• Balappa B. Munavalli
  • Satishkumar R. Naik
  • Anand I. Torvi
  • Mahadevappa Y. KariduraganavarEmail author
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


Dendrimers are the new class of materials, characterized by the combination of compact molecular assembly and high number of functional groups, which can make them potential candidates in both medical and engineering applications. Thus, this chapter presents an overview of dendrimers, which includes the classification of dendrimers, different methods employed for the syntheses of dendrimers, and properties and applications of dendrimers. An attempt was also made to discuss the progress made in the variety of dendrimeric materials. A special attention was made in discussing the properties of dendrimers and their structures, which play predominant role in deciding the applications of dendrimers in various fields. During the review, we came to know that dendrimers can also demonstrate as novel carriers for drug delivery across the cell membranes and organ barriers such as blood-brain barrier (BBB) and have a host of applications in treating tumors and cerebral gliomas and delivery of drugs for specific site of a brain. This anticipates that a new era of research on the dendrimers would focus on the development of dendrimers-clusters to form multifunctional therapeutic systems, which could subsequently open a new path for clinical applications. At the end, while concluding, we have also discussed the future prospects of dendrimers for various applications. To compile this chapter and to provide adequate information to the readers, we have explored all the possible ways, such as research articles, reviews, books, book chapters, and Google sites.



Authors sincerely thank the DST, New Delhi, for providing the financial support under DST-PURSE-Phase-II Program. The authors particularly Balappa Munavalli and Satishkumar Naik thank the UGC, New Delhi, for awarding (RFSMS) fellowship to pursue Ph.D. degree.


  1. 1.
    S. Srinivasa, K.J. Yarema, Dendrimers in Cancer Treatment and Diagnosis (Wiley, New York, 2007)Google Scholar
  2. 2.
    D.A. Tomalia, J.M.J. Frechet, Discovery of dendrimers and dendritic polymers: a brief historical perspective. J. Polym. Sci. Part A 40, 2719 (2002)CrossRefGoogle Scholar
  3. 3.
    D.A. Tomalia, H. Baker, J. Dewald, M. Hall, M. Kallos, S. Martin, J. Roeck, J. Ryder, P. Smith, A new class of polymers: starburst-dendritic macromolecules. Polym. J. 17, 117–132 (1985)CrossRefGoogle Scholar
  4. 4.
    C.J. Hawker, J.M.J. Frechet, Preparation of polymers with controlled molecular architecture: a new convergent approach to dendritic macromolecules. J. Am. Chem. Soc. 112, 7638–7647 (1990)CrossRefGoogle Scholar
  5. 5.
    G.R. Newkome, Z.Q. Yao, G.R. Baker, V.K. Gupta, Cascade molecules: a new approach to micelles. J. Org. Chem. 50, 2003–2004 (1985)CrossRefGoogle Scholar
  6. 6.
    D. Boris, M. Rubinstein, A self-consistent mean field model of a starburst dendrimers: dense core vs. dense shells. Macromolecules 29, 7251–7260 (1996)CrossRefGoogle Scholar
  7. 7.
    G. Spataro, F. Malecaze, C.O. Turrin, V. Soler, C. Duhayon, P.P. Elena, Designing dendrimers for ocular drug delivery. Eur. J. Med. Chem. 45, 326–334 (2010)PubMedCrossRefGoogle Scholar
  8. 8.
    A.W. Bosman, E.W. Meijer, About dendrimers: structure, physical properties and applications. Chem. Rev. 99, 1665–1688 (1999)PubMedCrossRefGoogle Scholar
  9. 9.
    E.R. Gilles, J.M.J. Fréchet, Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today 10, 35–43 (2005)CrossRefGoogle Scholar
  10. 10.
    D.A. Tomalia, H. Baker, J.R. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, P. Smith, Dendritic macromolecules: synthesis of starburst dendrimers. Macromolecules 9, 2466–2468 (1986)CrossRefGoogle Scholar
  11. 11.
    Y. Kim, S.C. Zimmerman, Applications of dendrimers in bio-organic chemistry. Curr. Opin. Chem. Biol. 2, 733–742 (1998)PubMedCrossRefGoogle Scholar
  12. 12.
    D.K. Smith, F. Diederich, Functional dendrimers: unique biological mimics. Chem. Eur. J. 4, 1353–1361 (1998)CrossRefGoogle Scholar
  13. 13.
    S.E. Stiriba, H. Frey, R. Haag, Dendritic polymers in biomedical applications: from potential to clinical use in diagnostics and therapy. Angew. Chem. Int. Ed. 41, 1329–1334 (2002)CrossRefGoogle Scholar
  14. 14.
    G.V. Shinde, G.S. Bangale, D.K. Umalkar, B.S. Rathinaraj, C.S. Yadav, P. Yadav, Dendrimers. J. Pharm. Biomed. Sci. 3, 1–8 (2010)Google Scholar
  15. 15.
    G. Tarun, S. Onkar, A. Saahil, R.S.R. Murthy, Dendrimer- a novel scaffold for drug delivery. Int. J. Pharm. Sci. Rev. Res. 7(2), 211–220 (2011)Google Scholar
  16. 16.
    S. Pushkar, A. Philip, K. Pathak, D. Pathak, Dendrimers: nanotechnology derived novel polymers in drug delivery. Indian J. Pharm. Educ. 40, 153–158 (2006)Google Scholar
  17. 17.
    X. Xianghui, J. Yeting, L. Yunkun, Z. Xiao, T. Zhaoxu, G. Zhongwei, Bio-inspired supramolecular hybrid dendrimers self-assembled from low-generation peptide dendrons for highly efficient gene delivery and biological tracking. ACS Nano 8, 9255–9264 (2014)CrossRefGoogle Scholar
  18. 18.
    A.K. Garth, C. Weibo, G. Murray, Collagen mimetic dendrimers. J. Am. Chem. Soc. 124, 15162–15163 (2002)CrossRefGoogle Scholar
  19. 19.
    S. Kristen, P.M. James, Peptide dendrimers: applications and synthesis. Rev. Mol. Biotechnol. 90, 195–229 (2002)CrossRefGoogle Scholar
  20. 20.
    K.C. Byoung, J. Anurag, M. Surbhi, O. Hooisweng, S.M. Gruner, U. Wiesner, Nanohybrids from liquid crystalline extended amphiphilic dendrimers. J. Am. Chem. Soc. 126, 4070–4071 (2004)CrossRefGoogle Scholar
  21. 21.
    D.A. Tomalia, A.M. Naylor, W.A. Goddard, Starburst dendrimers: molecular-level control of size, shape, suface chemistry, topology and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Ed. Engl. 29, 138–175 (1990)CrossRefGoogle Scholar
  22. 22.
