Multidimensional Framework for Achieving Sustainable and Resilient Food Systems in Nigeria

  • Kyle Frankel DavisEmail author
  • Olawale Emmanuel Olayide
Reference work entry


Africa faces the grand challenge of feeding a growing, more affluent population in the coming decades while reducing the environmental burden of agriculture. Approaches that integrate food security and environmental goals offer promise for achieving a more sustainable and resilient food system for the continent and for adapting to a changing climate. Here we outline a multidimensional framework to be applied to the case of staple crop production in Nigeria with the eventual intended purpose being to inform sustainable and resilient food security pathways for the country. This chapter begins by presenting a broad overview of global food security challenges and distant and local drivers of food production decision-making, with the focus of then turning toward the food security and sustainability issues facing sub-Saharan Africa and Nigeria. The chapter then introduces a novel international collaboration focusing on food security and sustainability in Nigeria – the Assessing Climate Resilient and Nutritious Crops (CRENUT) project – the primary aim of which is to link stakeholder involvement, technical expertise, and multiple types of information to achieve policy-relevant research outputs that can enhance science-based agricultural decision-making in Nigeria. This project will follow a set of five key steps to move from basic scientific discovery to its application through agricultural policy: (1) in-depth understanding of stakeholder priorities and goals; (2) an assessment of data needs, data availability, and options for data generation; (3) analysis to develop strategies to align multiple goals and to fully understand the potential co-benefits or trade-offs associated with a particular agricultural policy; (4) identification of policy mechanisms by which the desired food security and sustainability outcomes can be achieved; and (5) the transfer of this collective knowledge to inform science-based decision-making related to agriculture and food security. In doing so, this chapter present a universal approach that can be used to identify a host of desirable policy pathways which, if pursued, can promote the sustainable development of Nigeria’s agricultural sector and can realize co-benefits for nutrition, rural livelihoods, and climate change adaptation.


Sustainability Climate change Food security Water resources Greenhouse gas emissions Rural livelihoods Agricultural policy Food prices Diets Nutrition 


  1. Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. FAO, RomeGoogle Scholar
  2. Babu SC, Blom S (2014) Capacity development for resilient food systems: issues, approaches, and knowledge gaps. IFPRI, Washington, DCGoogle Scholar
  3. Babu SC, Gyimah-Brempong K, Nwafor M, Edeh H (2014) Capacity assessment for achieving the agricultural transformation agenda in Nigeria. NSSP working paper 26. IFPRI, Washington, DC/AbujaGoogle Scholar
  4. Babu SC, Mavrotas G, Prasai N (2018) Integrating environmental considerations into the agricultural policy process: evidence from Nigeria. Environ Develop 25:111–125CrossRefGoogle Scholar
  5. Barrett CB, Carter MR (2013) The economics of poverty traps and persistent poverty: policy and empirical implications. J Develop Stud 49:976–990CrossRefGoogle Scholar
  6. Brauman K, Richter B, Postel S, Malsy M, Flörke M (2016) Water depletion: an improved metric for incorporating seasonal and dry-year water scarcity into water risk assessments. Elementa 4:83Google Scholar
