Cell Surface Engineering

  • Srinivas Abbina
  • Nima Khadem Mohtaram
  • Jayachandran N. KizhakkedathuEmail author
Reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


Recent preclinical studies demonstrated the use of engineered cells as a potential way to treat many diseases and disorders. Tailoring the cell’s function and interactions using surface engineering methods is a very promising approach in developing novel cell-based therapeutics. For instance, cell surface modification has been used for the development of universal blood donor cells. In another example, it has been shown that surface modification of stem cells is a doable approach to regulate the fate of cells into specific phenotypes, which is necessary to regain function in specific environment such as different injury sites. Cell surface engineering using macromolecules/polymers could provide desired properties and functions to cells for applications in targeted delivery, biosensing, transfection, imaging techniques, and in the regulation of cell fate. This chapter will review the recent advancements in polymer-based cell surface engineering approaches for various applications. In terms of the cell types, we have chosen to focus, specifically, on red blood cells, lymphocytes, splenocytes, stem cells (multipotent and pluripotent), islet cells, endothelial cells, and hepatocytes as they offer the most promise in generating cell-based therapeutics. In terms of modification approaches, we mainly highlighted the literature associated with the use synthetic polymers via covalent conjugation and non-covalent bonding. We also discuss the future of such cell surface engineering methods for their potential clinical utility.


Cell surface engineering Polymers Bioconjugation Red blood cells Stem cells Islet cells Endothelial cells 





Bovine aortic endothelial cells


Biotin N-hydroxysuccinimidyl


Cell adhesion molecules




Central nervous system


Choline phosphate




Endothelial cells


Extracellular matrix


Embryonic stem cells


Fibroblast growth factor 2




Hyperbranched polyglycerols


Heparan sulfate


Hematopoietic stem cells


HaloTag proteins


Intercellular cell adhesion molecule-1


Induced pluripotent stem cells






Methoxypoly(ethylene glycol)


Mesenchymal stem cell






Neural stem cells


Phosphate-buffered saline


Poly(ethylene glycol)




Polyelectrolyte multilayer film




Poly-l-lysine-graft-polyethylene glycol


Polymorphonuclear leukocytes


Palmitated protein G


Pluripotent stem cells


Poly(vinyl alcohol)


Red blood cells


Stromal-derived factor-1




Succinimidyl succinate


Vascular endothelial adhesion molecule



The authors acknowledge the funding by the Canadian Institutes of Health Research (CIHR) and from the Natural Sciences and Engineering Research Council (NSERC) of Canada to JNK. JNK holds a Career Investigator Scholar award from the Michael Smith Foundation for Health Research.