    E. Roseita, D.A. Tomalia, Poly (amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Deliv. Today 6, 427–436 (2001)CrossRefGoogle Scholar
  23. 23.
    O. Schiavon, G. Pasut, S. Moro, PEG-Ara-C conjugates for controlled release. Eur. J. Med. Chem. 39, 123–133 (2004)PubMedCrossRefGoogle Scholar
  24. 24.
    M.F. Brana, G. Dominguez, B. Saez, Synthesis and anti-tumor activity of new dendritic polyamines-(imide-DNA-intercalator) conjugates: potent Lck inhibitors. Eur. J. Med. Chem. 37, 541–551 (2002)PubMedCrossRefGoogle Scholar
  25. 25.
    D.A. Tomalia, J.R. Dewald, M.R. Hall, S.J. Martin, P.B. Smith, Reprints 1st SPSJ International Polymer Conference (Society Polymer Science, Japan, Kyoto, 1984), p. 65Google Scholar
  26. 26.
    C. Hawker, J.M.J. Fréchet, A new convergent approach to monodisperse dendritic macromolecules. J. Chem. Soc. Chem. Commun. 1010–1013 (1990)Google Scholar
  27. 27.
    P.R. Dvornic, M.J. Owen, Poly(amidoamine organosilicon) Dendrimers and Their Derivatives of Higher Degree of Structural Complexity (American Chemical Society, Washington, DC, 2002)Google Scholar
  28. 28.
    J. Li, D.R. Swanson, D. Qin, H.M. Brothers, L.T. Piehler, D. Tomalia, D.J. Meier, Characterizations of core-shell tecto-(dendrimer) molecules by tapping mode atomic force microscopy. Langmuir 15, 7347–7350 (1999)CrossRefGoogle Scholar
  29. 29.
    C. Hawaker, K.L. Wooley, J.M.J. Frechet, Unimolecular micelles and globular amphiphiles: dendritic macromolecules as novel recyclable solubilization agents. J. Chem. Soc. Perkin Trans. 1, 1287–1289 (1993)CrossRefGoogle Scholar
  30. 30.
    J.A. Kremers, E.W. Meijer, Synthesis and characterization of a chiral dendrimer derived from pentaerythritol kremers. J. Org. Chem. 59, 4262–4266 (1994)CrossRefGoogle Scholar
  31. 31.
    U. Boas, J.B. Christensen, P.M.H. Heegaard, Dendrimers: design, synthesis and chemical properties. J. Mater. Chem. 16, 3785–3798 (2006)CrossRefGoogle Scholar
  32. 32.
    A. Janaszewska, K. Maczynska, G. Matuszko, D. Appelhans, B. Voit, B. Klajnert, M. Bryszewska, Cytotoxicity of PAMAM, PPI and maltose modified PPI dendrimers in Chinese hamster ovary (CHO) and human ovarian carcinoma (SKOV3) cells. New J. Chem. 36, 428–437 (2012)CrossRefGoogle Scholar
  33. 33.
    R. Satapathy, M. Ramesh, H. Padhy, I.H. Chiang, C.W. Chu, K.H. Wei, H.C. Lin, Novel metallo-dendrimers containing various Ru core ligands and dendritic thiophene arms for photovoltaic applications. Polym. Chem. 5, 5423–5435 (2014)CrossRefGoogle Scholar
  34. 34.
    C. Gorman, Metallodendrimers: structural diversity and functional behavior. Adv. Mater. 10, 295–309 (1998)CrossRefGoogle Scholar
  35. 35.
    V. Balzani, S. Campagna, G. Denti, A. Juris, S. Serroni, M. Venturi, Designing dendrimers based on transition-metal complexes. Light-harvesting properties and predetermined redox patterns. Acc. Chem. Res. 31, 26–34 (1998)CrossRefGoogle Scholar
  36. 36.
    G.R. Newkome, E. He, Nanometric dendritic macromolecules: stepwise assembly by double(2,2′:6′,2″-terpyridine)ruthenium(I) connectivity. J. Mater. Chem. 7, 1237–1244 (1997)CrossRefGoogle Scholar
  37. 37.
    G.R. Newkome, R.G. Guther, C.N. Moorefield, F. Cardullo, L. Echegoyen, E.C. Perez, H. Luftmann, Routes to dendritic networks: bis-dendrimers by coupling of cascade macromolecules through metal centers. Angew. Chem. Int. Ed. Engl. 34, 2023–2026 (1995)CrossRefGoogle Scholar
  38. 38.
    E.C. Constable, A.J. Edwards, D. Phillips, P.R. Raithby, Self-assembly of a supramolecular oligomer containing three different cobalt(II) environments; the first structurally characterised polymer derived from 2,3,5,6-tetra(2-pyridyl)pyrazine(tppz). J. Supramol. Chem. 5, 93–95 (2006)CrossRefGoogle Scholar
  39. 39.
    P. Lange, A. Schier, H. Schmidbaur, Dendrimer-based multinuclear gold(I) complexes. Inorg. Chem. 35, 637–642 (1996)CrossRefGoogle Scholar
  40. 40.
    C.B. Gorman, B.L. Parkhurst, W.Y. Su, K.Y. Chen, Encapsulated electroactive molecules based upon an inorganic cluster surrounded by dendron ligands. J. Am. Chem. Soc. 119, 1141–1142 (1997)CrossRefGoogle Scholar
  41. 41.
    P.J. Dandliker, F. Diederich, J.P. Gisselbrecht, A. Louati, M. Gross, Water-soluble dendritic iron porphyrins: synthetic models of globular heme proteins. Angew. Chem. Int. Ed. Eng. 34, 2725–2728 (1995)CrossRefGoogle Scholar
  42. 42.
    H.F. Chow, I.Y.K. Chan, D.T.W. Chan, R.W.M. Kwok, Dendritic models of redox proteins: X-ray photoelectron spectroscopy and cyclic voltammetry studies of dendritic bis(terpyridine) iron(II) complexes. Chem. Eur. J. 2, 1085–1091 (1996)CrossRefGoogle Scholar
  43. 43.
    J. Issberner, F. Vogtle, L.D. Cola, V. Balzani, Dendritic bipyridine ligands and their tris(bipyridine)ruthenium(II) chelates-syntheses, absorption spectra, and photophysical properties. Chem. Eur. J. 3, 706–712 (1997)CrossRefGoogle Scholar
  44. 44.
    M. Cuadrado, J. Moran, C.M. Losada, C. Casado, B. Pascual, F. Alonso, F. Lobete, in Advances in Dendritic Macromolecules, ed. by G.R. Newkome (JAI, Greenwich, 1996)Google Scholar
  45. 45.
