. Pharm. Sci. 96(3), 670–681 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    A. Mahalingam, J.I. Jay, K. Langheinrich, S. Shukair, M.D. McRaven, L.C. Rohan, B.C. Herold, T.J. Hope, P.F. Kiser, Inhibition of the transport of HIV in vitro using a pH-responsive synthetic mucin-like polymer system. Biomaterials 32(33), 8343–8355 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    S. Mohammadi, L. Jones, M. Gorbet, Extended latanoprost release from commercial contact lenses: in vitro studies using corneal models. PLoS One 9(9), e106653 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    D. Gulsen, C.C. Li, A. Chauhan, Dispersion of DMPC liposomes in contact lenses for ophthalmic drug delivery. Curr. Eye Res. 30(12), 1071–1080 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    A. ElShaer, S. Mustafa, M. Kasar, S. Thapa, B. Ghatora, R.G. Alany, Nanoparticle-laden contact lens for controlled ocular delivery of prednisolone: formulation optimization using statistical experimental design. Pharmaceutics 8(2), E14 (2016). https://www.ncbi.nlm.nih.gov/pubmed/27104555
  107. 107.
    J.B. Ciolino, T.R. Hoare, N.G. Iwata, I. Behlau, C.H. Dohlman, R. Langer, D.S. Kohane, A drug-eluting contact lens. Invest. Ophthalmol. Vis. Sci. 50(7), 3346–3352 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    W. Huang, N. Zhang, H. Hua, T. Liu, Y. Tang, L. Fu, Y. Yang, X. Ma, Y. Zhao, Preparation, pharmacokinetics and pharmacodynamics of ophthalmic thermosensitive in situ hydrogel of betaxolol hydrochloride. Biomed. Pharmacother. 83, 107–113 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    P. Sheikholeslami, B. Muirhead, D.S. Baek, H. Wang, X. Zhao, D. Sivakumaran, S. Boyd, H. Sheardown, T. Hoare, Hydrophobically-modified poly(vinyl pyrrolidone) as a physically-associative, shear-responsive ophthalmic hydrogel. Exp. Eye Res. 137, 18–31 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    G.P. Misra, T.W. Gardner, T.L. Lowe, Hydrogels for ocular posterior segment drug delivery, in Drug Product Development for the Back of the Eye, ed. by U. Kompella, H. Edelhauser. AAPS Advances in the Pharmaceutical Sciences Series, vol 2 (Springer, 2011)Google Scholar
  111. 111.
    Y. Yu, L.C. Lau, A.C. Lo, Y. Chau, Injectable chemically crosslinked hydrogel for the controlled release of bevacizumab in vitreous: a 6-month in vivo study. Transl. Vis. Sci. Technol. 4(2), (2015).  https://doi.org/10.1167/tvst.4.2.5
  112. 112.
    Y.K. Katare, J.E. Piazza, J. Bhandari, R.P. Daya, K. Akilan, M.J. Simpson, T. Hoare, R.K. Mishra, Intranasal delivery of antipsychotic drugs. Schizophr. Res. 184, 2–13 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    S. Khan, K. Patil, N. Bobade, P. Yeole, R. Gailkwad, Formulation of intranasal mucoadhesive temperature-mediated in situ gel containing ropinirole and evaluation of brain targeting efficiency in rats. J. Drug Target. 18(3), 223–234 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    H.S. Mahajan, S. Gattani, In situ gels of metoclopramide hydrochloride for intranasal delivery: in vitro evaluation and in vivo pharmacokinetic study in rabbits. Drug Deliv. 17(1), 19–27 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    T. Nochi, Self-assembled polysaccharide nanogels for nasal delivery of biopharmaceuticals, in Mucosal Delivery of Pharmaceuticals: Biology, Challenges, and Strategies, ed. by J. das Neves, B. Sarmento (Springer, Boston, 2011)Google Scholar
  116. 116.
    J. Xu, M. Tam, S. Samaei, S. Lerouge, J. Barralet, M.M. Stevenson, M. Cerruti, Mucoadhesive chitosan hydrogels as rectal drug delivery vessels to treat ulcerative colitis. Acta Biomater. 48, 247–257 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    M.G. Dodov, K. Goracinova, M. Simonoska, S. Trajkovic-Jolevska, J.T. Ribarska, M.D. Mitevska, Formulation and evaluation of diazepam hydrogel for rectal administration. Acta Pharma. 55, 251–261 (2005)Google Scholar
  118. 118.
    M. Patenaude, N.M.B. Smeets, T. Hoare, Designing injectable, covalently cross-linked hydrogels for biomedical applications. Macromol. Rapid Commun. 35(6), 598–617 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    T. Hoare, E. Bellas, D. Zurakowski, D.S. Kohane, Rheological blends for drug delivery. II. Prolongation of nerve blockade, biocompatibility, and in vitro-in vivo correlations. J. Biomed. Mater. Res. A 92(2), 586–595 (2010)PubMedPubMedCentralGoogle Scholar
  120. 120.