  1. 1.
    J. Spatz, Molecular engineering of cellular environments: cell adhesion to nano-digital surfaces. Tissue Eng. 13(4), 877–878 (2007)Google Scholar
  2. 2.
    D. Falconnet, G. Csucs, H.M. Grandin, M. Textor, Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27(16), 3044–3063 (2006)PubMedCrossRefGoogle Scholar
  3. 3.
    L. Lu, J. Gao, Z. Guo, Labeling cell surface gpis and GPI-anchored proteins through metabolic engineering with artificial inositol derivatives. Angew. Chem. Int. Ed. 54(33), 9679–9682 (2015)CrossRefGoogle Scholar
  4. 4.
    M.E. Medof, S. Nagarajan, M.L. Tykocinski, Cell-surface engineering with GPI-anchored proteins. FASEB J. 10(5), 574–586 (1996)PubMedCrossRefGoogle Scholar
  5. 5.
    E. Saxon, C.R. Bertozzi, Chemical and biological strategies for engineering cell surface glycosylation. Annu. Rev. Cell Dev. Biol. 17, 1–23 (2001)PubMedCrossRefGoogle Scholar
  6. 6.
    W.A. Zhao, G.S.L. Teo, N. Kumar, J.M. Karp, Chemistry and material science at the cell surface. Mater. Today 13(4), 14–21 (2010)CrossRefGoogle Scholar
  7. 7.
    M.D. Mager, V. LaPointe, M.M. Stevens, Exploring and exploiting chemistry at the cell surface. Nat. Chem. 3(8), 582–589 (2011)PubMedCrossRefGoogle Scholar
  8. 8.
    M.M. Stevens, J.H. George, Exploring and engineering the cell surface interface. Science 310(5751), 1135–1138 (2005)PubMedCrossRefGoogle Scholar
  9. 9.
    B. Wang, P. Liu, R. Tang, Cellular shellization: surface engineering gives cells an exterior. BioEssays 32(8), 698–708 (2010)PubMedCrossRefGoogle Scholar
  10. 10.
    Y. Teramura, H. Chen, T. Kawamoto, H. Iwata, Control of cell attachment through polyDNA hybridization. Biomaterials 31(8), 2229–2235 (2010)PubMedCrossRefGoogle Scholar
  11. 11.
    B. Wang, J. Song, H. Yuan, C. Nie, F. Lv, L. Liu, S. Wang, Multicellular assembly and light-regulation of cell-cell communication by conjugated polymer materials. Adv. Mater. 26(15), 2371–2375 (2014)PubMedCrossRefGoogle Scholar
  12. 12.
    R. Chapanian, I. Constantinescu, D.E. Brooks, M.D. Scott, J.N. Kizhakkedathu, In vivo circulation, clearance, and biodistribution of polyglycerol grafted functional red blood cells. Biomaterials 33(10), 3047–3057 (2012)PubMedCrossRefGoogle Scholar
  13. 13.
    R. Chapanian, I. Constantinescu, N. Medvedev, M.D. Scott, D.E. Brooks, J.N. Kizhakkedathu, Therapeutic cells via functional modification: influence of molecular properties of polymer grafts on in vivo circulation, clearance, immunogenicity, and antigen protection. Biomacromolecules 14(6), 2052–2062 (2013)PubMedCrossRefGoogle Scholar
  14. 14.
    Y. Teramura, H. Iwata, Cell surface modification with polymers for biomedical studies. Soft Matter 6(6), 1081–1091 (2010)CrossRefGoogle Scholar
  15. 15.
    Y. Teramura, S. Asif, K.N. Ekdahl, B. Nilsson, Cell surface engineering for regulation of immune reactions in cell therapy. Adv. Exp. Med. Biol. 865, 189–209 (2015)PubMedCrossRefGoogle Scholar
  16. 16.
    J.H. Jeong, J.J. Schmid, R.E. Kohman, A.T. Zill, R.J. DeVolder, C.E. Smith, M.-H. Lai, A. Shkumatov, T.W. Jensen, L.G. Schook, S.C. Zimmerman, H. Kong, Leukocyte-mimicking stem cell delivery via in situ coating of cells with a bioactive hyperbranched polyglycerol. J. Am. Chem. Soc. 135, 8770–8773 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    B. Kellam, P.A. De Bank, K.M. Shakesheff, Chemical modification of mammalian cell surfaces. Chem. Soc. Rev. 32(6), 327 (2003)PubMedCrossRefGoogle Scholar
  18. 18.
    J.C. Kim, G. Tae, Recent advances in cell surface engineering focused on cell therapy. Bull. Kor. Chem. Soc. 36(1), 59–65 (2015)CrossRefGoogle Scholar
  19. 19.
    J. Robertus, W.R. Browne, B.L. Feringa, Dynamic control over cell adhesive properties using molecular-based surface engineering strategies. Chem. Soc. Rev. 39(1), 354–378 (2010)PubMedCrossRefGoogle Scholar
  20. 20.
    L.K. Mahal, K.J. Yarema, C.R. Bertozzi, Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276(5315), 1125–1128 (1997)PubMedCrossRefGoogle Scholar
  21. 21.
    Y.W. Won, A.N. Patel, D.A. Bull, Cell surface engineering to enhance mesenchymal stem cell migration toward an SDF-1 gradient. Biomaterials 35(21), 5627–5635 (2014)PubMedCrossRefGoogle Scholar
  22. 22.