  7. Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N (2014) A meta-analysis of crop yield under climate change and adaptation. Nature Clim Change 4:287–291CrossRefGoogle Scholar
  8. Chand R, Prasanna PAL, Singh A (2011) Farm size and productivity: understanding the strengths of smallholders and improving their livelihoods. Econom Polit Weekly 46(Suppl rev agric):5–11Google Scholar
  9. Chapagain AK, Hoekstra AY, Savenije HHG (2006) Water saving through international trade of agricultural products. Hydrol Earth Syst Sci 10:455–468CrossRefGoogle Scholar
  10. Chiarelli DD, Davis KF, Rulli MC, D’Odorico P (2016) Climate change and large-scale land acquisitions in Africa: quantifying the future impact on acquired water resources. Adv Wat Resour 94:231–237CrossRefGoogle Scholar
  11. D’Odorico P, Rulli MC, Dell’Angelo J, Davis KF (2017) New frontiers of land and water commodification: socio-environmental controversies of large-scale land acquisitions. Land Develop Degrad 28:2234–2244CrossRefGoogle Scholar
  12. Dalin C, Wada Y, Kastner T, Puma MJ (2017) Groundwater depletion embedded in international food trade. Nature 543:700–704CrossRefGoogle Scholar
  13. Davis KF, D'Odorico P (2015) Livestock intensification and the influence of dietary change: a calorie-based assessment of competition for crop production. Sci Tot Environ 538:817–823CrossRefGoogle Scholar
  14. Davis KF, D'Odorico P, Rulli MC (2014a) Moderating diets to feed the future. Earth’s Future 2:559–565CrossRefGoogle Scholar
  15. Davis KF, D'Odorico P, Rulli MC (2014b) Land grabbing: a preliminary quantification of economic impacts on rural livelihoods. Popul Environ 36:180–192CrossRefGoogle Scholar
  16. Davis KF, Yu KL, Herrero M, Havlik P, Carr JA, D'Odorico P (2015a) Historical trade-offs of livestock’s environmental impacts. Environ Res Lett 10:125013CrossRefGoogle Scholar
  17. Davis KF, Rulli MC, D'Odorico P (2015b) The global land rush and climate change. Earth’s Future 3:298–311CrossRefGoogle Scholar
  18. Davis KF, Yu K, Rulli MC, Pichdara L, D’Odorico P (2015c) Accelerated deforestation driven by large-scale land acquisitions in Cambodia. Nat Geosci 8:772–775CrossRefGoogle Scholar
  19. Davis KF, Gephart JA, Emery K, Leach A, Galloway JN, D’Odorico P (2016) Meeting future food demand with current agricultural resources. Glob Environ Change 39:125–132CrossRefGoogle Scholar
  20. Davis KF, Rulli MC, Seveso A, D’Odorico P (2017a) Increased food production and reduced water use through optimized crop distribution. Nat Geosci 10:919–924CrossRefGoogle Scholar
  21. Davis KF, Rulli MC, Garrassino F, Chiarelli D, Seveso A, D'Odorico P (2017b) Water limits to closing yield gaps. Adv Water Resour 99:67–75CrossRefGoogle Scholar
  22. Davis K, Seveso A, Rulli M, D’Odorico P (2017c) Water savings of crop redistribution in the United States. Water 9:83CrossRefGoogle Scholar
  23. De Schutter O (2011) The green rush: the global race for farmland and the rights of land users. Harvard Intl Law J 52:503–559Google Scholar
  24. DeFries RS, Rudel T, Uriarte M, Hansen M (2010) Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat Geosci 3:178–181CrossRefGoogle Scholar
  25. DeFries R, Fanzo J, Remans R, Palm C, Wood S, Anderman TL (2015) Metrics for land-scarce agriculture. Science 349:238–240CrossRefGoogle Scholar
  26. DeFries R, Mondal P, Singh D, Agrawal I, Fanzo J, Remans R, Wood S (2016) Synergies and trade-offs for sustainable agriculture: nutritional yields and climate-resilience for cereal crops in Central India. Glob Food Secur 11:44–53CrossRefGoogle Scholar
  27. Deininger K (2013) The global land rush. In: Barrett CB (ed) Food security and sociopolitical stability. Oxford University Press, Oxford, pp 95–119CrossRefGoogle Scholar