    H. Wu, K. Wang, H. Wang, F. Chen, W. Huang, Y. Chen, J. Chen, J. Tao, X. Wen, S. Xiong, Novel self-assembled tacrolimus nanoparticles cross-linking thermosensitive hydrogels for local rheumatoid arthritis therapy. Colloids Surf. B: Biointerfaces 149, 97–104 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    N. Morimoto, S. Hirano, H. Takahashi, S. Loethen II, D.H. Thompson, K. Akitoshi, Self-assembled pH-sensitive cholesteryl pullulan nanogel as a protein delivery vehicle. Biomacromolecules 14(1), 56–63 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    T. Hoare, S. Young, M.W. Lawlor, D.S. Kohane, Thermoresponsive nanogels for prolonged duration local anesthesia. Acta Biomater. 8(10), 3596–3605 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    H.K.S. Yadav, N.A. Al Halabi, G.A. Alsalloum, Nanogels as novel drug delivery systems – a review. J. Pharm. Pharm. Res. 1, 5 (2017)Google Scholar
  124. 124.
    H.R. Culver, J.R. Clegg, N.A. Peppas, Analyte-responsive hydrogels: intelligent materials for biosensing and drug delivery. Acc. Chem. Res. 50(2), 170–178 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    T. Hoare, R. Pelton, Charge-switching, amphoteric glucose-responsive microgels with physiological swelling activity. Biomacromolecules 9, 733–740 (2008)PubMedCrossRefGoogle Scholar
  126. 126.
    S. Kang, Y.H. Bae, A sulfonamide based glucose-responsive hydrogel with covalently immobilized glucose oxidase and catalase. J. Control. Release 86, 115–121 (2003)PubMedCrossRefGoogle Scholar
  127. 127.
    Y. Dong, W. Wang, O. Veiseh, E.A. Appel, K. Xue, M.J. Webber, B.C. Tang, X.W. Yang, G.C. Weir, R. Langer, D.G. Anderson, Injectable and glucose-responsive hydrogels based on boronic acid-glucose complexation. Langmuir 32(34), 8743–8747 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Z. Gu, T.T. Dang, M. Ma, B.C. Tang, H. Cheng, S. Jiang, Y. Dong, Y. Zhang, D.G. Anderson, Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano 7(8), 6758–6766 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    M.E. Byrne, K. Park, N.A. Peppas, Molecular imprinting within hydrogels. Adv. Drug Deliv. Rev. 54, 149–161 (2002)PubMedCrossRefGoogle Scholar
  130. 130.
    R. Yoshida, K. Sakaim, T. Okano, Y. Sakurai, Pulsatile drug delivery systems using hydrogels. Adv. Drug Deliv. Rev. 11, 85–108 (1993)CrossRefGoogle Scholar
  131. 131.
    K. Zhang, X.-Y. Wu, Modulated insulin permeation across a glucose-sensitive polymeric composite membrane. J. Control. Release 80, 169–178 (2002)PubMedCrossRefGoogle Scholar
  132. 132.
    T. Hoare, J. Santamaria, G.F. Goya, S. Irusta, D. Lin, S. Lau, R. Padera, R. Langer, D.S. Kohane, A magnetically triggered composite membrane for on-demand drug delivery. Nano Lett. 9(10), 3651–3657 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    A. Rocca, G. Aprea, G. Surfaro, M. Amato, A. Giuliani, M. Paccone, A. Salzano, A. Russo, D. Tafuri, B. Amato, Prevention and treatment of peritoneal adhesions in patients affected by vascular diseases following surgery: a review of the literature. Open Med. 11(1), 106–114 (2016)CrossRefGoogle Scholar
  134. 134.
    W.Z. Polishuk, B. Bercovici, Intraperitoneal low molecular weight dextran in tubal surgery. J Obstet. Gynaecol. Br. Commonw. 78, 724–727 (1971)PubMedCrossRefGoogle Scholar
  135. 135.
    C.K. Ryan, H.C. Sax, Evaluation of a carboxymethylcellulose sponge for prevention of postoperative adhesions. Am. J. Surg. 169, 154–160 (1995)PubMedCrossRefGoogle Scholar
  136. 136.
    T. Ito, Y. Yeo, C.B. Highley, E. Bellas, D.S. Kohane, Dextran-based in situ cross-linked injectable hydrogels to prevent peritoneal adhesions. Biomaterials 28(23), 3418–3426 (2007)PubMedCrossRefGoogle Scholar
  137. 137.