    J.T. Wilson, W.X. Cui, V. Kozovskaya, E. Kharlampieva, D. Pan, Z. Qu, V.R. Krishnamurthy, J. Mets, V. Kumar, J. Wen, Y.H. Song, V.V. Tsukruk, E.L. Chaikof, Cell surface engineering with polyelectrolyte multilayer thin films. J. Am. Chem. Soc. 133(18), 7054–7064 (2011)PubMedCrossRefGoogle Scholar
  23. 23.
    S. Miura, Y. Teramura, H. Iwata, Encapsulation of islets with ultra-thin polyion complex membrane through poly(ethylene glycol)-phospholipids anchored to cell membrane. Biomaterials 27(34), 5828–5835 (2006)PubMedCrossRefGoogle Scholar
  24. 24.
    Y. Teramura, H. Iwata, Islets surface modification prevents blood-mediated inflammatory responses. Bioconjug. Chem. 19(7), 1389–1395 (2008)PubMedCrossRefGoogle Scholar
  25. 25.
    K. Tatsumi, K. Ohashi, Y. Teramura, R. Utoh, K. Kanegae, N. Watanabe, S. Mukobata, M. Nakayama, H. Iwata, T. Okano, The non-invasive cell surface modification of hepatocytes with PEG-lipid derivatives. Biomaterials 33(3), 821–828 (2012)PubMedCrossRefGoogle Scholar
  26. 26.
    Y. Teramura, Y. Kaneda, H. Iwata, Islet-encapsulation in ultra-thin layer-by-layer membranes of poly(vinyl alcohol) anchored to poly(ethylene glycol)-lipids in the cell membrane. Biomaterials 28(32), 4818–4825 (2007)PubMedCrossRefGoogle Scholar
  27. 27.
    T. Totani, Y. Teramura, H. Iwata, Immobilization of urokinase on the islet surface by amphiphilic poly(vinyl alcohol) that carries alkyl side chains. Biomaterials 29(19), 2878–2883 (2008)PubMedCrossRefGoogle Scholar
  28. 28.
    Y. Teramura, H. Iwata, Islet encapsulation with living cells for improvement of biocompatibility. Biomaterials 30(12), 2270–2275 (2009)PubMedCrossRefGoogle Scholar
  29. 29.
    Y. Teramura, Cell surface modification with ssDNA-PEG-lipid for analysing intercellular interactions between different cells. Biomaterials 48, 119–128 (2015)PubMedCrossRefGoogle Scholar
  30. 30.
    T. Matsui, Y. Arima, N. Takemoto, H. Lwata, Cell patterning on polylactic acid through surface-tethered oligonucleotides. Acta Biomater. 13, 32–41 (2015)PubMedCrossRefGoogle Scholar
  31. 31.
    V. Gribova, R. Auzely-Velty, C. Picart, Polyelectrolyte multilayer assemblies on materials surfaces: from cell adhesion to tissue engineering. Chem. Mater. 24(5), 854–869 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    C. Boura, P. Menu, E. Payan, C. Picart, J.C. Voegel, S. Muller, J.F. Stoltz, Endothelial cells grown on thin polyelectrolyte multilayered films: an evaluation of a new versatile surface modification. Biomaterials 24(20), 3521–3530 (2003)PubMedCrossRefGoogle Scholar
  33. 33.
    P. Tryoen-Toth, D. Vautier, Y. Haikel, J.C. Voegel, P. Schaaf, J. Chluba, J. Ogier, Viability, adhesion, and bone phenotype of osteoblast-like cells on polyelectrolyte multilayer films. J. Biomed. Mater. Res. 60(4), 657–667 (2002)PubMedCrossRefGoogle Scholar
  34. 34.
    L. Richert, F. Boulmedais, P. Lavalle, J. Mutterer, E. Ferreux, G. Decher, P. Schaaf, J.C. Voegel, C. Picart, Improvement of stability and cell adhesion properties of polyelectrolyte multilayer films by chemical cross-linking. Biomacromolecules 5(2), 284–294 (2004)PubMedCrossRefGoogle Scholar
  35. 35.
    X.F. Yu, Z.H. Liu, J. Janzen, I. Chafeeva, S. Horte, W. Chen, R.K. Kainthan, J.N. Kizhakkedathu, D.E. Brooks, Polyvalent choline phosphate as a universal biomembrane adhesive. Nat. Mater. 11(5), 468–476 (2012)PubMedCrossRefGoogle Scholar
  36. 36.
    S. Mansouri, Y. Merhi, F.M. Winnik, M. Tabrizian, Investigation of layer-by-layer assembly of polyelectrolytes on fully functional human red blood cells in suspension for attenuated immune response. Biomacromolecules 12(3), 585–592 (2011)PubMedCrossRefGoogle Scholar
  37. 37.
    a) J.T. Wilson, C.A. Haller, Z. Qu, W. Cui, M.K. Urlam, E.L. Chaikof, Biomolecular surface engineering of pancreatic islets with thrombomodulin. Acta Biomater. 6(6), 1895–1903 (2010). b) R. Chapanian, I. Constantinescu, N.A.A. Rossi, N. Medvedev, D.E. Brooks, M.D. Scott, J.N. Kizhakkedathu, Influence of polymer architecture on antigens camouflage, CD47 protection and complement mediated lysis of surface grafted red blood cells. Biomaterials 33(31), 7871–7883 (2012)Google Scholar
  38. 38.