  28. Dell’Angelo J, D’Odorico P, Rulli MC (2017) Threats to sustainable development posed by land and water grabbing. Curr Opin Environ Sust 26-27:120–128CrossRefGoogle Scholar
  29. Dercon S, Christiaensen L (2011) Consumption risk, technology adoption and poverty traps: evidence from Ethiopia. J Develop Econom 96:159–173CrossRefGoogle Scholar
  30. D'Odorico P, Laio F, Ridolfi L (2010) Does globalization of water reduce societal resilience to drought? Geophys Res Lett 37:L13403CrossRefGoogle Scholar
  31. D'Odorico P, Carr JA, Laio F, Ridolfi L, Vandoni S (2014) Feeding humanity through global food trade. Earth’s Future 2:458–469CrossRefGoogle Scholar
  32. D'Odorico P, Davis KF, Rosa L, Carr JA, Chiarelli DD, Dell'Angelo J, Gephart J, MacDonald GK, Seekell DA, Suweis S, Rulli MC (2018) The global food-energy-water nexus. Rev Geophys (in press)Google Scholar
  33. Eshel G, Shepon A, Makov T, Milo R (2014) Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States. Proc Natl Acad Sci USA 111:11996–12001CrossRefGoogle Scholar
  34. Federal Ministry of Agriculture and Rural Development (2016) The green alternative: the agricultural promotion policy 2016–2020. Federal Ministry of Agriculture and Rural Development, Federal Republic of Nigeria, AbujaGoogle Scholar
  35. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342CrossRefGoogle Scholar
  36. Food and Agriculture Organization of the United Nations (2009) Global agriculture towards 2050. FAO, RomeGoogle Scholar
  37. Food and Agriculture Organization of the United Nations (2017) FAOSTAT database. FAO, Rome Scholar
  38. Food and Agriculture Organization of the United Nations, International Fund for Agricultural Development, United Nations Children's Fund, World Food Programme, World Health Organization (2017) The state of food security and nutrition in the World 2017. Building resilience for peace and food security. FAO, RomeGoogle Scholar
  39. Food and Agriculture Organization of the United Nations, International Fund for Agricultural Development, World Food Programme (2015) The state of food insecurity in the world 2015. Meeting the 2015 international hunger targets: taking stock of uneven progress. FAO, RomeGoogle Scholar
  40. Foster V, Pushak N (2011) Nigeria’s infrastructure: a continental perspective. Policy research working paper 5686. The World Bank, Washington, DCCrossRefGoogle Scholar
  41. Galli A, Wackernagel M, Iha K, Lazarus E (2014) Ecological footprint: implications for biodiversity. Biol Conserv 173:121–132CrossRefGoogle Scholar
  42. Garnett T, Appleby MC, Balmford A, Bateman IJ, Benton TG, Bloomer P, Burlingame B, Dawkins M, Dolan L, Fraser D, Herrero M, Hoffmann I, Smith P, Thornton PK, Toulmin C, Vermeulen SJ, HCJ G (2013) Sustainable intensification in agriculture: premises and policies. Science 341:33–34CrossRefGoogle Scholar
  43. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818CrossRefGoogle Scholar
  44. Gustavsson J, Cederberg C, Sonesson U, van Otterdijk R, Meybeck A (2011) Global food losses and food waste: extent, causes and prevention. FAO, Gotherburg/RomeGoogle Scholar
  45. Herrero M, Havlik P, Valin H, Notenbaert A, Rufino MC, Thornton PK, Blummel M, Weiss F, Grace D, Obersteiner M (2013) Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc Natl Acad Sci USA 110:20888–20893CrossRefGoogle Scholar
  46. Herrero M, Thornton PK, Power B, Bogard JR, Remans R, Fritz S, Gerber JS, Nelson G, See L, Waha K, Watson RA, West PC, Samberg LH, van de Steeg J, Stephenson E, van Wijk M, Havlík P (2017) Farming and the geography of nutrient production for human use: a transdisciplinary analysis. Lancet Plan Health 1:e33–e44CrossRefGoogle Scholar
  47. Hoekstra AY, Mekonnen MM (2012) The water footprint of humanity. Proc Natl Acad Sci USA 109:3232–3237CrossRefGoogle Scholar