    E. Buhleier, W. Wehner, F. Vögtle, Cascade and nonskid-chain-like syntheses of molecular cavity topologies. Synthesis-Stuttgart 2, 155–158 (1978)CrossRefGoogle Scholar
  46. 46.
    R.G. Denkewalter, J.F. Kolc, W.J. Lukasavage, Macromolecular highly branched homogeneous compound, U.S. Patent 4,410,688 (1981)Google Scholar
  47. 47.
    D.A. Tomalia, J.R. Dewald, Dense star polymers having core, core branches, terminal groups, U.S. Patent 4,507,466 (1983)Google Scholar
  48. 48.
    J.M.J. Frechet, Y. Jiang, C.J. Hawker, A. Philippides, Proceedings of IUPAC International Symposium on Macromolecules (Seoul, Korea 1989), pp. 19–20Google Scholar
  49. 49.
    T.M. Miller, T.X. Neenan, Convergent synthesis of monodisperse dendrimers based upon 1,3,5-trisubstituted benzenes. Chem. Mater. 2, 346–349 (1990)CrossRefGoogle Scholar
  50. 50.
    T.M. Miller, T.X. Neenan, R. Zayas, H.E. Bair, Synthesis and characterization of a series of monodisperse, 1,3,5-phenylene-based hydrocarbon dendrimers including C276H186 and their fluorinated analogs. J. Am. Chem. Soc. 114, 1018–1025 (1992)CrossRefGoogle Scholar
  51. 51.
    U.M. Wiesler, K. Mullen, Polyphenylene dendrimers via Diels–Alder reactions: the convergent approach. Chem. Commun. 22, 2293–2294 (1999)CrossRefGoogle Scholar
  52. 52.
    F. Morgenroth, E. Reuther, K. Mullen, Polyphenylene dendrimers: from three-dimensional to two-dimensional structures. Angew. Chem. Int. Ed. Engl. 36, 631–634 (1997)CrossRefGoogle Scholar
  53. 53.
    H. Ihre, A. Hult, E. Soderlind, Synthesis, characterization, and 1H NMR self-diffusion studies of dendritic aliphatic polyesters based on 2,2-bis(hydroxymethyl)propionic acid and 1,1,1-tris(hydroxyphenyl)ethane. J. Am. Chem. Soc. 118, 6388–6395 (1996)CrossRefGoogle Scholar
  54. 54.
    H. Ihre, D.J.O.L. Padilla, J.M.J. Fréchet, Fast and convenient divergent synthesis of aliphatic ester dendrimers by anhydride coupling. J. Am. Chem. Soc. 123, 5908–5917 (2001)PubMedCrossRefGoogle Scholar
  55. 55.
    S.M. Grayson, J.M.J. Frechet, Divergent synthesis of dendronized poly(p-hydroxystyrene). Macromolecules 34, 6542–6544 (2001)CrossRefGoogle Scholar
  56. 56.
    M. Jayaraman, J.M.J. Frechet, A convergent route to novel aliphatic polyether dendrimers. J. Am. Chem. Soc. 120, 12996–12997 (1998)CrossRefGoogle Scholar
  57. 57.
    S.M. Grayson, M. Jayaraman, J.M.J. Frechet, Convergent synthesis and surface functionalization of a dendritic analog of poly(ethylene glycol). Chem. Commun. 1329–1330 (1999)Google Scholar
  58. 58.
    S.M. Grayson, J.M.J. Frechet, Synthesis and surface functionalization of aliphatic polyether dendrons. J. Am. Chem. Soc. 122, 10335–10344 (2000)CrossRefGoogle Scholar
  59. 59.
    P.R.L. Malenfant, M. Jayaraman, J.M.J. Frechet, Dendrimer-supported oligothiophene synthesis: aliphatic ether dendrimers in the preparation of oligothiophenes with minimal substitution. Chem. Mater. 11, 3420–3422 (1999)CrossRefGoogle Scholar
  60. 60.
    P.R.L. Malenfant, J.M.J. Frechet, Dendrimers as solubilizing groups for conducting polymers: preparation and characterization of polythiophene functionalized exclusively with aliphatic ether convergent dendrons. Macromolecules 33, 3634–3640 (2000)CrossRefGoogle Scholar
  61. 61.
    A.J. Brouwer, S.J.E. Mulders, R.M.J. Liskamp, Convergent synthesis and diversity of amino acid based dendrimers. Eur. J. Org. Chem. 1903–1915 (2001)Google Scholar
  62. 62.
    K.E. Uhrich, J.M.J. Frechet, Synthesis of dendritic polyamides via a convergent growth approach. J. Chem. Soc. Perkin Trans. 1, 1623–1630 (1992)CrossRefGoogle Scholar
  63. 63.
    G. Wu, R.F. Barth, W. Yang, M. Chatterjee, W. Tjarks, M.J. Ciesielski, R.A. Fenstermaker, Site-specific conjugation of boron-containing dendrimers to anti-EGF receptor monoclonal antibody cetuximab (IMC-C225) and its evaluation as a potential delivery agent for neutron capture therapy. Bioconjug. Chem. 15, 185–194 (2004)PubMedCrossRefGoogle Scholar
  64. 64.
    S.J.E. Mulders, A.J. Brouwer, R.M. Liskamp, Molecular diversity of novel amino acid based dendrimers. J. Tetrahedron Lett. 38, 3085–3088 (1997)CrossRefGoogle Scholar
  65. 65.
    S.J.E. Mulders, A.J. Brouwer, P.G.J. van der Meer, R.M. Liskamp, Synthesis of a novel amino acid based dendrimer. J. Tetrahedron Lett. 38, 631–634 (1997)CrossRefGoogle Scholar
  66. 66.
    S.J.E. Mulders, A.J. Brouwer, P. Kimkes, E.J.R. Sudholter, R.M.J. Liskamp, Sizing of amino acid based dendrimers in Langmuir monolayers. J. Chem. Soc. Perkin Trans. 2, 1535–1538 (1998)CrossRefGoogle Scholar
  67. 67.
    B.I. Voit, D. Wolf, Perfectly branched polyamide dendrons based on 5-(2-aminoethoxy)-isophthalic acid. Tetrahedron 53, 15535–15551 (1997)CrossRefGoogle Scholar
  68. 68.
    T.M. Miller, E.W. Kwock, T.X. Neenan, Synthesis of four generations of monodisperse aryl ester dendrimers based on 1,3,5-benzenetricarboxylic acid. Macromolecules 25, 3143–3148 (1992)CrossRefGoogle Scholar
  69. 69.
    E.W. Kwock, T.X. Neenan, T.M. Miller, Convergent synthesis of monodisperse aryl ester dendrimers. Chem. Mater. 3, 775–777 (1991)CrossRefGoogle Scholar
  70. 70.
