Polymers from Renewable Resources

  • Heather Goldsborough
  • Victoria V. VolkisEmail author
Reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


Plastics are an indispensable part of our daily life but also have many applications in electronics, medicine, and environmental protection. Traditional plastic industry consumes about 7% of the global production of fossil fuel. As the nonrenewable fossil fuel will exhaust within the next century, the development of green polymers from renewable natural resources will play an ever-increasing role for future generations toward a sustainable society. Some of natural polymers such as cellulose, for example, have a very long history of use without major modifications. Others are newer. This chapter provides a brief review of alternative plastic materials from renewable sources, such as polysaccharides, lignin, biomass and bio-oils, tannin, cellulose, and many others. The application of those materials is getting wider and wider, and they can replace many of traditional plastics. In addition, the use of much “greener” plastics from renewable resources contributes to reducing the environmental impact of fuels and other petrochemical products and traditional plastics, which are responsible for atmospheric pollution and for the increasing level of greenhouse gases that are the main reasons for global warming.


  1. 1.
    M.L. Tschan, E. Brulé, P. Haquette, C.M. Thomas, Synthesis of biodegradable polymers from renewable resources. Polym. Chem. 3, 836–851 (2012)CrossRefGoogle Scholar
  2. 2.
    (A) A. Corma, S. Iborra, A. Velty, Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007). (B) F. Cherubini, The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 51, 1412–1421 (2010)Google Scholar
  3. 3.
    A. Gandini, Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 41(24), 9491–9504 (2008)CrossRefGoogle Scholar
  4. 4.
    A. Gandini, T.M. Lacerda, From monomers to polymers from renewable resources: recent advances. Prog. Polym. Sci. 48, 1–39 (2015)CrossRefGoogle Scholar
  5. 5.
    L. Shen, E. Worrell, M. Patel, Present and future development in plastics from biomass. Biofuels Bioprod. Biorefin. 4, 25–40 (2010)CrossRefGoogle Scholar
  6. 6.
    L. Shen, J. Haufe, M.K. Patel, Product overview and market projection of emerging bio-based plastics. PRO-BIP final report (2009),
  7. 7.
    M.N. Belgacem, A. Gandini (ed.), Monomers, Polymers and Composites from Renewable Resources (Elsevier, 2008), pp. 17–115. ISBN: 978-0-08-045316-3. Chapters 2–5Google Scholar
  8. 8.
    (A) L. Avérous, E. Pollet, Biodegradable polymers. Environmental Silicate Nano-Biocomposites, eds. by L. Avérous, E. Pollet (Springer, London, 2012), pp. 13–39. (B) R.P. Babu, K. O’Connor, R. Seeram, Current progress on bio-based polymers and their future trends. Prog. Biomater. 2, 1–16 (2013)Google Scholar
  9. 9.
    A.J.F. Carvalho, Chapter 15: Starch: major sources, properties and applications as thermoplastic materials, in Monomers, Polymers and Composites from Renewable Resources, ed. by M.N. Belgacem, A. Gandini (Elsevier, 2008), pp. 321–342. ISBN: 978-0-08-045316-3Google Scholar
  10. 10.
    M. Henriksson, L.A. Berglund, P. Isaksson, T. Lindstrom, T. Nishino, Biomacromolecules 9, 1579 (2008)CrossRefGoogle Scholar
  11. 11.
    A.J.F. Carvalho, A.A.S. Curvelo, A. Gandini, Ind. Crop. Prod. 21, 331 (2005)CrossRefGoogle Scholar
  12. 12.
    J.L. Willet, R.L. Shogren, Polymer 43, 5935 (2002)CrossRefGoogle Scholar
  13. 13.
    M.N. Belgacem, A. Gandini, Compos. Interface 12, 41 (2005)CrossRefGoogle Scholar
  14. 14.
    T. Heinze, T. Liebert, Prog. Polym. Sci. 26, 1689 (2001)CrossRefGoogle Scholar
  15. 15.
    (a) P. Tomasik, C.H. Schilling, Adv. Carbohydr. Chem. Biochem. 59, 175 (2004). (b) K.F. Gotlieb, A. Capelle (eds.), Starch DeriVatization; Fascinating and Unique Industrial Opportunities (Wageningen Academic Publ., Wageningen, 2005)Google Scholar
  16. 16.