    S.C. Hsiao, B.J. Shum, H. Onoe, E.S. Douglas, Z.J. Gartner, R.A. Mathies, C.R. Bertozzi, M.B. Francis, Direct cell surface modification with DNA for the capture of primary cells and the investigation of myotube formation on defined patterns. Langmuir 25(12), 6985–6991 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    H. Cheng, M. Byrska-Bishop, C.T. Zhang, C.J. Kastrup, N.S. Hwang, A.K. Tai, W.W. Lee, X.Y. Xu, M. Nahrendorf, R. Langer, D.G. Anderson, Stem cell membrane engineering for cell rolling using peptide conjugation and tuning of cell-selectin interaction kinetics. Biomaterials 33(20), 5004–5012 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    A.M. Chen, M.D. Scott, Immunocamouflage: prevention of transfusion-induced graft-versus-host disease via polymer grafting of donor cells. J Biomed Mater Res Part A 67A(2), 626–636 (2003)CrossRefGoogle Scholar
  41. 41.
    S. Hashemi-Najafabadi, E. Vasheghani-Farahani, S.A. Shojaosadati, M.J. Rasaee, J.K. Armstrong, M. Moin, Z. Pourpak, A method to optimize peg-coating of red blood cells. Bioconjug. Chem. 17(5), 1288–1293 (2006)PubMedCrossRefGoogle Scholar
  42. 42.
    Y.-M. Wee, D.-G. Lim, Y.-H. Kim, J.-H. Kim, S.-C. Kim, E. Yu, M.-O. Park, M.Y. Choi, Y.-H. Park, H.-J. Jang, E.-Y. Cho, M.-H. Cho, D.-J. Han, Cell surface modification by activated polyethylene glycol prevents allosensitization after islet transplantation. Cell Transplant. 17(10–11), 1257–1269 (2008)PubMedCrossRefGoogle Scholar
  43. 43.
    D.P. Blackall, J.K. Armstrong, H.J. Meiselman, T.C. Fisher, Polyethylene glycol–coated red blood cells fail to bind glycophorin A–specific antibodies and are impervious to invasion by the Plasmodium falciparum malaria parasite. Blood 97(2), 551–556 (2001)PubMedCrossRefGoogle Scholar
  44. 44.
    A.M. Chen, M.D. Scott, Current and future applications of immunological attenuation via pegylation of cells and tissue. BioDrugs 15, 833–847 (2001)PubMedCrossRefGoogle Scholar
  45. 45.
    D. Yun Lee, J. Hee Nam, Y. Byun, Functional and histological evaluation of transplanted pancreatic islets immunoprotected by PEGylation and cyclosporine for 1 year. Biomaterials 28(11), 1957–1966 (2007)PubMedCrossRefGoogle Scholar
  46. 46.
    a) M.D. Scott, K.L. Murad, F. Koumpouras, M. Talbot, J.W. Eaton, Chemical camouflage of antigenic determinants: stealth erythrocytes. Proc. Natl. Acad. Sci. U.S.A. 94(14), 7566–7571 (1997). b) A.J. Bradleya, K.L. Murada, K.L. Regana, M.D. Scott, Biophysical consequences of linker chemistry and polymer size on stealth erythrocytes: size does matter. Biochim. Biophys. Acta 1561(2), 147–158 (2002)Google Scholar
  47. 47.
    J. Chen, G.H. Altman, V. Karageorgiou, R. Horan, A. Collette, V. Volloch, T. Colabro, D.L. Kaplan, Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J. Biomed. Mat. Res 67A(2), 560–570 (2003)Google Scholar
  48. 48.
    H. Chen, J. Rhodes, Schiff base forming drugs: mechanisms of immune potentiation and therapeutic potential. J. Mol. Med. 74(9), 497–504 (1996)PubMedCrossRefGoogle Scholar
  49. 49.
    J. Rhodes, H. Chen, S.R. Hall, J.E. Beesley, D.C. Jenkins, P. Collins, B. Zheng, Therapeutic potentiation of the immune system by costimulatory Schiff-base-forming drugs. Nature 377(6544), 71–75 (1995)PubMedCrossRefGoogle Scholar
  50. 50.
    Y. Yuan, X.J. Wang, B. Mei, D.X. Zhang, A.M. Tang, L.N. An, X.X. He, J. Jiang, G.L. Liang, Labeling thiols on proteins, living cells, and tissues with enhanced emission induced by FRET. Sci. Rep-Uk. 3, 3523 (2013)CrossRefGoogle Scholar
  51. 51.
    A.G. Torres, M.J. Gait, Exploiting cell surface thiols to enhance cellular uptake. Trends Biotechnol. 30(4), 185–190 (2012)PubMedCrossRefGoogle Scholar
  52. 52.
    M.M. Fretz, N.A. Penning, S. Al-Taei, S. Futaki, T. Takeuchi, I. Nakase, G. Storm, A.T. Jones, Temperature-, concentration- and cholesterol-dependent translocation of l- and d-octa-arginine across the plasma and nuclear membrane of CD34(+) leukaemia cells. Biochem. J. 403, 335–342 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    K. Tyagarajan, E. Pretzer, J.E. Wiktorowicz, Thiol-reactive dyes for fluorescence labeling of proteomic samples. Electrophoresis 24(14), 2348–2358 (2003)PubMedCrossRefGoogle Scholar
  54. 54.