    R.T. Taylor, U. Paupaiboon, Polyurethane dendrimers via curtius reaction. Tetrahedron Lett. 39, 8005–8008 (1998)CrossRefGoogle Scholar
  71. 71.
    U. Puapaiboon, R.T. Taylor, Characterization and monitoring reaction of polyurethane dendritic wedges and dendrimers using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 13, 508–515 (1999)CrossRefGoogle Scholar
  72. 72.
    S.P. Rannard, N.J. Davis, A highly selective, one-pot multiple-addition convergent synthesis of polycarbonate dendrimers. J. Am. Chem. Soc. 122, 11729–11730 (2000)CrossRefGoogle Scholar
  73. 73.
    K. Kadei, R. Moors, F. Vogtle, Dendrimere und dendrimer-bausteine mit trisubstituiertem benzol und “hexacyclen” als kern. Chem. Ber. 127, 897–903 (1994)CrossRefGoogle Scholar
  74. 74.
    J. Louie, J.F. Hartwig, A.J. Fry, Discrete high molecular weight triarylamine dendrimers prepared by palladium-catalyzed amination. J. Am. Chem. Soc. 119, 11695–11696 (1997)CrossRefGoogle Scholar
  75. 75.
    J. Lim, E.E. Simanek, Synthesis of water-soluble dendrimers based on melamine bearing 16 paclitaxel groups. Org. Lett. 10, 201–204 (2008)PubMedCrossRefGoogle Scholar
  76. 76.
    K. Bronk, S. Thayumanavan, Design and synthesis of non-conjugated monodendrons with triarylamine repeating units. Org. Lett. 3, 2057–2060 (2001)PubMedCrossRefGoogle Scholar
  77. 77.
    K. Matsuda, N. Nakamura, K. Inoue, N. Koga, H. Iwamura, Toward dendritic two-dimensional polycarbenes: syntheses of ‘starburst’-type nona- and dodecadiazo compounds and magnetic study of their photoproducts. Bull. Chem. Soc. Jpn. 69, 1483–1494 (1996)CrossRefGoogle Scholar
  78. 78.
    Z. Peng, Y. Pan, B. Xu, J. Zhang, Synthesis and optical properties of novel unsymmetrical conjugated dendrimers. J. Am. Chem. Soc. 122, 6619–6623 (2000)CrossRefGoogle Scholar
  79. 79.
    A. Rajca, S. Utamapanya, Toward organic synthesis of a magnetic particle: dendritic polyradicals with 15 and 31 centers for unpaired electrons. J. Am. Chem. Soc. 115, 10688–10694 (1993)CrossRefGoogle Scholar
  80. 80.
    P.R. Ashton, K. Shibata, A.N. Shipway, J.F. Stoddart, Polycationic dendrimers. Angew. Chem. Int. Ed. Engl. 36, 2781–2783 (1997)CrossRefGoogle Scholar
  81. 81.
    I. Baussanne, H. Law, J. Defaye, J.M. Benito, C.O. Mellet, J.M. Garcia Fernandez, Synthesis and comparative lectin-binding affinity of mannosyl-coated β-cyclodextrin-dendrimer constructs. Chem. Commun. 16, 1489–1490 (2000)CrossRefGoogle Scholar
  82. 82.
    A. Morikawa, M. Kakimoto, Y. Imai, Convergent synthesis of starburst poly(ether ketone) dendrons. Macromolecules 26, 6324–6329 (1993)CrossRefGoogle Scholar
  83. 83.
    A. Morikawa, K. Ono, Preparation of poly(ether ketone) dendrons with graded structures. Macromolecules 32, 1062–1068 (1999)CrossRefGoogle Scholar
  84. 84.
    A. Morikawa, K. Ono, Preparation of poly[(ether)-(ether ether ketone)] dendrimers by the convergent method. Polym. J. 32, 255–262 (2000)CrossRefGoogle Scholar
  85. 85.
    Y. Pan, W.T. Ford, Dendrimers with alternating amine and ether generations. J. Org. Chem. 64, 8588–8593 (1999)CrossRefGoogle Scholar
  86. 86.
    L.J. Twyman, A.E. Beezer, J.C. Mitchell, An approach for the rapid synthesis of moderately sized dendritic macromolecules. J. Chem. Soc. Perkin Trans. 1, 407–411 (1994)CrossRefGoogle Scholar
  87. 87.
    A. Malik, S. Chaudhary, G. Garg, A. Tomar, Dendrimers: a tool for drug delivery. Adv. Biol. Res. 6, 165–169 (2012)Google Scholar
  88. 88.
    A.W. Bosman, H.M. Janssen, E.W. Meijer, About dendrimers: structure, physical properties, and applications. Chem. Rev. 99, 1655–1688 (1999)CrossRefGoogle Scholar
  89. 89.
    C.J. Hawker, 3-Dimensional dendritic macromolecules. Curr. Opin. Colloid Interface Sci. 4, 117–121 (1999)CrossRefGoogle Scholar
  90. 90.
    G.R. Newkome, E. He, C.N. Moorefield, Suprasupermolecules with novel properties: metallodendrimers. Chem. Rev. 99, 1689–1746 (1999)PubMedCrossRefGoogle Scholar
  91. 91.
    F. Arico, J.D. Badjic, S.J. Cantrill, A.H. Flood, K.C.-F. Leung, Y. Liu, J.F. Stoddart, Top. Curr. Chem. 249, 203–259 (2005)CrossRefGoogle Scholar
  92. 92.
    I. Yoon, M. Narita, T. Shimizu, M. Asakawa, J. Am. Chem. Soc. 126, 16740–16741 (2004)PubMedCrossRefGoogle Scholar
  93. 93.
    C.W. Chiu, C.C. Lai, S.H. Chiu, “Threading-followed-by-swelling”: a new protocol for rotaxane synthesis. J. Am. Chem. Soc. 129, 3500–3501 (2007)PubMedCrossRefGoogle Scholar
  94. 94.
    K. Nørgaard, B.W. Laursen, S. Nygaard, K. Kjaer, H.R. Tseng, A.H. Flood, J.F. Stoddart, T. Bjørnholm, Structural evidence of mechanical shuttling in condensed monolayers of bistable rotaxane molecules. Angew. Chem. Int. Ed. 44, 7035–7039 (2005)CrossRefGoogle Scholar
  95. 95.
    G. Caminati, N.J. Turro, D.A. Tomalia, Photophysical investigation of starburst dendrimers and their interactions with anionic and cationic surfactants. J. Am. Chem. Soc. 112, 8515–8522 (1990)CrossRefGoogle Scholar
  96. 96.