    (a) C.S.R. Freire, A.J.D. Silvestre, C. Pascoal Neto, M.N. Belgacem, A.J. Gandini, Appl. Polym. Sci. 100, 1093 (2006). (b) D. Pasquini, M.N. Belgacem, A. Gandini, A.A.S. Curvelo, J. Colloid Interf. Sci. 295, 79 (2006)Google Scholar
  17. 17.
    M. Castellano, P. Fabbri, A. Gandini, M.N. Belgacem, J. Colloid Interf. Sci. 273, 505 (2004)CrossRefGoogle Scholar
  18. 18.
    (a) K. Petzold, A. Koschella, D. Klemm, B. Heublein, Cellulose. 10, 251 (2003). (b) W. Mormann, Cellulose. 10, 271 (2003)Google Scholar
  19. 19.
    (a) C. Goussé, H. Chanzy, G. Escoffier, L. Soubeyrand, E. Fleury, Polymer. 43, 2645 (2002). (b) C. Goussé, H. Chanzy, M.L. Cerrada, Macromolecules. 41, 2008, 9503 Fleury, E. Polymer 45, 1569 (2004). (c) M. Andresen, L.S. Johansson, B.S. Tanem, P. Stenius, Cellulose. 13, 665 (2006)Google Scholar
  20. 20.
    P. Fabbri, G. Champon, M. Castellano, M.N. Belgacem, A. Gandini, Polym. Int. 53, 7 (2004)CrossRefGoogle Scholar
  21. 21.
    S. Boufi, A. Gandini, Cellulose 8, 303 (2001)CrossRefGoogle Scholar
  22. 22.
    A. Gandini, A.A.S. Curvelo, D. Pasquini, A. de Menezes, J. Polymer. 46, 10611 (2005)CrossRefGoogle Scholar
  23. 23.
    A. Gandini, A.A.S. Curvelo, D. Pasquini, A. de Menezes, J. Biomacromolecules 8, 2047 (2007)CrossRefGoogle Scholar
  24. 24.
    (a) A.G. Cunha, C.S.R. Freire, A.J.D. Silvestre, C. Pacoal Neto, A. Gandini, J. Colloid Interf. Sci. 301, 333 (2006). (b) A.G. Cunha, C.S.R. Freire, A.J.D. Silvestre, C. Pacoal Neto, A. Gandini, E. Orblin, P. Fardim, Biomacromolecules. 8, 1347 (2007). (c) A.G. Cunha, C.S.R. Freire, A.J.D. Silvestre, C. Pacoal Neto, A. Gandini, E. Orblin, P. Fardim, Langmuir. 23, 10801 (2007). (d) A.G. Cunha, C.S.R. Freire, A.J.D. Silvestre, C. Pacoal Neto, A. Gandini, E. Orblin, P. Fardim, J. Colloid Interf. Sci. 316, 360 (2007)Google Scholar
  25. 25.
    M.N. Belgacem, A. Gandini (ed.), Chapter 9: Lignins: major sources, structure and properties, in Monomers, Polymers and Composites from Renewable Resources, ed. by G.H. Gellerstedt (Elsevier, 2008). pp 201–224. ISBN: 978-0-08-045316-3Google Scholar
  26. 26.
    Chapter 10: Lora, Industrial commercial lignins: sources, properties and applications, in Monomers, Polymers and Composites from Renewable Resources, ed. by M.N. Belgacem, A. Gandini (Elsevier, 2008). pp. 225–236. ISBN: 978-0-08-045316-3Google Scholar
  27. 27.
    T.Q. Hu (ed.), Chemical Modification, Properties and Usage of Lignin, ACS Symp. Ser. (Kluwer, New York, 2007), p. 954Google Scholar
  28. 28.
    (a) S. Kubo, J.F. Kadla, J. Polym. EnViron. 13, 97 (2005). (b) J.L. Braun, K.M. Holtman, J.F. Kadla, Carbon. 43, 385 (2005)Google Scholar
  29. 29.
    (51) A. Gandini, A.F. Sousa, A.J.D. Silvestre, C. Pascoal Neto, submitted for publicationGoogle Scholar
  30. 30.
    (a) H. Pelletier, N. Belgacem, A. Gandini, J. Appl. Polym. Sci. 99, 3218 (2006). (b) H. Pelletier, A. Gandini, Eur. J. Lipid Sci. Technol. 108, 411 (2006)Google Scholar
  31. 31.
    A. Moubarik, A. Allal, A. Pizzi, F. Charrier, B. Charrier. Characterization of a formaldehyde-free cornstarch-tannin wood adhesive for interior plywood. Eur. J. Wood Wood Prod. 68(4), 427–433 (2009). SpringerGoogle Scholar
  32. 32.