    B. Sahaf, K. Heydari, L.A. Herzenberg, L.A. Herzenberg, Lymphocyte surface thiol levels. Proc. Natl. Acad. Sci. U. S. A. 100(7), 4001–4005 (2003)PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    M.T. Stephan, J.J. Moon, S.H. Um, A. Bershteyn, D.J. Irvine, Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 16(9), 1035–U135 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    P. Nacharaju, F.N. Boctor, B.N. Manjula, S.A. Acharya, Surface decoration of red blood cells with maleimidophenyl-polyethylene glycol facilitated by thiolation with iminothiolane: an approach to mask A, B, and D antigens to generate universal red blood cells. Transfusion 45(3), 374–383 (2005)PubMedCrossRefGoogle Scholar
  57. 57.
    B.K. Kay, S. Thai, V.V. Volgina, High-throughput biotinylation of proteins, in High Throughput Protein Expression and Purification: Methods and Protocols, ed. by S.A. Doyle (Humana Press, Totowa, 2009), pp. 185–198Google Scholar
  58. 58.
    M. González, L.A. Bagatolli, I. Echabe, J.L.R. Arrondo, C.E. Argaraña, C.R. Cantor, G.D. Fidelio, Interaction of biotin with streptavidin: thermostability and conformational changes upon binding. J. Biol. Chem. 272(17), 11288–11294 (1997)PubMedCrossRefGoogle Scholar
  59. 59.
    O. Livnah, E.A. Bayer, M. Wilchek, J.L. Sussman, Three-dimensional structures of avidin and the avidin-biotin complex. Proc. Natl. Acad. Sci. U. S. A. 90(11), 5076–5080 (1993)PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Z. Ding, R.B. Fong, C.J. Long, P.S. Stayton, A.S. Hoffman, Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 411(6833), 59–62 (2001)PubMedCrossRefGoogle Scholar
  61. 61.
    S.H. Yang, S.M. Kang, K.-B. Lee, T.D. Chung, H. Lee, I.S. Choi, Mussel-inspired encapsulation and functionalization of individual yeast cells. J. Am. Chem. Soc. 133(9), 2795–2797 (2011)CrossRefGoogle Scholar
  62. 62.
    X.Q. Dou, J. Zhang, C. Feng, Biotin-avidin based universal cell-matrix interaction for promoting three-dimensional cell adhesion. ACS Appl. Mater. Interfaces 7(37), 20786–20792 (2015)PubMedCrossRefGoogle Scholar
  63. 63.
    R. Chapanian, I. Constantinescu, D.E. Brooks, M.D. Scott, J. Kizhakkedathu, Antigens protected functional red blood cells by the membrane grafting of compact hyperbranched polyglycerols. Jove-J. Vis. Exp. (71), e50075. (2013)
  64. 64.
    I.M. Brockman, K.L.J. Prather, Dynamic metabolic engineering: new strategies for developing responsive cell factories. Biotechnol. J. 10(9), 1360–1369 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    C.M. Cole, J. Yang, J. Šečkutė, N.K. Devaraj, Fluorescent live-cell imaging of metabolically incorporated unnatural cyclopropene-mannosamine derivatives. ChemBioChem 14(2), 205–208 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    B.D. Ratner, The engineering of biomaterials exhibiting recognition and specificity. J. Mol. Recognit. 9(5–6), 617–625 (1996)PubMedCrossRefGoogle Scholar
  67. 67.
    S.-G. Sampathkumar, M.B. Jones, K.J. Yarema, Metabolic expression of thiol-derivatized sialic acids on the cell surface and their quantitative estimation by flow cytometry. Nat. Protoc. 1(4), 1840–1851 (2006)PubMedCrossRefGoogle Scholar
  68. 68.
    C.T. Campbell, S.-G. Sampathkumar, K.J. Yarema, Metabolic oligosaccharide engineering: perspectives, applications, and future directions. Mol. Biosyst. 3(3), 187–194 (2007)PubMedCrossRefGoogle Scholar
  69. 69.
    D.H. Dube, C.R. Bertozzi, Metabolic oligosaccharide engineering as a tool for glycobiology. Curr. Opin. Chem. Biol. 7(5), 616–625 (2003)PubMedCrossRefGoogle Scholar
  70. 70.
    K.J. Yarema, L.K. Mahal, R.E. Bruehl, E.C. Rodriguez, C.R. Bertozzi, Metabolic delivery of ketone groups to sialic acid residues: application to cell surface glycoform engineering. J. Biol. Chem. 273(47), 31168–31179 (1998)PubMedCrossRefGoogle Scholar
  71. 71.
    Y. Iwasaki, M. Sakiyama, S. Fujii, S.-I. Yusa, Surface modification of mammalian cells with stimuli-responsive polymers. Chem. Commun. 49(71), 7824–7826 (2013)CrossRefGoogle Scholar
  72. 72.
    B. Wang, J. Brand-Miller, The role and potential of sialic acid in human nutrition. Eur. J. Clin. Nutr. 57(11), 1351–1369 (2003)Google Scholar
  73. 73.
    C.G. Gahmberg, M. Tolvanen, [3] Nonmetabolic radiolabeling and tagging of glycoconjugates. Methods Enzymol. 230, 32–44 (1994)PubMedCrossRefGoogle Scholar