    M. Fischer, F. Vögtle, Dendrimers: from design to applications – a progress report. Angew. Chem. Int. Ed. 38, 884–905 (1999)CrossRefGoogle Scholar
  97. 97.
    T.H. Mourey, S.R. Turner, M. Rubenstein, J.M.J. Frechet, C.J. Hawker, K.L. Wooley, Unique behavior of dendritic macromolecules: intrinsic viscosity of polyether dendrimers. Macromolecules 25, 2401–2406 (1992)CrossRefGoogle Scholar
  98. 98.
    C.J. Hawker, Dendritic and hyperbranched macromolecules – precisely controlled macromolecular architectures. Adv. Polym. Sci. 147, 113–160 (1999)CrossRefGoogle Scholar
  99. 99.
    S. Hecht, J.M.J. Frechet, Dendritic encapsulation of function: applying nature’s site isolation principle from biomimetics to materials science. Angew. Chem. Int. Ed. 40, 74–91 (2001)CrossRefGoogle Scholar
  100. 100.
    P. Milosevic, S. Hecht, Design of branched and chiral solvatochromic probes: toward quantifying polarity gradients in dendritic macromolecules. Org. Lett. 7, 5023–5026 (2005)PubMedCrossRefGoogle Scholar
  101. 101.
    F. Zeng, S.C. Zimmerman, Dendrimers in supramolecular chemistry: from molecular recognition to self-assembly. Chem. Rev. 97, 1681–1712 (1997)PubMedCrossRefGoogle Scholar
  102. 102.
    S.C. Zimmerman, L.J. Lawless, Supramolecular chemistry of dendrimers. Top. Curr. Chem. 217, 95–120 (2001)CrossRefGoogle Scholar
  103. 103.
    D.K. Smith, Dendritic supermolecules – towards controllable nanomaterials. Chem. Commun. 34–44 (2006)Google Scholar
  104. 104.
    R. Hirst, B. Escuder, J.F. Miravet, D.K. Smith, High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew. Chem. Int. Ed. 47, 8002–8018 (2008)CrossRefGoogle Scholar
  105. 105.
    K.N. Lau, H.F. Chow, M.-C. Chan, K.W. Wong, Dendronized polymer organogels from click chemistry: a remarkable gelation property owing to synergistic functional-group binding and dendritic size effects. Angew. Chem. Int. Ed. 47, 6912–6916 (2008)CrossRefGoogle Scholar
  106. 106.
    B.M. Rosen, C.J. Wilson, D.A. Wilson, M. Peterca, M.R. Imam, V. Percec, Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem. Rev. 109, 6275–6540 (2009)PubMedCrossRefGoogle Scholar
  107. 107.
    N. Nishiyama, W.D. Jang, K. Kataoka, Supramolecular nanocarriers integrated with dendrimers encapsulating photosensitizers for effective photodynamic therapy and photochemical gene delivery. New J. Chem. 31, 1074–1082 (2007)CrossRefGoogle Scholar
  108. 108.
    D. Astruc, F. Chardac, Dendritic catalysts and dendrimers in catalysis. Chem. Rev. 101, 2991–3023 (2001)PubMedCrossRefGoogle Scholar
  109. 109.
    P. Arya, G. Panda, N.V. Rao, H. Alper, S.C. Bourque, L.E. Manzer, Solid-phase catalysis: a biomimetic approach toward ligands on dendritic arms to explore recyclable hydroformylation reactions. J. Am. Chem. Soc. 123, 2889–2890 (2001)PubMedCrossRefGoogle Scholar
  110. 110.
    T. Muraki, K. Fujita, M. Kujime, Synthesis of novel dendritic 2,2′-bipyridine ligands and their application to Lewis acid-catalyzed Diels–Alder and three-component condensation reactions. J. Org. Chem. 72, 7863–7870 (2007)PubMedCrossRefGoogle Scholar
  111. 111.
    W.S. Li, T. Aida, Dendrimer porphyrins and phthalocyanines. Chem. Rev. 109, 6047–6076 (2009)PubMedCrossRefGoogle Scholar
  112. 112.
    S.H. Medina, M.E.H. El-Sayed, Dendrimers as carriers for delivery of chemotherapeutic agents. Chem. Rev. 109, 3141–3157 (2009)PubMedCrossRefGoogle Scholar
  113. 113.
    A.-M. Caminade, C.-O. Turrin, J.-P. Majoral, Dendrimers and DNA: combinations of two special topologies for nanomaterials and biology. Chem. Eur. J. 14, 7422–7432 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    N.N. Hoover, B.J. Auten, B.D. Chandler, Tuning supported catalyst reactivity with dendrimer-templated Pt-Cu nanoparticles. J. Phys. Chem. B 110, 8606–8612 (2006)PubMedCrossRefGoogle Scholar
  115. 115.
    J. Sebestik, P. Niederhafner, J. Jezek, Peptide and glycopeptide dendrimers and analogous dendrimeric structures and their biomedical applications. Amino Acids 40, 301–370 (2011)PubMedCrossRefGoogle Scholar
  116. 116.
    D. Astruc, E. Boisselier, C. Ornelas, Dendrimers designed for functions: from physical, photophysical and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics and nanomedicine. Chem. Rev. 110, 1857–1959 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    U. Gupta, H. Agashe, A. Asthana, N. Jain, Dendrimers: novel polymeric nano architectures for solubility enhancement. Biomacromolecules 7, 649–658 (2006)PubMedCrossRefGoogle Scholar
  118. 118.
    Y. Shi, W. Porter, T. Merdan, L. Li, Recent advances in intravenous delivery of poorly water soluble compounds. Expert Opin. Drug Deliv. 6, 1261–1282 (2009)PubMedCrossRefGoogle Scholar
  119. 119.
    S. Svenson, Dendrimers as versatile platform in drug delivery applications. Eur. J. Pharm. Biopharm. 71, 445–462 (2009)PubMedCrossRefGoogle Scholar
  120. 120.
    J.M.J. Fréchet, Functional polymers and dendrimers: reactivity, molecular architecture and interfacial energy. Science 263, 1710–1715 (1994)PubMedCrossRefGoogle Scholar
  121. 121.
    L. Gu, P.G. Luo, H. Wang, M.J. Meziani, Y. Lin, L.M. Veca, L. Cao, F. Lu, X. Wang, R.A. Quinn, W. Wang, P. Zhang, S. Lacher, Y.P. Sun, Single-walled carbon nanotube as a unique scaffold for the multivalent display of sugars. Biomacromolecules 9, 2408–2418 (2008)PubMedCrossRefGoogle Scholar
  122. 122.
    Y. Lu, T. Shi, L. An, L. Jin, Z.-G. Wang, A simple model for the anomalous intrinsic viscosity of dendrimers. Soft Matter 6, 2619–2622 (2010)CrossRefGoogle Scholar
  123. 123.