    A. Moubarik, B. Charrier, A. Allal, F. Charrier, A. Pizzi. Development and optimization of a new formaldehyde-free cornstarch and tannin wood adhesive. Eur. J. Wood Wood Prod. 68(2), 167–177 (2009). SpringerGoogle Scholar
  33. 33.
    (a) M.N. Belgacem, A. Gandini, Prog. Polym. Sci. 22, 1203 (1997). (b) C. Moreau, A. Gandini, M.N. Belgacem, Top. Catal. 27, 9 (2004). (c) A. Gandini, M.N. Belgacem Furan Derivatives and Furan Chemistry at the Service of Macromolecular Materials. In ref 1, Chapter 6Google Scholar
  34. 34.
    K. Masutani, Y. Kimura, Chapter 1: PLA synthesis. From the monomer to the polymer, In Alfonso Jiménez, Mercedes Peltzer, Roxana Ruseckaite, (eds). Poly(lactic acid) Science and Technology: Processing, Properties, Additives and Applications (2014). The Royal Society of Chemistry, pp. 1–36.
  35. 35.
    J. Spiridon, V. I. Popa, Chapter 12: Hemicelluloses: major sources, properties and applications, in Monomers, Polymers and Composites from Renewable Resources, ed. by M.N. Belgacem, A. Gandini (Elsevier, 2008). pp. 289–305. ISBN: 978-0-08-045316-3Google Scholar
  36. 36.
    C. Pavier, A. Gandini, Eur. Polym. J. 36, 1653 (2000)CrossRefGoogle Scholar
  37. 37.
    E. Pecoraro, D. Manzani, Y. Messadeqq, S.J.L. Ribeiro, Chapter 17: Bacterial cellulose from glucanace-tobacter xylinus: preparation, properties and applications, in Monomers, Polymers and Composites from Renewable Resources, ed. by M.N. Belgacem, A. Gandini (Elsevier, 2008). ISBN: 978-0-08-045316-3Google Scholar
  38. 38.
    (a) E.E. Brown, M.-P.G. Laborie, Biomacromolecules 8, 3074 (2007). (b) S. Ifuku, M. Nogi, K. Abe, K. Handa, F. Nakatsubo, H. Yano, Biomacromolecules 8, 1973 (2007). (c) M. Pommet, J. Juntaro, J.Y.Y. Heng, A. Mantalaris, A.F. Lee, K. Wilson, G. Kalinka, M.S.P. Shaffer, A. Bismarck, Biomacromolecules 9, 1643 (2008)Google Scholar
  39. 39.
    P.A. Wilbon, F. Chu, C. Tang, Progress in renewable polymers from natural terpenes, Terpenoids, and rosin. Macromol. Rapid Commun. 34, 8–37 (2013)CrossRefGoogle Scholar
  40. 40.
    M. Rinaudo, Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31, 603–632 (2006)Google Scholar
  41. 41.
    C. Peniche, W. Argüelles-Monal, F. Goycoolea, Chitin and chitosan: major sources, properties and applications in Monomers, Polymers and Composites from Renewable Resources (2008) pp. 517–542.
  42. 42.
    N. Kazami et al., A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid. Carbohydr. Polym. 132(2015), 304–310 (2015)CrossRefGoogle Scholar
  43. 43.
    G. Roberts, Thirty years of progress in chitin and chitosan. Prog. Chem. Appl. Chitin Deriv. 13(13), 1–15 (2008)Google Scholar
  44. 44.
    NASA, IPCC 2007, Summary for Policymakers, in Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, UK, 2007), p. 17
  45. 45.
    S.-O. Fernandez-Kim, Physicochemical and Functional Properties of Crawfish Chitosan as Affected by Different Processing Protocols, B.S. Thesis, Seoul National University, 2004Google Scholar
  46. 46.
    E. Salleh, I. Muhamad, N. Khairuddin, Preparation, characterization and antimicrobial analysis of antimicrobial starch based film incorporated with chitosan and lauric acid. Asian Chitin J. 3, 55–68 (2007)Google Scholar
  47. 47.
    B. Carreno-Gomez, R. Duncan, Evaluation of the biological properties of soluble chitosan and chitosan microspheres. Int. J. PharmacoEconomics 148, 231–240 (1997)CrossRefGoogle Scholar
  48. 48.
    W.R. Chen, R.L. Adams, R. Carubelli, R.E. Nordquist, Laser-photosensitizer assisted immunotherapy: a novel modality for cancer treatment. Cancer Lett. 115, 25–30 (1997)CrossRefGoogle Scholar
  49. 49.