  74. 74.
    M. Tolvanen, C.G. Gahmberg, In vitro attachment of mono- and oligosaccharides to surface glycoconjugates of intact cells. J. Biol. Chem. 261(20), 9546–9551 (1986)PubMedGoogle Scholar
  75. 75.
    P.A. De Bank, B. Kellam, D.A. Kendall, K.M. Shakesheff, Surface engineering of living myoblasts via selective periodate oxidation. Biotechnol. Bioeng. 81(7), 800–808 (2003)PubMedCrossRefGoogle Scholar
  76. 76.
    C.A. Holden, Q. Yuan, W.A. Yeudall, D.A. Lebman, H. Yang, Surface engineering of macrophages with nanoparticles to generate a cell–nanoparticle hybrid vehicle for hypoxia-targeted drug delivery. Int. J. Nanomedicine 5, 25–36 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    D.J. Moloney, R.S. Haltiwanger, The O-linked fucose glycosylation pathway: identification and characterization of a uridine diphosphoglucose: fucose-β1,3-glucosyltransferase activity from Chinese hamster ovary cells. Glycobiology 9(7), 679–687 (1999)PubMedCrossRefGoogle Scholar
  78. 78.
    L.K. Mahal, K.J. Yarema, C.R. Bertozzi, Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276(5315), 1125 (1997)PubMedCrossRefGoogle Scholar
  79. 79.
    E. Saxon, C.R. Bertozzi, Cell surface engineering by a modified staudinger reaction. Science 287(5460), 2007 (2000)PubMedCrossRefGoogle Scholar
  80. 80.
    Y. Iwasaki, E. Tabata, K. Kurita, K. Akiyoshi, Selective cell attachment to a biomimetic polymer surface through the recognition of cell-surface tags. Bioconjug. Chem. 16(3), 567–575 (2005)PubMedCrossRefGoogle Scholar
  81. 81.
    M.G. Paulick, M.B. Forstner, J.T. Groves, C.R. Bertozzi, A chemical approach to unraveling the biological function of the glycosylphosphatidylinositol anchor. Proc. Natl. Acad. Sci. 104(51), 20332–20337 (2007)PubMedCrossRefGoogle Scholar
  82. 82.
    D. Rabuka, M.B. Forstner, J.T. Groves, C.R. Bertozzi, Noncovalent cell surface engineering: incorporation of bioactive synthetic glycopolymers into cellular membranes. J. Am. Chem. Soc. 130(18), 5947–5953 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    S. Bi, S. Yue, S. Zhang, Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine. Chem. Soc. Rev. 46, 4281–4298 (2017)PubMedCrossRefGoogle Scholar
  84. 84.
    J. Couet, J.D.J.S. Samuel, A. Kopyshev, S. Santer, M. Biesalski, Peptide–polymer hybrid nanotubes. Angew. Chem. Int. Ed. 44(21), 3297–3301 (2005)CrossRefGoogle Scholar
  85. 85.
    J.O. Zoppe, Y. Habibi, O.J. Rojas, R.A. Venditti, L.-S. Johansson, K. Efimenko, M. Österberg, J. Laine, Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromolecules 11(10), 2683–2691 (2010)PubMedCrossRefGoogle Scholar
  86. 86.
    D. Bontempo, H.D. Maynard, Streptavidin as a macroinitiator for polymerization: in situ protein−polymer conjugate formation. J. Am. Chem. Soc. 127(18), 6508–6509 (2005)PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    I. Cobo, M. Li, B.S. Sumerlin, S. Perrier, Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. Nat. Mater. 14(2), 143–159 (2015)PubMedCrossRefGoogle Scholar
  88. 88.
    J. Niu, D.J. Lunn, A. Pusuluri, J.I. Yoo, M.A. O'Malley, S. Mitragotri, H.T. Soh, C.J. Hawker, Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization. Nat. Chem. 9(6), 537–545 (2017)CrossRefGoogle Scholar
  89. 89.
    J.Y. Kim, B.S. Lee, J. Choi, B.J. Kim, J.Y. Choi, S.M. Kang, S.H. Yang, I.S. Choi, Cytocompatible polymer grafting from individual living cells by atom-transfer radical polymerization. Angew. Chem. Int. Ed. 55(49), 15306–15309 (2016)CrossRefGoogle Scholar
  90. 90.
    I. Drachuk, M.K. Gupta, V.V. Tsukruk, Biomimetic coatings to control cellular function through cell surface engineering. Adv FunMater 23(36), 4437–4453 (2013)Google Scholar
  91. 91.
    R.F. Fakhrullin, Y.M. Lvov, “Face-Lifting” and “make-up” for microorganisms: layer-by-layer polyelectrolyte nanocoating. ACS Nano 6(6), 4557–4564 (2012)PubMedCrossRefGoogle Scholar
  92. 92.
    A.J. Bradley, S.T. Test, K.L. Murad, J. Mitsuyoshi, M.D. Scott, Interactions of IgM ABO antibodies and complement with methoxy-PEG-modified human RBCs. Transfusion 41(10), 1225–1233 (2001)PubMedCrossRefGoogle Scholar
  93. 93.