  48. Hoekstra AY, Wiedmann TO (2014) Humanity’s unsustainable environmental footprint. Science 344:1114–1117CrossRefGoogle Scholar
  49. Hoekstra AY, Mekonnen MM, Chapagain AK, Mathews RE, Richter BD (2012) Global monthly water scarcity: blue water footprints versus blue water availability. PLoS One 7:e32688CrossRefGoogle Scholar
  50. Jägermeyr J, Gerten D, Schaphoff S, Heinke J, Lucht W, Rockstrom J (2016) Integrated crop water management might sustainably halve the global food gap. Environ Res Lett 11:025002CrossRefGoogle Scholar
  51. Kastner T, Rivas MJI, Koch W, Nonhebel S (2012) Global changes in diets and the consequences for land requirements for food. Proc Natl Acad Sci USA 109:6868–6872CrossRefGoogle Scholar
  52. Kummu M, de Moel H, Porkka M, Siebert S, Varis O, Ward PJ (2012) Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci Tot Environ 438:477–489CrossRefGoogle Scholar
  53. Larson DF, Otsuka K, Matsumoto T, Kilic T (2012) Should African rural development strategies depend on smallholder farms? An exploration of the inverse productivity hypothesis. The World Bank, Washington, DCCrossRefGoogle Scholar
  54. Leach AM, Galloway JN, Bleeker A, Erisman JW, Kohn R, Kitzes J (2012) A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environ Develop 1:40–66CrossRefGoogle Scholar
  55. Leach AM, Emery KA, Davis KF, Gephart JA, Carr JA, Pace ML, D’Odorico P, Galloway JN (2016) Environmental impact food labels combining carbon, nitrogen, and water footprints. Food Policy 61:213–223CrossRefGoogle Scholar
  56. Lenzen M, Moran D, Kanemoto K, Foran B, Lobefaro L, Geschke A (2012) International trade drives biodiversity threats in developing nations. Nature 486:109–112CrossRefGoogle Scholar
  57. Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610CrossRefGoogle Scholar
  58. Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620CrossRefGoogle Scholar
  59. MacDonald GK, Brauman KA, Sun S, Carlson KM, Cassidy ES, Gerber JS, West PC (2015) Rethinking agricultural trade relationships in an era of globalization. Bioscience 65:275–289CrossRefGoogle Scholar
  60. Mekonnen MM, Hoekstra AY (2010) The green, blue and grey water footprint of crops and derived crop products, Value of water research report series no. 47. UNESCO-IHE, DelftGoogle Scholar
  61. Mekonnen MM, Hoekstra AY (2012) A global assessment of the water footprint of farm animal products. Ecosystems 15:401–415CrossRefGoogle Scholar
  62. Mekonnen MM, Hoekstra AY (2016) Four billion people facing severe water scarcity. Sci Adv 2:e1500323CrossRefGoogle Scholar
  63. Ministry of Budget and National Planning (2016) National policy on food and nutrition in Nigeria. Ministry of Budget and National Planning. Federal Republic of Nigeria, AbujaGoogle Scholar
  64. Mitter H, Heumesser C, Schmid E (2015) Spatial modeling of robust crop production portfolios to assess agricultural vulnerability and adaptation to climate change. Land Use Policy 46:75–90CrossRefGoogle Scholar
  65. Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012) Closing yield gaps through nutrient and water management. Nature 490:254–257CrossRefGoogle Scholar
  66. Mueller ND, West PC, Gerber JS, MacDonald GK, Polasky S, Foley JA (2014) A tradeoff frontier for global nitrogen use and cereal production. Environ Res Lett 9:054002CrossRefGoogle Scholar
  67. Myers SS, Zanobetti A, Kloog I, Huybers P, Leakey ADB, Bloom AJ, Carlisle E, Dietterich LH, Fitzgerald G, Hasegawa T, Holbrook NM, Nelson RL, Ottman MJ, Raboy V, Sakai H, Sartor KA, Schwartz J, Seneweera S, Tausz M, Usui Y (2014) Increasing CO2 threatens human nutrition. Nature 510:139–142CrossRefGoogle Scholar