    A. Einstein, Berichtigung zu meiner arbeit: Eine neue bestmmung der molekuldimensionneu. Ann. Phys. 339, 591–592 (1911)CrossRefGoogle Scholar
  124. 124.
    D.A. Tomalia, D.M. Hedstrand, L.R. Wilson, Encyclopedia of Polymer Science and Engineering, 2nd edn. (Wiley, New York, 1990)Google Scholar
  125. 125.
    S.M. Aharoni, C.R. Crosby, E.K. Walsh, Stability of the crosslinked tropomyosin dimer: crosslink effect on the cooperativity of the ordering process and on the maximum in the helix probability profile. Macromolecules 15, 1093 (1982)CrossRefGoogle Scholar
  126. 126.
    C.J. Hawker, F.K. Chu, P.J. Pomery, D.J.T. Hill, Hyperbranched poly(ethylene glycol)s: a new class of ion-conducting materials. Macromolecules 29, 3831 (1996)CrossRefGoogle Scholar
  127. 127.
    Z.Y. Wen, T. Itoh, M. Ikeda, N. Hirata, M. Kubo, O. Yamamoto, Characterization of composite electrolytes based on a hyperbranched polymer. J. Power Sources 90, 20–26 (2000)CrossRefGoogle Scholar
  128. 128.
    P. Gode, A. Hult, P. Jannasch, M. Johansson, L.E. Karlsson, G. Lindbergh, E. Malmström, D. Sandquist, A novel sulfonated dendritic polymer as the acidic component in proton conducting membranes. Solid State Ionics 177, 787–794 (2006)CrossRefGoogle Scholar
  129. 129.
    F. Chu, B. Lin, F. Yan, L. Qiu, J. Lu, Macromolecular protic ionic liquid-based proton-conducting membranes for anhydrous proton exchange membrane application. J. Power Sources 196, 7979–7984 (2011)CrossRefGoogle Scholar
  130. 130.
    I.B. Rietveld, D. Bedeaux, J.A.M. Smit, Osmotic compressibility of poly(propylene imine) dendrimers in deuterated methanol. J. Colloid Interface Sci. 232, 317–325 (2000)PubMedCrossRefGoogle Scholar
  131. 131.
    X. Zhang, M. Wilhelm, J. Klein, M. Pfaadt, E.W. Meijer, Modification of surface interactions and friction by adsorbed dendrimers: 1. Low surface-energy fifth-generation amino acid-modified poly(propyleneimine) dendrimers. Langmuir 16, 3884–3892 (2000)CrossRefGoogle Scholar
  132. 132.
    R. Duncan, The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2, 347–360 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    R.S. Greenfield et al., In vitro evaluation of adriamycin immunoconjugates synthesized using an acid-sensitive hydrazone linker. Cancer Res. 50, 6600–6607 (1990)PubMedPubMedCentralGoogle Scholar
  134. 134.
    M.W.P.L. Baars, E.W. Meijer, Host-guest chemistry of dendritic molecules. Top. Curr. Chem. 210, 131–182 (2001)CrossRefGoogle Scholar
  135. 135.
    V. Balzani, P. Ceroni, S. Gestermann, M. Gorka, C. Kauffmann, M. Maestri, F. Vögtle, Eosin molecules hosted into a dendrimer which carries thirty-two dansyl units in the periphery: a photophysical study. Chem. Phys. Chem. 1, 224–227 (2000)PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    V. Balzani, P. Ceroni, S. Gestermann, M. Gorka, C. Kauffmann, F. Vögtle, Fluorescent guests hosted in fluorescent dendrimers. Tetrahedron 58, 629–637 (2002)CrossRefGoogle Scholar
  137. 137.
    T.S. Qin, J.Q. Ding, L.X. Wang, M. Baumgarten, G. Zhou, K. Müllen, A divergent synthesis of very large polyphenylene dendrimers with iridium(III) cores: molecular size effect on the performance of phosphorescent organic light-emitting diodes. J. Am. Chem. Soc. 131, 14329–14336 (2009)PubMedCrossRefGoogle Scholar
  138. 138.
    P.J. Dandliker, F. Diederich, A. Zingg, J.-P. Gisselbrecht, M. Gross, A. Louati, E. Sanford, Dendrimers with porphyrin cores: synthetic models for globular heme proteins. Helv. Chim. Acta 80, 1773–1801 (1997)CrossRefGoogle Scholar
  139. 139.
    G. Wenz, B.H. Han, A. Muller, Cyclodextrin rotaxanes and polyrotaxanes. Chem. Rev. 106, 782–817 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    K.A. Connors, The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1358 (1997)PubMedCrossRefGoogle Scholar
  141. 141.
    M.V. Rekharsky, Y. Inoue, Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875 (1998)PubMedCrossRefGoogle Scholar
  142. 142.
    R. Castro, I. Cuadrado, B. Alonso, C.M. Casado, M. Morán, A.E. Kaifer, Multisite inclusion complexation of redox active dendrimer guests. J. Am. Chem. Soc. 119, 5760–5761 (1997)CrossRefGoogle Scholar
  143. 143.
    D.A. Tomalia, P.R. Dvornic, What promise for dendrimers? Nature 372, 617–618 (1994)Google Scholar
  144. 144.
    H. Brunner, Dendrizymes: expanded ligands for enantioselective catalysis. J. Organomet. Chem. 500, 39–46 (1995)CrossRefGoogle Scholar
  145. 145.
    C. Bolm, N. Derrien, A. Seger, Hyperbranched macromolecules in asymmetric catalysis. Synlett 40, 387–388 (1996)CrossRefGoogle Scholar
  146. 146.
    S. Gatard, L. Liang, L. Salmon, J. Ruiz, D. Astruc, S. Bouquillon, Water-soluble glycodendrimers: synthesis and stabilization of catalytically active Pd and Pt nanoparticles. Tetrahedron Lett. 52, 1842–1846 (2011)CrossRefGoogle Scholar
  147. 147.
    C.A. Schally, F. Vogtle, H. Mori, H.E.A. Muller (eds.), Dendrimer V Functional and Hyperbranched Building Blocks Photophysical Properties, Applications in Materials and Life Science (Springer, Heidelberg, 2003)Google Scholar
  148. 148.
    V.T. Wyatt, G.D. Strahan, Degree of branching in hyperbranched poly(glycerol-co-diacid)s synthesized in toluene. Polymers 4, 396–407 (2012)CrossRefGoogle Scholar
  149. 149.
    P.F.W. Simon, A.H.E. Muller, T. Pakula, Characterization of highly branched poly(methyl methacrylate) by solution viscosity and viscoelastic spectroscopy. Macromolecules 34, 1677–1684 (2001)CrossRefGoogle Scholar
  150. 150.