    K. Nishimura, S. Nishimura, N. Nishi, I. Saiki, S. Tokura, I. Azuma, Immunological activity of chitin and its derivatives. Vaccine 2, 93–99 (1984)CrossRefGoogle Scholar
  50. 50.
    J. Venkatesan, S.-K. Kim, Chitosan composites for bone tissue engineering – an overview. Mar. Drugs 8, 2252–2266 (2010)CrossRefGoogle Scholar
  51. 51.
    K. Rezwan, Q. Chen, J. Blaker, A.R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27, 3413–3431 (2006)CrossRefGoogle Scholar
  52. 52.
    D.K. Singh, A.R. Ray, Biomedical applications of chitin, chitosan, and their derivatives. J. Macromol. Sci. C 40, 69–83 (2000)CrossRefGoogle Scholar
  53. 53.
    R. Jayakumar, D. Menon, K. Manzoor, S. Nair, H. Tamura, Biomedical applications of chitin and chitosan based nanomaterials – A short review. Carbohydr. Polym. 82, 227–232 (2010)CrossRefGoogle Scholar
  54. 54.
    L.G. Griffith, G. Naughton, Tissue engineering–current challenges and expanding opportunities. Sci. Signal. 295, 1009 (2002)Google Scholar
  55. 55.
    M.-H. Ho, P.-Y. Kuo, H.-J. Hsieh, T.-Y. Hsien, L.-T. Hou, J.-Y. Lai, D.-M. Wang, Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25, 129–138 (2004)CrossRefGoogle Scholar
  56. 56.
    Z. Li, L. Yubao, Y. Aiping, P. Xuelin, W. Xuejiang, Z. Xiang, Preparation and in vitro investigation of chitosan/nano-hydroxyapatite composite used as bone substitute materials. J. Mater. Sci. 16, 213–219 (2005)Google Scholar
  57. 57.
    R. Hejazi, M. Amiji, Chitosan-based gastrointestinal delivery systems. J. Control. Release 89, 151–165 (2003)CrossRefGoogle Scholar
  58. 58.
    W. Tiyaboonchai, Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ, J 11, 51–66 (2003)Google Scholar
  59. 59.
    M. Prabaharan, J. Mano, Chitosan-based particles as controlled drug delivery systems. Drug Deliv. 12, 41–57 (2004)CrossRefGoogle Scholar
  60. 60.
    S. Surini, H. Akiyama, M. Morishita, T. Nagai, K. Takayama, Release phenomena of insulin from an implantable device composed of a polyion complex of chitosan and sodium hyaluronate. J. Control. Release 90, 291 (2003)CrossRefGoogle Scholar
  61. 61.
    M.V. Bernado, M.D. Blanco, R.L. Sastre, C. Teijon, J.M. Teijon, Sustained release of bupivacaine from devices based on chitosan. II Farmaco 58, 1187 (2003)CrossRefGoogle Scholar
  62. 62.
    A. Domard, M. Domard, Chitosan: Structure-Properties Relationship and Biomedical Applications, Polymeric Biomaterials, 2nd edn., ed. by S. Dumitriu (Marcel Dekker, New York, 2003)Google Scholar
  63. 63.
    W.C. Lin, T.Y. Liu, M.C. Yang, Hemocompatibility of polyacrylonitrile dialysis membrane immobilized with chitosan and heparin conjugate. Biomaterials 25(10), 1947–57 (2004)Google Scholar
  64. 64.
    P.K. Dutta, P. Vishwanathan, L. Mimrot, M.N.V. Ravikumar, Use of chitosan-amine-oxide gel as drug carriers. J. Polym. Mater. 14, 531 (1997)Google Scholar
  65. 65.
    Refer Website:
  66. 66.
    Refer Website:
  67. 67.
    M. Mucha, Rheological characteristics of semi-dilute chitosan solutions. Marcomole Chem. Phys. 198, 471 (1997)Google Scholar
  68. 68.
    S.M. Husdon, D.W. Jenkins, Chitin and Chitosan, Encyclopedia of Polymer Science and Technology, 3rd edn. (Wiley Interscience, New York) (Online version,
  69. 69.
    R.S. Juang, C.Y. Ju, Kinetics of sorption Cu (II)- ethylenediaminetetraacetic acid chelate anions on crosslinked, polyaminated chitosan beads. Ind. Eng. Chem. Res. 37, 3463 (1998)CrossRefGoogle Scholar
  70. 70.