    Y. Yeo, C.B. Highley, E. Bellas, T. Ito, R. Marini, R. Langer, D.S. Kohane, In situ cross-linkable hyaluronic acid hydrogels prevent post-operative abdominal adhesions in a rabbit model. Biomaterials 27(27), 4698–4705 (2006)PubMedCrossRefGoogle Scholar
  138. 138.
    T. Hoare, Y. Yeo, E. Bellas, J.P. Bruggeman, D.S. Kohane, Prevention of peritoneal adhesions using polymeric rheological blends. Acta Biomater. 10(3), 1187–1193 (2014)PubMedCrossRefGoogle Scholar
  139. 139.
    T. Ito, I.P. Fraser, Y. Yeo, C.B. Highley, E. Bellas, D.S. Kohane, Anti-inflammatory function of an in situ cross-linkable conjugate hydrogel of hyaluronic acid and dexamethasone. Biomaterials 28(10), 1778–1786 (2007)PubMedCrossRefGoogle Scholar
  140. 140.
    P. Young, A. Johns, C. Templeman, C. Witz, B. Webster, R. Ferland, M.P. Diamond, K. Block, G. di Zerega, Reduction of postoperative adhesions after laparoscopic gynecological surgery with oxiplex/AP gel: a pilot study. Fertil. Steril. 84(5), 1450–1456 (2005)PubMedCrossRefGoogle Scholar
  141. 141.
    M.H. Thornton, D.B. Johns, J.D. Campeau, F. Hoehler, G.S. DiZerega, Clinical evaluation of 0.5% ferric hyaluronate adhesion prevention gel for the reduction of adhesions following peritoneal cavity surgery: open-label pilot study. Hum. Reprod. 13(6), 1480–1485 (1998)PubMedCrossRefGoogle Scholar
  142. 142.
    C.L. Tang, D.G. Jayne, F. Seow-Choen, Y.Y. Ng, K.W. Eu, N. Mustapha, A randomized controlled trial of 0.5% ferric hyaluronate gel (Intergel) in the prevention of adhesions following abdominal surgery. Ann. Surg. 243(4), 449–455 (2006)PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Y. Liu, X.Z. Shu, G.D. Prestwich, Reduced postoperative intra-abdominal adhesions using Carbylan-SX, a semisynthetic glycosaminoglycan hydrogel. Fertil. Steril. 87(4), 940–948 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    R. Dunn, M.D. Lyman, P.G. Edelman, P.K. Campbell, Evaluation of the SprayGel™ adhesion barrier in the rat cecum abrasion and rabbit uterine horn adhesion models. Fertil. Steril. 75(2), 411–416 (2001)PubMedCrossRefGoogle Scholar
  145. 145.
    W. Wu, Q. Ni, Y. Xiang, Y. Dai, S. Jiang, L. Wan, X. Liu, W. Cui, Fabrication of a photo-crosslinked gelatin hydrogel for preventing abdominal adhesion. RSC Adv. 6(95), 92449–92453 (2016)CrossRefGoogle Scholar
  146. 146.
    J.L. Hill-West, S.M. Chowdhury, A.S. Sawhney, C.P. Pathak, R.C. Dunn, J.A. Hubbell, Prevention of postoperative adhesions in the rat by in situ photopolymerization of bioresorbable hydrogel barrier. Obsterics Gynecol. 83(1), 59–64 (1994)Google Scholar
  147. 147.
    J.L. Hill-West, S.M. Chowdhury, A.S. Sawhney, C.P. Pathak, R.C. Dunn, J.A. Hubbell, Efficacy of adhesion barriers. Resorbable hydrogel, oxidized regenerated cellulose and hyaluronic acid. J. Reprod. Med. 41(3), 149–154 (1996)Google Scholar
  148. 148.
    E.R. Coelho Jr., L.O. Costa, A.V. Alencar, A.P. Barbosa, F.C. Pinto, J.L. Aguiar, Prevention of peritoneal adhesion using a bacterial cellulose hydrogel, in experimental study. Acta Cir. Bras. 30(3), 194–198 (2015)CrossRefGoogle Scholar
  149. 149.
    L. Song, L. Li, T. He, N. Wang, S. Yang, X. Yang, Y. Zheng, W. Zhang, L. Yang, Q. Wu, C. Gong, Peritoneal adhesion prevention with a biodegradable and injectable N,O-carboxymethyl chitosan-aldehyde hyaluronic acid hydrogel in a rat repeated-injury model. Sci. Rep. 6, 37600 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    W. Zhu, L. Gao, Q. Luo, C. Gao, G. Zha, Z. Shen, X. Li, Metal and light free “click” hydrogels for prevention of post-operative peritoneal adhesions. Polym. Chem. 5(6), 2018–2026 (2014)CrossRefGoogle Scholar
  151. 151.