    M. Antonietti, C. Rosenauer, Properties of fractal divinylbenzene microgel. Macromolecules 24, 3434–3442 (1991)CrossRefGoogle Scholar
  151. 151.
    M. Moises, C.M. Casado, I. Cuadrado, Ferrocenyl substituted octa kis(dimethylsiloxy) octa silsesquioxanes: a new class of supramolecular organometallic compounds-synthesis, characterization, and electrochemistry. Organometallics 12, 4327–4333 (1993)CrossRefGoogle Scholar
  152. 152.
    D. Felder, H. Nierengarten, J.P. Gisselbrecht, C. Boudon, E. Leize, J.F. Nicoud, M. Gross, A. Van Dorsselaer, J.F. Nierengarten, Synthesis, electrochemistry and reduction in the electrospray source for mass spectrometry analysis. New J. Chem. 24, 687–695 (2000)CrossRefGoogle Scholar
  153. 153.
    U. Hahn, K. Hosomizu, H. Imahori, J.F. Nierengarten, Synthesis of dendritic branches with peripheral fullerene subunits. Eur. J. Org. Chem. 85–91 (2006)Google Scholar
  154. 154.
    B. Alonso, I. Cuadrado, M. Moran, J. Losada, Organometallic silicon dendrimers. J. Chem. Soc. Chem. Commun. 2575–2576 (1994)Google Scholar
  155. 155.
    C.M. Casado, I. Cuadrado, M. Moran, B. Alonso, M. Barranco, J. Losada, Cyclic siloxanes and silsesquioxanes as cores and frameworks for the construction of ferrocenyl dendrimers and polymers. Appl. Organomet. Chem. 13, 245–259 (1999)CrossRefGoogle Scholar
  156. 156.
    B. Alonso, M. Moran, C.M. Casado, F. Lobete, J. Losada, I. Cuadrado, Electrodes modified with electroactive films of organometallic dendrimers. Chem. Mater. 7, 1440–1442 (1995)CrossRefGoogle Scholar
  157. 157.
    S.H. Lee, S.H. Choi, S.H. Kim, T.G. Park, Thermally sensitive cationic polymer nanocapsules for specific cytosolic delivery and efficient gene silencing of siRNA: swelling induced physical disruption of endosome by cold shock. J. Control. Release 125, 25–32 (2008)PubMedCrossRefGoogle Scholar
  158. 158.
    S.H. Choi, S.H. Lee, T.G. Park, Temperature-sensitive pluronic/poly(ethylenimine) nanocapsules for thermally triggered disruption of intracellular endosomal compartment. Biomacromolecules 7, 1864–1870 (2006)PubMedCrossRefGoogle Scholar
  159. 159.
    Y.M. Chabre, R. Roy, Dendrimer-coated carbohydrate residues as drug delivery Trojan horses in glycoscience, in Dendrimer-Based Drug Delivery Systems: From Theory to Practice, ed. by Y. Cheng (Wiley, Hoboken, 2012)Google Scholar
  160. 160.
    Y. Cheng, Y. Gao, T. Rao, Y. Li, T. Xu, Dendrimer-based prodrugs: design, synthesis, screening and biological evaluation. Comb. Chem. High Throughput Screen. 10, 336–349 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Y. Cheng, Z. Xu, M. Ma, T. Xu, Dendrimers as drug carriers: applications in different routes of drug administration. J. Pharm. Sci. 97, 123–143 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    V. Yellepeddi, A. Kumar, S. Palakurthi, Surface modified poly(amido) amine dendrimers as diverse nanomolecules for biomedical applications. Expert Opin. Drug Deliv. 6, 835–850 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    N. Malik, R. Wiwattanapatapee, R. Klopsch, K. Lorenz, H. Frey, J.W. Weener, E.W. Meijer, W. Paulus, R. Duncan, Dendrimers: relationship between structure and biocompatibility in vitro and preliminary studies on the biodistribution of 125 I-labelled polyamidoamine dendrimers in vivo. J. Control. Release 65, 133–148 (2000)PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    D. Wilbur, P. Pathare, D. Hamlin, K. Bhular, R. Vessela, Biotin reagents for antibody pretargeting: synthesis, radioiodination and evaluation of biotinylated starburst dendrimers. Bioconjug. Chem. 9, 813–825 (1998)PubMedCrossRefGoogle Scholar
  165. 165.
    G.A. Brazeau, S. Attia, S. Poxon, J.A. Hughes, In vitro myotoxicity of selected cationic macromolecules used in non-viral gene delivery. Pharm. Res. 15, 680–684 (1998)PubMedCrossRefGoogle Scholar
  166. 166.
    H.B. Agashe, T.D. Dutta, M. Garg, N.K. Jain, Investigations on the toxicological profile of functionalized fifth-generation poly (propylene imine) dendrimer. J. Pharm. Pharmacol. 58, 1491–1498 (2006)PubMedCrossRefGoogle Scholar
  167. 167.
    R.B. Kolhatkar, K.M. Kitchens, P.W. Swaan, H. Ghandehari, Surface acetylation of polyamidoamine (PAMAM) dendrimers decreases cytotoxicity while maintaining membrane permeability. Bioconjug. Chem. 18, 2054–2060 (2007)PubMedCrossRefGoogle Scholar
  168. 168.
    J.C. Roberts, M.K. Bhalgat, R.T. Zera, Preliminary biological evaluation of polyaminoamine (PAMAM) starburst dendrimers. J. Biomed. Mater. Res. 30, 53–65 (1996)PubMedCrossRefGoogle Scholar
  169. 169.
    H.T. Chen, M.F. Neerman, A.R. Parrish, E. Simanek, Cytotoxicity, haemolysis and acute in vivo toxicity of dendrimer based on melamine, candidate vehicles for drug delivery. J. Am. Chem. Soc. 32, 10044–10048 (2004)CrossRefGoogle Scholar
  170. 170.
    K. Rittner, A. Benavente, S. Bompard, F. Heitz, G. Divita, R. Brasseur, E. Jacobs, New basic membrane-destabilizing peptides for plasmid-based gene delivery in vitro and in vivo. Mol. Ther. 5, 104–114 (2002)PubMedCrossRefGoogle Scholar
  171. 171.
    S. Hong, J.A. Hessler, M.M.B. Holl, P. Leroueil, A. Mecke, B.G. Orr, Physical interaction of nanoparticles with biological membranes: the observation of nanoscale hole formation. J. Chem. Health Saf. 13, 16–20 (2006)CrossRefGoogle Scholar
  172. 172.
    D. Fischer, Y. Li, B. Ahlemeyer, J. Krieglstein, T. Kissel, In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24, 1121–1131 (2003)PubMedCrossRefGoogle Scholar
  173. 173.