    R. Chapanian, D.H. Kwan, I. Constantinescu, F.A. Shaikh, N.A.A. Rossi, S.G. Withers, J.N. Kizhakkedathu, Enhancement of biological reactions on cell surfaces via macromolecular crowding. Nat. Commun. 5, 4683 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    N.A.A. Rossi, I. Constantinescu, D.E. Brooks, M.D. Scott, J.N. Kizhakkedathu, Enhanced cell surface polymer grafting in concentrated and nonreactive aqueous polymer solutions. J. Am. Chem. Soc. 132, 3423–3430 (2010)PubMedCrossRefGoogle Scholar
  95. 95.
    V.R. Muzykantov, Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin Drug Del 7(4), 403–427 (2010)CrossRefGoogle Scholar
  96. 96.
    M.D. Scott, A.M. Chen, Beyond the red cell: pegylation of other blood cells and tissues. Transfus. Clin. Biol. 11(1), 40–46 (2004)PubMedCrossRefGoogle Scholar
  97. 97.
    V.L. Leung, J.N. Kizhakkedathu, The mechanism and modulation of complement activation on polymer grafted cells. Acta Biomater. 31, 252–263 (2016)PubMedCrossRefGoogle Scholar
  98. 98.
    N.A.A. Rossi, I. Constantinescu, R.K. Kainthan, D.E. Brooks, M.D. Scott, J.N. Kizhakkedathu, Red blood cell membrane grafting of multi-functional hyperbranched polyglycerols. Biomaterials 31, 4167–4178 (2010)PubMedCrossRefGoogle Scholar
  99. 99.
    B. Afzali, R.I. Lechler, M.P. Hernandez-Fuentes, Allorecognition and the alloresponse: clinical implications. Tissue Antigens 69(6), 545–556 (2007)PubMedCrossRefGoogle Scholar
  100. 100.
    R. Snanoudj, C. Frangié, B. Deroure, H. François, C. Créput, S. Beaudreuil, A. Dürrbach, B. Charpentier, The blockade of T-cell co-stimulation as a therapeutic stratagem for immunosuppression: focus on belatacept. Biol. Targets Ther. 1(3), 203–213 (2007)Google Scholar
  101. 101.
    K.L. Murad, E.J. Gosselin, J.W. Eaton, M.D. Scott, Stealth cells: prevention of major histocompatibility complex class ii-mediated t-cell activation by cell surface modification. Blood 94(6), 2135 (1999)PubMedGoogle Scholar
  102. 102.
    A.M. Chen, M.D. Scott, Comparative analysis of polymer and linker chemistries on the efficacy of immunocamouflage of murine leukocytes. Artif. Cells Blood Substit. Biotechnol. 34(3), 305–322 (2006)CrossRefGoogle Scholar
  103. 103.
    D. Wang, W.M. Toyofuku, A.M. Chen, M.D. Scott, Induction of immunotolerance via mPEG grafting to allogeneic leukocytes. Biomaterials 32(35), 9494–9503 (2011)PubMedCrossRefGoogle Scholar
  104. 104.
    D.L. Kyluik-Price, M.D. Scott, Effects of methoxypoly (ethylene glycol) mediated immunocamouflage on leukocyte surface marker detection, cell conjugation, activation and alloproliferation. Biomaterials 74, 167–177 (2016)PubMedCrossRefGoogle Scholar
  105. 105.
    N. Kang, W.M. Toyofuku, X. Yang, M.D. Scott, Inhibition of allogeneic cytotoxic T cell (CD8+) proliferation via polymer-induced Treg (CD4+) cells. Acta Biomater 57, 146–155 (2017). S1742-7061(17)30263-5Google Scholar
  106. 106.
    T. Maerz, R. Mu, K.C. Baker, Cell and scaffold surface engineering to enhance cell migration and tissue regeneration. Surf. Innov. 2(1), 17–25 (2014)CrossRefGoogle Scholar
  107. 107.
    D. Sarkar, P.K. Vemula, G.S.L. Teo, D. Spelke, R. Karnik, L.Y. Wee, J.M. Karp, Chemical engineering of mesenchymal stem cells to induce a cell rolling response. Bioconjug. Chem. 19(11), 2105–2109 (2008)PubMedCrossRefGoogle Scholar
  108. 108.
    K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, S. Yamanaka, Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5), 861–872 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    K. Takahashi, S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4), 663–676 (2006)PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    O. Levy, W. Zhao, L.J. Mortensen, S. Leblanc, K. Tsang, M. Fu, J.A. Phillips, V. Sagar, P. Anandakumaran, J. Ngai, C.H. Cui, P. Eimon, M. Angel, C.P. Lin, M.F. Yanik, J.M. Karp, mRNA-engineered mesenchymal stem cells for targeted delivery of interleukin-10 to sites of inflammation. Blood 122(14), e23–e32 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    W.L. Murphy, T.C. McDevitt, A.J. Engler, Materials as stem cell regulators. Nat. Mater. 13(6), 547–557 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    A. Pulsipher, M.E. Griffin, S.E. Stone, L.C. Hsieh-Wilson, Long-lived engineering of glycans to direct stem cell fate. Angew. Chem. Int. Ed. 54(5), 1466–1470 (2015)CrossRefGoogle Scholar