    M. Madaghiele, C. Demitri, A. Sannino, L. Ambrosio, Polymeric hydrogels for burn wound care: advanced skin wound dressings and regenerative templates. Burns Trauma 2(4), 153–161 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    J.C. Dumville, S. O’Meara, S. Deshpande, K. Speak, Hydrogel dressings for healing diabetic foot ulcers. Cochrane Database Syst. Rev. 7, CD009101 (2013)Google Scholar
  153. 153.
    R.F. Pereira, P.J. Bartolo, Traditional therapies for skin wound healing. Adv. Wound Care 5(5), 208–229 (2016)CrossRefGoogle Scholar
  154. 154.
    C. Ghobril, M.W. Grinstaff, The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial. Chem. Soc. Rev. 44(7), 1820–1835 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    W.D. Spotnitz, S. Burks, Hemostats, sealants, and adhesives: components of the surgical toolbox. Transfusion 48(7), 1502–1516 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    P.J.M. Bouten, M. Zonjee, J. Bender, S.T.K. Yauw, H. van Goor, J.C.M. van Hest, R. Hoogenboom, The chemistry of tissue adhesive materials. Prog. Polym. Sci. 39(7), 1375–1405 (2014)CrossRefGoogle Scholar
  157. 157.
    A.P. Duarte, J.F. Coelho, J.C. Bordado, M.T. Cidade, M.H. Gil, Surgical adhesives: systematic review of the main types and development forecast. Prog. Polym. Sci. 37(8), 1031–1050 (2012)CrossRefGoogle Scholar
  158. 158.
    R. Rakhshaei, H. Namazi, A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. Mater. Sci. Eng. C 73, 456–464 (2017)CrossRefGoogle Scholar
  159. 159.
    A.M. Abdel-Mohsen, J. Jancar, D. Massoud, Z. Fohlerova, H. Elhadidy, Z. Spotz, A. Hebeish, Novel chitin/chitosan-glucan wound dressing: isolation, characterization, antibacterial activity and wound healing properties. Int. J. Pharm. 510(1), 86–99 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    L. Shi, N. Yang, H. Zhang, L. Chen, L. Tao, Y. Wei, H. Liu, Y. Luo, A novel poly(gamma-glutamic acid)/silk-sericin hydrogel for wound dressing: synthesis, characterization and biological evaluation. Mater. Sci. Eng. C Mater. Biol. Appl. 48, 533–540 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    D. Kostic, S. Vidovic, B. Obradovic, Silver release from nanocomposite Ag/alginate hydrogels in the presence of chloride ions: experimental results and mathematical modeling. J. Nanopart. Res. 18(3), 1–16 (2016).  https://doi.org/10.1007/s11051-016-3384-3
  162. 162.
    S.K. P T, V.K. Lakshmanan, M. Raj, R. Biswas, T. Hiroshi, S.V. Nair, R. Jayakumar, Evaluation of wound healing potential of beta-chitin hydrogel/nano zinc oxide composite bandage. Pharm. Res. 30(2), 523–537 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    L. Fan, J. Yang, H. Wu, Z. Hu, J. Yi, J. Tong, X. Zhu, Preparation and characterization of quaternary ammonium chitosan hydrogel with significant antibacterial activity. Int. J. Biol. Macromol. 79, 830–836 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    T.R. Nimal, G. Baranwal, M.C. Bavya, R. Biswas, R. Jayakumar, Anti-staphylococcal activity of injectable nano tigecycline/chitosan-PRP composite hydrogel using Drosophila melanogaster model for infectious wounds. ACS Appl. Mater. Interfaces 8(34), 22074–22083 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Y.J. Zheng, X.J. Loh, Natural rheological modifiers for personal care. Polym. Adv. Technol. 27(12), 1664–1679 (2016)CrossRefGoogle Scholar
  166. 166.
    United States Food and Drug Administration, Cosmetics & U.S. Law (2017)Google Scholar
  167. 167.
    S. Kumar, Exploratory analysis of global cosmetic industry: major players, technology and market trends. Technovation 25(11), 1263–1272 (2005)CrossRefGoogle Scholar
  168. 168.
    S.X. Lu, L. Liu, Delivery of smart, functional innovative materials: a supramolecular chemistry approach to anti-aging & acne products. Euro Cosmet. 3, 38–42 (2015)Google Scholar
  169. 169.
    A. Quattrone, A. Czajka, S. Sibilla, Thermosensitive hydrogel mask significantly improves skin moisture and skin tone: bilateral clinical trial. Cosmetics 4(2), 17 (2017).  https://doi.org/10.3390/cosmetics4020017CrossRefGoogle Scholar
  170. 170.