  68. National Bureau of Statistics (2018) Unemployment rate. National Bureau of Statistics, Federal Republic of Nigeria, AbujaGoogle Scholar
  69. Oguntoya EB, Akinyele IO (eds) (1995) Nutrient composition of commonly eaten foods in Nigeria – raw, processed, and prepared. Food Basket Foundation International, IbadanGoogle Scholar
  70. Olayide OE, Tetteh IK, Popoola L (2016) Differential impacts of rainfall and irrigation on agricultural production in Nigeria: any lessons for climate-smart agriculture? Agric Wat Manag 178:30–36CrossRefGoogle Scholar
  71. Organisation for Economic Co-operation and Development, FAO (2017) Agricultural outlook 2017–2026. FAO, RomeGoogle Scholar
  72. Pingali PL (2012) Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci USA 109:12302–12308CrossRefGoogle Scholar
  73. Pingali PL (2016) The hunger metrics mirage: There's been less progress on hunger reduction than it appears. Proc Natl Acad Sci USA 113:4880–4883CrossRefGoogle Scholar
  74. Postel SL, Daily GC, Ehrlich PR (1996) Human appropriation of renewable fresh water. Science 271:785–788CrossRefGoogle Scholar
  75. Pradhan P, Fischer G, van Velthuizen H, Reusser DE, Kropp JP (2015) Closing yield gaps: how sustainable can we be? PLoS One 10:e0129487CrossRefGoogle Scholar
  76. Puma MJ, Bose S, Chon SY, Cook BI (2015) Assessing the evolving fragility of the global food system. Environ Res Lett 10:024007CrossRefGoogle Scholar
  77. Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob Biogeochem Cyc 22:GB1003CrossRefGoogle Scholar
  78. Rao N, Poblete-Cazenave M, Bhalerao R, Davis KF, Parkinson S (n.d.) Food grains, energy demand and GHG emissions in India (in review)Google Scholar
  79. Ray DK, Foley JA (2013) Increasing global crop harvest frequency: recent trends and future directions. Environ Res Lett 8:044041CrossRefGoogle Scholar
  80. Ray DK, Gerber JS, MacDonald GK, West PC (2015) Climate variation explains a third of global crop yield variability. Nat Commun 6:5989CrossRefGoogle Scholar
  81. Rockström J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461:472–475CrossRefGoogle Scholar
  82. Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Boote KJ, Folberth C, Glotter M, Khabarov N, Neumann K, Piontek F, Pugh TAM, Schmid E, Stehfest E, Yang H, Jones JW (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci USA 111:3268–3273CrossRefGoogle Scholar
  83. Rulli MC, D'Odorico P (2013) The water footprint of land grabbing. Geophys Res Lett 40:6130–6135CrossRefGoogle Scholar
  84. Rulli MC, D'Odorico P (2014) Food appropriation through large scale land acquisitions. Environ Res Lett 9:064030CrossRefGoogle Scholar
  85. Rulli MC, Saviori A, D'Odorico P (2013) Global land and water grabbing. Proc Natl Acad Sci USA 110:892–897CrossRefGoogle Scholar
  86. Rulli MC, Bellomi D, Cazzoli A, De Carolis G, D’Odorico P (2016) The water-land-food nexus of first-generation biofuels. Sci Rep 6:22521CrossRefGoogle Scholar
  87. Samberg LH, Gerber JS, Ramankutty N, Herrero M, West PC (2016) Subnational distribution of average farm size and smallholder contributions to global food production. Environ Res Lett 11:124010CrossRefGoogle Scholar
  88. Schlesinger WH (2009) On the fate of anthropogenic nitrogen. Proc Natl Acad Sci USA 106:203–208CrossRefGoogle Scholar
  89. Steffen W, Richardson K, Rockstrom J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sorlin S (2015) Planetary boundaries: guiding human development on a changing planet. Science 347:1259855CrossRefGoogle Scholar
  90. Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Hann C (2006) Livestock’s long shadow: environmental issues and options. FAO, RomeGoogle Scholar