    K.D. Bhavani, P.K. Dutta, Physico-chemical adsorption properties on chitosan for dyehouse effluent. Am. Dyestuff Rep. 88, 53 (1999)Google Scholar
  71. 71.
    Refer Website:
  72. 72.
    M.H. Ottoy, K.M. Varum, B.E. Christensen, M.W. Anthonsen, O. Smidsrod, Preparative and analytical size-exclusion chromatography of chitosans. Carbohydr. Polym. 31, 253 (1996)Google Scholar
  73. 73.
    J. Rhee, M. Jung, K. Paeng, Evaluation of chitin and chitosan as a sorbent for the preconcentration of phenol and chlorophenols in water. Anal. Sci. 14, 1089 (1998)CrossRefGoogle Scholar
  74. 74.
    P.K. Dutta, M.N.V. Ravikumar, J. Dutta, Chitin and chitosan for versatile applications. JMS Polym. Rev. C42, 307 (2000)Google Scholar
  75. 75.
    M. G. Peter, A. Dormad, R. A. A. Muzzarelli (eds.), Advances in Chitin Science, vol IV (Universitat Postdam, Postdam, 2005)Google Scholar
  76. 76.
    J.M.V. Blanshard, Starch granule structure and function: a physiochemical approach, in Starch: Properties and Potential, ed. by T. Galliard (Wiley for SCI, Chichester, 1987), pp. 16–54Google Scholar
  77. 77.
    Y.I. Matveev, V.Y. Grinberg, V.B. Tolstoguzov, The plasticizing effect of water on proteins, polysaccharides and their mixtures: glassy state of biopolymers, food and seeds. Food Hydrocoll. 14, 425–437 (2000)CrossRefGoogle Scholar
  78. 78.
    A. Carvalho, A. Job, N. Alves, A. Curvelo, A. Gandini, Thermoplastic starch/natural rubber blends. Carbohydr. Polym. 53, 95–99 (2003)CrossRefGoogle Scholar
  79. 79.
    H. Tsuji, Y. Ikada, Stereocomplex formation between enantiomeric poly(lactic acid)s: XI – mechanical properties and morphology of solution-cast film. Polymer 40, 6699–6708 (1999)CrossRefGoogle Scholar
  80. 80.
    H. Tsuji, Autocatalytic hydrolysis of amorphous-made polylactides: effects of l-lactide content, tacticity, and enantiomeric polymer blending. Polymer 43, 1789–1796 (2002)CrossRefGoogle Scholar
  81. 81.
    C.C. Chen, J.Y. Chueh, H. Tseng, H.M. Huang, S.Y. Lee, Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials 24, 1167–1173 (2003)CrossRefGoogle Scholar
  82. 82.
    H. Shinoda, Y. Asou, T. Kashima, T. Kato, Y. Tseng, T. Yagi, Amphiphilic biodegradable copolymer, poly(aspartic acid co-lactide): acceleration of degradation rate and improvement of thermal stability for poly(lactic acid), poly(butylene succinate) and poly(e-caprolactone). Polym Degrad Stabil 80, 241–250 (2003)CrossRefGoogle Scholar
  83. 83.
    I. Ohkoshi, H. Abe, Y. Doi, Miscibility and solid-state structures for blends of poly((S)-lactide) with atactic poly((R,S)-3-hydroxybutyrate). Polymer 41, 5985–5992 (2000)CrossRefGoogle Scholar
  84. 84.
    Y. He, N. Asakawa, J. Li, Y. Inoue, Effects of low molecular weight compounds with hydroxyl groups on properties of poly(l-lactic acid). J. Appl. Polym. Sci. 82, 640–649 (2001)CrossRefGoogle Scholar
  85. 85.
    T. Ke, X. Sun, Effect of moisture content and heat treatment on the physical properties of starch and poly(lactic acid) blends. J. Appl. Polym. Sci. 81, 3069–3082 (2001)CrossRefGoogle Scholar
  86. 86.
    T. Ke, X. Sun, Melting behavior and crystallization kinetics of starch and poly(lactic acid) composites. J. Appl. Polym. Sci. 89, 1203–1211 (2003)CrossRefGoogle Scholar
  87. 87.
    H. Wang, X. Sun, P. Seib, Strengthening blends of poly(lactic acid) and starch with methylenediphenyl diisocyanate. J. Appl. Polym. Sci. 82, 1761–1767 (2001)CrossRefGoogle Scholar
  88. 88.