    S. Doktorovova, E.B. Souto, Nanostructured lipid carrier-based hydrogel formulations for drug delivery: a comprehensive review. Expert Opin. Drug Deliv. 6(2), 165–176 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    M. Gou, L. Wu, Q. Yin, Q. Guo, G. Guo, J. Liu, X. Zhao, Y. Wei, Z. Qian, Transdermal anaesthesia with lidocaine nano-formulation pretreated with low-frequency ultrasound in rats model. J. Nanosci. Nanotechnol. 9(11), 6360–6365 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    S.H. Song, K.M. Lee, J.B. Kang, S.G. Lee, M.J. Kang, Y.W. Choi, Improved skin delivery of voriconazole with a nanostructured lipid carrier-based hydrogel formulation. Chem. Pharm. Bull. 62(8), 793–798 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    D.M. Tichota, A.C. Silva, J.M. Sousa Lobo, M.H. Amaral, Design, characterization, and clinical evaluation of argan oil nanostructured lipid carriers to improve skin hydration. Int. J. Nanomedicine 9, 3855–3864 (2014)PubMedPubMedCentralGoogle Scholar
  174. 174.
    M. Uner, S.A. Wissing, G. Yener, R.H. Muller, Skin moisturizing effect and skin penetration of ascorbyl palmitate entrapped in solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) incorporated into hydrogel. Pharmazie 60, 751–755 (2005)PubMedPubMedCentralGoogle Scholar
  175. 175.
    A. Semenzato, A. Costantini, G. Baratto, Green polymers in personal care products: rheological properties of tamarind seed polysaccharide. Cosmetics 2(1), 1–10 (2014)CrossRefGoogle Scholar
  176. 176.
    J.V. Gruber, in Principles of Polymer Science and Technology in Cosmetics and Personal Care, ed. by E. D. Goddard, vol 22 (Marcel Dekker, New York, 1999)Google Scholar
  177. 177.
    I. Schnitzler, C. Hausen, C. Klein, Hydrogel for natural cosmetic purposes, US Patent, US 20130029933 A1, 2013Google Scholar
  178. 178.
    H. Omidian, J.G. Rocca, K. Park, Advances in superporous hydrogels. J. Control. Release 102(1), 3–12 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    B.L. Atkins, R.N. Bashaw, B.G. Harper, Absorbent product containing a hydrocelloidal composition, US Patent US3669103A, 1972Google Scholar
  180. 180.
    C. Harmon, Absorbent product containing a hydrocolloidal composition, US Patent US3670731A, 1972Google Scholar
  181. 181.
    A. Sannino, C. Demitri, M. Madaghiele, Biodegradable cellulose-based hydrogels: design and applications. Materials 2(2), 353–373 (2009)PubMedCentralCrossRefGoogle Scholar
  182. 182.
    J. Zohuriaan, K. Kabiri, Superabsorbent polymer materials: a review. Iran. Polym. J. 17(6), 451–477 (2008)Google Scholar
  183. 183.
    W. Zou, L. Yu, X. Liu, L. Chen, X. Zhang, D. Qiao, R. Zhang, Effects of amylose/amylopectin ratio on starch-based superabsorbent polymers. Carbohydr. Polym. 87(2), 1583–1588 (2012)CrossRefGoogle Scholar
  184. 184.
    S.R. Kellenberger, Absorbent products containing hydrogels with ability to swell against pressure, European Patent EP0339461 A1, 1992Google Scholar
  185. 185.
    K. Kumari, U.V.S. Sara, M. Sachdeva, Formulation and evaluation of topical hydrogel of mometasone furoate using different polymers. Int. J. Pharm. Chem. Sci. 2(1), 89–100 (2013)Google Scholar
  186. 186.
    M.E. Parente, A. Ochoa Andrade, G. Ares, F. Russo, A. Jimenez-Kairuz, Bioadhesive hydrogels for cosmetic applications. Int. J. Cosmet. Sci. 37(5), 511–518 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    E. Caló, V.V. Khutoryanskiy, Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polym. J. 65, 252–267 (2015)CrossRefGoogle Scholar
  188. 188.
    J.J. Kim, K. Park, Smart hydrogels for bioseparation. Bioseparation 7, 177–184.18 (1999)CrossRefGoogle Scholar
  189. 189.
    D.C. Roepke, S.M. Goyal, C.J. Kelleher, D.A. Halvorson, A.J. Abraham, R.F. Freitas, E.L. Cussler, Use of temperature-sensitive gel for concentration of influenza virus from infected allantoic flu. J. Virol. Methods 15, 25–31 (1987)PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    E.L. Cussler, M.R. Stokar, J.E. Varberg, Gels as size selective extraction solvents. AICHE J. 30(4), 578–582 (1984)CrossRefGoogle Scholar
  191. 191.
    C. Gelfi, A. Orsi, F. Leoncini, P.G. Righetti, Fluidified polyacrylamides as molecular sieves in capillary zone electrophoresis of DNA fragments. J. Chromatogr. A 689, 97–105 (1995)CrossRefGoogle Scholar
  192. 192.