  91. Stuart D, Schewe RL, McDermott M (2014) Reducing nitrogen fertilizer application as a climate change mitigation strategy: understanding farmer decision-making and potential barriers to change in the US. Land Use Pol 36:210–218CrossRefGoogle Scholar
  92. Suweis S, Rinaldo A, Maritan A, D'Odorico P (2013) Water-controlled wealth of nations. Proc Natl Acad Sci USA 110:4230–4233CrossRefGoogle Scholar
  93. Suweis S, Carr JA, Maritan A, Rinaldo A, D'Odorico P (2015) Resilience and reactivity of global food security. Proc Natl Acad Sci U S A 112:6902–6907CrossRefGoogle Scholar
  94. Thornton PK (2010) Livestock production: recent trends, future prospects. Phil Trans Roy Soc B 365:2853–2867CrossRefGoogle Scholar
  95. Tilman D, Clark M (2014) Global diets link environmental sustainability and human health. Nature 505:518–522CrossRefGoogle Scholar
  96. Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108:20260–20264CrossRefGoogle Scholar
  97. UN-DESA (2015) World population prospects: the 2015 revision. UN, New YorkGoogle Scholar
  98. United States Department of Agriculture (2018) USDA food composition database. USDA, Washington, DC Scholar
  99. Van Dingenen R, Dentener FJ, Raes F, Krol MC, Emberson L, Cofala J (2009) The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos Environ 43:604–618CrossRefGoogle Scholar
  100. van Ittersum MK, van Bussel LGJ, Wolf J, Grassini P, van Wart J, Guilpart N, Claessens L, de Groot H, Wiebe K, Mason-D’Croz D, Yang H, Boogaard H, van Oort PAJ, van Loon MP, Saito K, Adimo O, Adjei-Nsiah S, Agali A, Bala A, Chikowo R, Kaizzi K, Kouressy M, Makoi JHJR, Ouattara K, Tesfaye K, Cassman KG (2016) Can sub-Saharan Africa feed itself? Proc Natl Acad Sci USA 113:14964–14969CrossRefGoogle Scholar
  101. Veldkamp TIE, Wada Y, Aerts JCJH, Ward PJ (2016) Towards a global water scarcity risk assessment framework: incorporation of probability distributions and hydro-climatic variability. Environ Res Lett 11:024006CrossRefGoogle Scholar
  102. Vermeulen SJ, Campbell BM, Ingram JSI (2012) Climate change and food systems. Ann Rev Environ Res 37:195–222CrossRefGoogle Scholar
  103. von Braun J, Meinzen-Dick R (2009) “Land grabbing” by foreign investors in developing countries: risks and opportunities. IFPRI, Washington, DCGoogle Scholar
  104. Wackernagel M, Schulz NB, Deumling D, Linares AC, Jenkins M, Kapos V, Monfreda C, Loh J, Myers N, Norgaard R, Randers J (2002) Tracking the ecological overshoot of the human economy. Proc Natl Acad Sci USA 99:9266–9271CrossRefGoogle Scholar
  105. Wada Y, Gleeson T, Esnault L (2014) Wedge approach to water stress. Nat Geosci 7:615–617CrossRefGoogle Scholar
  106. Weinzettel J, Hertwich EG, Peters GP, Steen-Olsen K, Galli A (2013) Affluence drives the global displacement of land use. Glob Environ Change 23:433–438CrossRefGoogle Scholar
  107. West PC, Gerber JS, Engstrom PM, Mueller ND, Brauman KA, Carlson KM, Cassidy ES, Johnston M, MacDonald GK, Ray DK, Siebert S (2014) Leverage points for improving global food security and the environment. Science 345:325–328CrossRefGoogle Scholar
  108. Wheeler T, von Braun J (2013) Climate change impacts on global food security. Science 341:508–513CrossRefGoogle Scholar
  109. Wood SA, Smith MR, Fanzo J, Remans R, DeFries RS (2018) Trade and the equitability of global food nutrient distribution. Nature Sust 1:34–37CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kyle Frankel Davis
    • 1
    • 2
    • 3
    Email author
  • Olawale Emmanuel Olayide
    • 4
  1. 1.The Earth InstituteColumbia UniversityNew YorkUSA
  2. 2.The Nature ConservancyNew YorkUSA
  3. 3.Data Science InstituteColumbia UniversityNew YorkUSA
  4. 4.Centre for Sustainable DevelopmentUniversity of IbadanIbadanNigeria

Personalised recommendations