    J.F. Zhang, X. Sun, Mechanical and thermal properties of poly(lactic acid)/starch blends with dioctyl maleate. J. Appl. Polym. Sci. 94, 1697–1704 (2004)CrossRefGoogle Scholar
  89. 89.
    T. Ke, X.S. Sun, Starch, poly(lactic acid), and poly(vinyl alcohol) blends. J. Polym. Environ. 11(1), 7–14 (2003)CrossRefGoogle Scholar
  90. 90.
    R.L. Shogren, W.M. Doane, D. Garlotta, J.W. Lawton, J.L. Willett, Biodegradation of starch/polylactic acid/poly(hydroxyester– ether) composite bars in soil. Polym. Degrad. Stab. 79, 405–411 (2003)CrossRefGoogle Scholar
  91. 91.
    J.L. Willett, R.L. Shogren, Processing and properties of extruded starch/polymer foams. Polymer 43, 5935–5947 (2002)CrossRefGoogle Scholar
  92. 92.
    J.L. Willett, M.A. Kotnis, G.S. O’Brien, G.F. Fanta, S.H. Gordon, Properties of starch–graft–poly(glycidyl methacrylate)– PHBV composites. J. Appl. Polym. Sci. 70, 1121–1127 (1998)CrossRefGoogle Scholar
  93. 93.
    M. Maekawa, R. Pearce, R.H. Marchessault, R.S.J. Manley, Miscibility and tensile properties of poly(b-hydroxybutyrate)- cellulose propionate blend. Polymer 40, 1501–1505 (1999)CrossRefGoogle Scholar
  94. 94.
    L. Wang, R.L. Shogren, C. Carriere, Preparation and properties of thermoplastic starch–polyester laminate sheets by coextrusion. Polym. Eng. Sci. 40(2), 499–506 (2000)CrossRefGoogle Scholar
  95. 95.
    M. Wollerdorfer, H. Bader, Influence of natural fibers on the mechanical properties of biodegradable polymers. Ind. Crop. Prod. 8, 105–112 (1998)CrossRefGoogle Scholar
  96. 96.
    K. Matsui, F. Larotonda, S. Paes, D. Luiz, A. Pires, J. Laurindo, Cassava bagasse–Kraft paper composites: analysis of influence of impregnation with starch acetate on tensile strength and water absorption properties. Carbohydr. Polym. 55, 237–243 (2004)CrossRefGoogle Scholar
  97. 97.
    J.W. Lawton, R.L. Shogren, K.F. Tiefenbacher, Aspen fiber addition improves the mechanical properties of baked cornstarch foams. Ind. Crop. Prod. 19, 41–47 (2004)CrossRefGoogle Scholar
  98. 98.
    G.M. Ganjyal, N. Reddy, Y.Q. Yang, M.A. Hanna, Biodegradable packaging foams of starch acetate blended with corn stalk fibers. J. Appl. Polym. Sci. 93, 2627–2633 (2004)CrossRefGoogle Scholar
  99. 99.
    U. Funke, W. Bergthaller, M.G. Lindhauer, Processing and characterization of biodegradable products based on starch. Polym. Degrad. Stab. 59, 293–296 (1998)CrossRefGoogle Scholar
  100. 100.
    R.A. Shanks, A. Hodzic, S. Wong, Thermoplastic biopolyester natural fiber composites. J. Appl. Polym. Sci. 91(4), 2114–2121 (2004)CrossRefGoogle Scholar
  101. 101.
    H.M. Park, X. Li, C.Z. Jin, C.Y. Park, W.J. Cho, C.S. Ha, Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromol. Mater. Eng. 287(8), 553–558 (2002)CrossRefGoogle Scholar
  102. 102.
    S.A. McGlashan, P.J. Halley, Preparation and characterization of biodegradable starch-based nanocomposite materials. Polym. Int. 52, 1767–1773 (2003)CrossRefGoogle Scholar
  103. 103.
    S.B. Kalambur, S.S.H. Rizvi, Starch-based nanocomposites by reactive extrusion processing. Polym. Int. 53(10), 1413–1416 (2004)CrossRefGoogle Scholar
  104. 104.
    J.-H. Chang, Y.U. An, G.S. Sur, Poly(lactic acid) nanocomposites with various organoclays: I – thermomechanical properties, morphology, and gas permeability. J Polym Sci Part B Polym Phys 41(1), 94–103 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Natural SciencesUniversity of Maryland Eastern ShorePrincess AnneUSA

Personalised recommendations