    P.D. Grossman, Electrophoretic separation of DNA sequencing extension products using low-viscosity entangled polymer networks. J. Chromatogr. A 663, 219–227 (1994)CrossRefGoogle Scholar
  193. 193.
    H. Yoshioka, Y. Mori, E. Tsuchida, Crosslinked poly(N-isopropylacrylamide) gel for electrophoretic separation and recovery of substances. Polym. Adv. Technol. 5, 221–224 (1994)CrossRefGoogle Scholar
  194. 194.
    F.N. Muya, C.E. Sunday, P. Baker, E. Iwuoha, Environmental remediation of heavy metal ions from aqueous solution through hydrogel adsorption: a critical review. Water Sci. Technol. 73(5), 983–992 (2016)PubMedPubMedCentralGoogle Scholar
  195. 195.
    M. Khan, I.M.C. Lo, A holistic review of hydrogel applications in the adsorptive removal of aqueous pollutants: recent progress, challenges, and perspectives. Water Res. 106, 259–271 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    H. Lv, X. Wang, Q. Fu, Y. Si, X. Yin, X. Li, G. Sun, J. Yu, B. Ding, A versatile method for fabricating ion-exchange hydrogel nanofibrous membranes with superb biomolecule adsorption and separation properties. J. Colloid Interface Sci. 506, 442–451 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    F. Ullah, M.B.H. Othman, F. Javed, Z. Ahmad, H.M. Akil, Classification, processing and application of hydrogels: a review. Mater. Sci. Eng. C Mater. Biol. Appl. 57, 414–433 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    S.C.N. Tang, P. Wang, K. Yin, I.M.C. Lo, Synthesis and application of magnetic hydrogel for Cr (VI) removal from contaminated water. Environ. Eng. Sci. 27(11), 947–954 (2010)CrossRefGoogle Scholar
  199. 199.
    N. Peng, D. Hu, J. Zeng, Y. Li, L. Liang, C. Chang, Superabsorbent cellulose–clay nanocomposite hydrogels for highly efficient removal of dye in water. ACS Sustain. Chem. Eng. 4(12), 7217–7224 (2016)CrossRefGoogle Scholar
  200. 200.
    H. Kaşgöz, S. Özgümüş, M. Orbay, Modified polyacrylamide hydrogels and their application in removal of heavy metal ions. Polymer 44(6), 1785–1793 (2003)CrossRefGoogle Scholar
  201. 201.
    O. Ozay, S. Ekici, Y. Baran, N. Aktas, N. Sahiner, Removal of toxic metal ions with magnetic hydrogels. Water Res. 43(17), 4403–4411 (2009)PubMedCrossRefGoogle Scholar
  202. 202.
    S.C.N. Tang, I.M.C. Lo, M.S.H. Mak, Comparative study of the adsorption selectivity of Cr(VI) onto cationic hydrogels with different functional groups. Water Air Soil Pollut. 223(4), 1713–1722 (2011)CrossRefGoogle Scholar
  203. 203.
    Y.N. Patel, M.P. Patel, A new fast swelling poly[DAPB-co-DMAAm-co-AASS] superabsorbent hydrogel for removal of anionic dyes from water. Chin. Chem. Lett. 24(11), 1005–1007 (2013)CrossRefGoogle Scholar
  204. 204.
    C. Shen, Y. Shen, Y. Wen, H. Wang, W. Liu, Fast and highly efficient removal of dyes under alkaline conditions using magnetic chitosan-Fe(III) hydrogel. Water Res. 45(16), 5200–5210 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    M.L. Peralta Ramos, J.A. Gonzalez, S.G. Albornoz, C.J. Perez, M.E. Villanueva, S.A. Giorgieri, G.J. Copello, Chitin hydrogel reinforced with TiO 2 nanoparticles as an arsenic sorbent. Chem. Eng. J. 285, 581–587 (2016)CrossRefGoogle Scholar
  206. 206.
    P.H. Doe, R.B. Needham, Polymer flooding review. J. Petrol. Technol. 9, 1503–1507 (1987)Google Scholar
  207. 207.
    A.Z. Abidin, T. Puspasari, W.A. Nugroho, Polymers for enhanced oil recovery technology. Procedia Chem. 4, 11–16 (2012)CrossRefGoogle Scholar
  208. 208.
    R. Seright, Brief Introduction to Polymer Flooding and Gel Treatments and Injectivity Characteristics of EOR Polymers. New Mexico Tech, SPE 115142 (2009). https://www.uwyo.edu/eori/_files/eorc_ior_jackson/dr.%20randall_seright_new_mexico_tech.pdf
  209. 209.
    A. Li, J. Zhang, A. Wang, Synthesis, characterization and water absorbency properties of poly(acrylic acid)/sodium humate superabsorbent composite. Polym. Adv. Technol. 16(9), 675–680 (2005)CrossRefGoogle Scholar
  210. 210.