  113. 113.
    M.T. Stephan, J.J. Moon, S.H. Um, A. Bershteyn, D.J. Irvine, Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 16(9), 1035–1041 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    M.L. Huang, R.A. Smith, G.W. Trieger, K. Godula, Glycocalyx remodeling with proteoglycan mimetics promotes neural specification in embryonic stem cells. J. Am. Chem. Soc. 136(30), 10565–10568 (2014)Google Scholar
  115. 115.
    K. Golab, S. Kizilel, T. Bal, M. Hara, M. Zielinski, R. Grose, O. Savari, X.J. Wang, L.J. Wang, M. Tibudan, A. Krzystyniak, N. Marek-Trzonkowska, J.M. Millis, P. Trzonkowski, P. Witkowski, Improved coating of pancreatic islets with regulatory t cells to create local immunosuppression by using the biotin-polyethylene glycol-succinimidyl valeric acid ester molecule. Transplant. Proc. 46(6), 1967–1971 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    D. Vats, H. Wang, D. Esterhazy, K. Dikaiou, C. Danzer, M. Honer, F. Stuker, H. Matile, C. Migliorini, E. Fischer, J. Ripoll, R. Keist, W. Krek, R. Schibli, M. Stoffel, M. Rudin, Multimodal imaging of pancreatic beta cells in vivo by targeting transmembrane protein 27 (TMEM27). Diabetologia 55(9), 2407–2416 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    E.S. Yolcu, H. Zhao, L. Bandura-Morgan, C. Lacelle, K.B. Woodward, N. Askenasy, H. Shirwan, Pancreatic islets engineered with SA-FasL protein establish robust localized tolerance by inducing regulatory T cells in mice. J. Immunol. 187(11), 5901–5909 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    S. Cabric, T. Eich, J. Sanchez, B. Nilsson, O. Korsgren, R. Larsson, A new method for incorporating functional heparin onto the surface of islets of langerhans. Tissue Eng. Part C Methods 14(2), 141–147 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    N. Takemoto, Y. Teramura, H. Iwata, Immobilization of sertoli cells on islets of langerhans. Biomater. Sci. 1(3), 315–321 (2013)CrossRefGoogle Scholar
  120. 120.
    G.A. Zimmerman, T.M. McIntyre, M. Mehra, S.M. Prescott, Endothelial cell-associated platelet-activating factor: a novel mechanism for signaling intercellular adhesion. J. Cell Biol. 110(2), 529–540 (1990)PubMedCrossRefGoogle Scholar
  121. 121.
    V.D. Bhat, G.A. Truskey, W.M. Reichert, Using avidin-mediated binding to enhance initial endothelial cell attachment and spreading. J. Biomed. Mater. Res. Part A 40(1), 57–65 (1998)CrossRefGoogle Scholar
  122. 122.
    I.K. Ko, T.J. Kean, J.E. Dennis, Targeting mesenchymal stem cells to activated endothelial cells. Biomaterials 30(22), 3702–3710 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    T.E. Deglau, J.D. Johnson, F.S. Villanueva, W.R. Wagner, Targeting microspheres and cells to polyethylene glycol-modified biological surfaces. J. Biomed. Mater. Res. Part A 81A(3), 578–585 (2007)CrossRefGoogle Scholar
  124. 124.
    T.E. Deglau, T.M. Maul, F.S. Villanueva, W.R. Wagner, In vivo PEG modification of vascular surfaces for targeted delivery. J. Vasc. Surg. 55(4), 1087–1095 (2012)PubMedCrossRefGoogle Scholar
  125. 125.
    K.-H. Park, Arg-Gly-Asp (RGD) sequence conjugated in a synthetic copolymer bearing a sugar moiety for improved culture of parenchymal cells (hepatocytes). Biotechnol. Lett. 24(17), 1401–1406 (2002)CrossRefGoogle Scholar
  126. 126.
    N. Kojima, T. Matsuo, Y. Sakai, Rapid hepatic cell attachment onto biodegradable polymer surfaces without toxicity using an avidin–biotin binding system. Biomaterials 27(28), 4904–4910 (2006)PubMedCrossRefGoogle Scholar
  127. 127.
    D.H. Kwan, I. Constantinescu, R. Chapanian, M.A. Higgins, M.P. Kotzler, E. Samain, A.B.. Boraston, J.N. Kizhakkedathu, S.G. Withers, Toward efficient enzymes for the generation of universal blood through structure-guided directed evolution. J. Am. Chem. Soc. 137(17), 5695–5705 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Srinivas Abbina
    • 1
    • 2
  • Nima Khadem Mohtaram
    • 1
    • 2
  • Jayachandran N. Kizhakkedathu
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverCanada
  2. 2.Center for Blood ResearchUniversity of British ColumbiaVancouverCanada
  3. 3.Department of ChemistryUniversity of British ColumbiaVancouverCanada

Personalised recommendations