    L. Chen, G. Zhang, J. Ge, P. Jiang, X. Zhu, Y. Ran, S. Han, Ultrastable hydrogel for enhanced oil recovery based on double-groups cross-linking. Energy Fuels 29(11), 7196–7203 (2015)CrossRefGoogle Scholar
  211. 211.
    C. Dai, W. Chen, Q. You, Q.,.H. Wang, Y. Zhe, L. He, B. Jiao, Y. Wu, A novel strengthened dispersed particle gel for enhanced oil recovery application. J. Ind. Eng. Chem. 41, 175–182 (2016)CrossRefGoogle Scholar
  212. 212.
    D.A.Z. Wever, F. Picchioni, A.A. Broekhuis, Polymers for enhanced oil recovery: a paradigm for structure–property relationship in aqueous solution. Prog. Polym. Sci. 36(11), 1558–1628 (2011)CrossRefGoogle Scholar
  213. 213.
    R. Zolfaghari, A.A. Katbab, J. Nabavizadeh, R.Y. Tabasi, M.H. Nejad, Preparation and characterization of nanocomposite hydrogels based on polyacrylamide for enhanced oil recovery applications. J. Appl. Polym. Sci. 100(3), 2096–2103 (2006)CrossRefGoogle Scholar
  214. 214.
    G. Chauveteau, R. Tabary, C. Le Bon, M. Renard, Y. Feng, A. Omari, In-depth permeability control by adsorption of soft size-controlled microgels. in SPE European Formation Damage Control Conference Proceedings (2003)Google Scholar
  215. 215.
    M.L. Zweigle, J.C. Lamphere, Cross-linked, water-swellable polymer microgels, US Patent, US4172066A, 1979Google Scholar
  216. 216.
    P. Tongwa, B. Baojun, A more superior preformed particle gel with potential application for conformance control in mature oilfields. J. Pet. Explor. Prod. Technol. 5(2), 201–210 (2014)CrossRefGoogle Scholar
  217. 217.
    P. Thoniyot, M.J. Tan, A.A. Karim, D.J. Young, X.J. Loh, Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv. Sci. 2(1–2), 1400010 (2015)CrossRefGoogle Scholar
  218. 218.
    N. Sahiner, S. Butun, O. Ozay, B. Dibek, Utilization of smart hydrogel-metal composites as catalysis media. J. Colloid Interface Sci. 373(1), 122–128 (2012)PubMedCrossRefGoogle Scholar
  219. 219.
    A. Doring, W. Birnbaum, D. Kuckling, Responsive hydrogels – structurally and dimensionally optimized smart frameworks for applications in catalysis, micro-system technology and material science. Chem. Soc. Rev. 42(17), 7391–7420 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    N. Sahiner, Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Prog. Polym. Sci. 38(9), 1329–1356 (2013)CrossRefGoogle Scholar
  221. 221.
    N. Sahiner, O. Ozay, E. Inger, N. Aktas, Controllable hydrogen generation by use smart hydrogel reactor containing Ru nano catalyst and magnetic iron nanoparticles. J. Power Sources 196(23), 10105–10111 (2011)CrossRefGoogle Scholar
  222. 222.
    O. Ozay, N. Aktas, E. Inger, N. Sahiner, Hydrogel assisted nickel nanoparticle synthesis and their use in hydrogen production from sodium boron hydride. Int. J. Hydrog. Energy 36(3), 1998–2006 (2011)CrossRefGoogle Scholar
  223. 223.
    O. Ozay, E. Inger, N. Aktas, N. Sahiner, Hydrogen production from ammonia borane via hydrogel template synthesized Cu, Ni, Co composites. Int. J. Hydrog. Energy 36(14), 8209–8216 (2011)CrossRefGoogle Scholar
  224. 224.
    J. Yang, X. Wang, B. Li, L. Ma, L. Shi, Y. Xiong, H. Xu, Novel iron/cobalt-containing polypyrrole hydrogel-derived trifunctional electrocatalyst for self-powered overall water splitting. Adv. Funct. Mater. 27(17), 1606497 (2017)CrossRefGoogle Scholar
  225. 225.
    Y. Lu, P. Spyra, Y. Mei, M.A. Ballauff, A. Pich, Composite hydrogels: robust carriers for catalytic nanoparticles. Macromol. Chem. Phys. 208(3), 254–261 (2007)CrossRefGoogle Scholar
  226. 226.
    D. Wei, Y. Ye, X. Jia, C. Yuan, W. Qian, Chitosan as an active support for assembly of metal nanoparticles and application of the resultant bioconjugates in catalysis. Carbohydr. Res. 345(1), 74–81 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    N. Sahiner, H. Ozay, O. Ozay, N. Aktas, New catalytic route: hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2- and 4-nitrophenols. Appl. Catal. A 385(1–2), 201–207 (2010)CrossRefGoogle Scholar
  228. 228.
    N. Sahiner, O. Ozay, N. Aktas, E. Inger, J. He, The on demand generation of hydrogen from Co-Ni bimetallic nano catalyst prepared by dual use of hydrogel: as template and as reactor. Int. J. Hydrog. Energy 36(23), 15250–15258 (2011)CrossRefGoogle Scholar
  229. 229.
    A. Heller, Potentially implantable miniature batteries. Anal. Bioanal. Chem. 385(3), 469–473 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    X. Zhang, J. Xu, C. Lang, S. Qiao, G. An, X. Fan, L. Zhao, C. Hou, J. Liu, Enzyme-regulated fast self-healing of a pillararene-based hydrogel. Biomacromolecules 18(6), 1885–1892 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  231. 231.
    H. Wang, H. Gu, Z. Chen, L. Shang, Z. Zhao, Z. Gu, Y. Zhao, Enzymatic inverse opal hydrogel particles for biocatalyst. ACS Appl. Mater. Interfaces 9(15), 12914–12918 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  232. 232.
    T. Tian, X. Wei, S. Jia, R. Zhang, J. Li, Z. Zhu, H. Zhang, Y. Ma, Z. Lin, C.J. Yang, Integration of target responsive hydrogel with cascaded enzymatic reactions and microfluidic paper-based analytic devices (microPADs) for point-of-care testing (POCT). Biosens. Bioelectron. 77, 537–542 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  233. 233.
    N. Singh, C. Maity, K. Zhang, C.A. Angulo-Pachon, J.H. van Esch, R. Eelkema, B. Escuder, Synthesis of a double-network supramolecular hydrogel by having one network catalyse the formation of the second. Chem. Eur. J. 23(9), 2018–2021 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  234. 234.
    Y. Sun, Y. Ma, G. Fang, S. Ren, Y. Fu, Controlled pesticide release from porous composite hydrogels based on lignin and polyacrylic acid. Bioresources 11(1), 2361–2371 (2016)CrossRefGoogle Scholar
  235. 235.
    B. Singh, D.K. Sharma, A. Gupta, In vitro release dynamics of thiram fungicide from starch and poly(methacrylic acid)-based hydrogels. J. Hazard. Mater. 154(1–3), 278–286 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  236. 236.
    B. Singh, D.K. Sharma, S. Negi, A. Dhiman, Synthesis and characterization of agar-starch based hydrogels for slow herbicide delivery applications. Int. J. Plast. Technol. 19(2), 263–274 (2015)CrossRefGoogle Scholar
  237. 237.
    D.W. Davidson, M.S. Verma, F.X. Gu, Controlled root targeted delivery of fertilizer using an ionically crosslinked carboxymethyl cellulose hydrogel matrix. Springerplus 2(318), 2–9 (2013)Google Scholar
  238. 238.
    F.F. Montesano, A. Parente, P. Santamaria, A. Sannino, F. Serio, Biodegradable superabsorbent hydrogel increases water retention properties of growing media and plant growth. Agric. Agric. Sci. Proc. 4, 451–458 (2015)Google Scholar
  239. 239.
    R. Vundavalli, S. Vundavalli, M. Nakka, D.S. Rao, Biodegradable nano-hydrogels in agricultural farming – alternative source for water resources. Proc. Mater. Sci. 10, 548–554 (2015)CrossRefGoogle Scholar
  240. 240.
    H. Tang, L. Zhang, L. Hu, L. Zhang, Application of chitin hydrogels for seed germination, seedling growth of rapeseed. J. Plant Growth Regul. 33(2), 195–201 (2013)CrossRefGoogle Scholar
  241. 241.
    H. Böhlenius, E.Y. Rolf, Effects of direct application of fertilizers and hydrogel on the establishment of poplar cuttings. Forests 5(12), 2967–2979 (2014)CrossRefGoogle Scholar
  242. 242.
    X. Liu, Y. Yang, B. Gao, Y. Li, Y. Wan, Environmentally friendly slow-release urea fertilizers based on waste frying oil for sustained nutrient release. ACS Sustain. Chem. Eng. 5(7), 6036–6045 (2017)CrossRefGoogle Scholar
  243. 243.
    Y. Obonai, K. Furukawa, H. Yoshioka, Y. Mori, K. Kasuya, Water-retaining support for plants and plant body-growing water-retaining material, US Patent US6615539 B1, 2003Google Scholar
  244. 244.
    S. Sharma, A. Shahzad, J.A. Teixeira da Silva, Synseed technology-a complete synthesis. Biotechnol. Adv. 31(2), 186–207 (2013)PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringMcMaster UniversityHamiltonCanada

Personalised recommendations