    P.E. Froehling, Dendrimers and dyes – a review. Dyes Pigments 48, 187–195 (2001)CrossRefGoogle Scholar
  174. 174.
    N.K. Jain, U. Gupta, Application of dendrimer-drug complexation in the enhancement of drug solubility and bioavailability. Expert Opin. Drug Metab. Toxicol. 8, 1035–1045 (2008)CrossRefGoogle Scholar
  175. 175.
    R. Jevprasesphant, J. Penny, D. Attwood, N.B. McKeown, A. D’Emanuele, Engineering of dendrimer surface to enhance transepithelial transport and reduce cytotoxicity. Pharm. Res. 20, 1543–1550 (2003)PubMedCrossRefGoogle Scholar
  176. 176.
    S. Sadekar, H. Ghandehari, Transepithelial transport and toxicity of PAMAM dendrimers: implications for oral drug delivery. Adv. Drug Deliv. Rev. 64, 571–588 (2012)PubMedCrossRefGoogle Scholar
  177. 177.
    R.C. Nagarwal, S. Kant, P.N. Singh, P. Maiti, J.K. Pandit, Polymeric nano particulate system: a potential approach for ocular drug delivery. J. Control. Release 136, 2–13 (2009)PubMedCrossRefGoogle Scholar
  178. 178.
    R. Gaudana, J. Jwala, S.H.S. Boddu, A.K. Mitra, Recent perspectives in ocular drug delivery. Pharm. Res. 26, 1197–1216 (2009)PubMedCrossRefGoogle Scholar
  179. 179.
    J.C. Lang, Ocular drug delivery conventional ocular formulations. Adv. Drug Deliv. Rev. 16, 39–43 (1995)CrossRefGoogle Scholar
  180. 180.
    S.K. Sahoo, F. Diinawaz, S. Krishnakumar, Nano technology in ocular drug delivery. Drug Discov. Today 13, 144–151 (2008)PubMedCrossRefGoogle Scholar
  181. 181.
    T.F. Vandamme, L. Brobeck, Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J. Control. Release 102, 23–38 (2005)PubMedCrossRefGoogle Scholar
  182. 182.
    C. Durairaj, R.S. Kadam, J.W. Chandler, S.L. Hutcherson, U.B. Kompella, Nano sized dendritic polyguanidilyated translocators for enhanced solubility, permeability and delivery of gatifloxacin. Invest. Ophthalmol. Vis. Sci. 51, 5804–5816 (2010)PubMedCrossRefGoogle Scholar
  183. 183.
    S. Shaunak, S. Thomas, E. Gianasietal, Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nat. Biotechnol. 22, 977–984 (2004)PubMedCrossRefGoogle Scholar
  184. 184.
    Y. Cheng, N. Man, T. Xu, R. Fu, X. Wang, L. Wen, Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. J. Pharm. Sci. 96, 595–602 (2007)PubMedCrossRefGoogle Scholar
  185. 185.
    Z.X. Wang, Y. Itoh, Y. Hosaka, I. Kobayashi, Y. Nakano, I. Maeda, F. Umeda, J. Yamakawa, M. Kawase, K. Yag, Novel transdermal drug delivery system with polyhydroxyalkanoate and starburst polyamidoamine dendrimer. J. Biosci. Bioeng. 95, 541–543 (2003)PubMedCrossRefGoogle Scholar
  186. 186.
    S. Bai, C. Thomas, F. Ahsan, Dendrimers as a carrier for pulmonary delivery of enoxaparin, a low molecular weight heparin. J. Pharm. Sci. 96, 2090–2106 (2007)PubMedCrossRefGoogle Scholar
  187. 187.
    N. Man, Y.Y. Cheng, T.W. Xu, Y. Ding, Z.W. Li, G.Y. Huang, Y.Y. Shi, L.P. Wen, Dendrimers as potential drug carriers: part II- prolonged delivery of ketoprofen by in vitro and in vivo studies. Eur. J. Med. Chem. 41, 670–674 (2006)CrossRefGoogle Scholar
  188. 188.
    R. Langer, Dendrimers II: architecture, nanostructure and supramolecular chemistry. Chem. Eng. Sci. 50, 4109 (1995)CrossRefGoogle Scholar
  189. 189.
    R. Duncan, J. Kopecek, Soluble synthetic polymers as potential drug carrier and dendrimers in medicine and biotechnology. Adv. Polym. Sci. 57, 51 (1984)CrossRefGoogle Scholar
  190. 190.
    P.A. Brady, E.G. Levy, Inorganic and organometallic macromolecules: design and applications. Chem. Ind. 18–21 (1995)Google Scholar
  191. 191.
    A.K. Patri, F. Jolanta, L. Kukowska, R. James, J. Baker, Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex-B. Adv. Drug Deliv. Rev. 57, 2203–2214 (2005)PubMedCrossRefGoogle Scholar
  192. 192.
    C. Peng, X. Shi, Dendrimer-related nanoparticle system for computed tomography imaging, in Dendrimer Based Drug Delivery Systems: From Theory to Practice, ed. by Y. Cheng (Wiley, Hoboken, 2012)Google Scholar
  193. 193.
    H. Cai, M. Shen, X. Shi, Dendrimer-based medical nanodevices for magnetic resonance imaging applications, in Dendrimer-Based Drug Delivery Systems: From Theory to Practice, ed. by Y. Cheng (Wiley, Hoboken, 2012)Google Scholar
  194. 194.
    P.J. Klemm, W.C. Floyd, D.E. Smiles, J.M. Fréchet, K.N. Raymond, Improving T1 and T2 magnetic resonance imaging contrast agents through the conjugation of an esteramide dendrimer to high-water-coordination Gd(III) hydroxypyridinone complexes. Contrast Media Mol. Imaging 7, 95–99 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    W. Krause, S.N. Hackmann, F.K. Maier, R. Muller, Dendrimers in diagnostics. Top. Curr. Chem. 210, 261–308 (2000)CrossRefGoogle Scholar
  196. 196.
    H. Schumann, B.C. Wassermann, S. Schutte, J. Velder, Y. Aksu, W. Krause, Synthesis and characterization of water-soluble tin-based metallodendrimers. Organometallics 22, 2034–2041 (2003)CrossRefGoogle Scholar
  197. 197.
    J. Satija, V.V.R. Sai, S. Mukherji, Dendrimers in biosensors: concept and applications. J. Mater. Chem. 21, 14367–14386 (2011)CrossRefGoogle Scholar
  198. 198.
    S.S. Mark, N. Sandhyarani, C. Zhu, C. Campagnolo, C.A. Batt, Dendrimer functionalized self-assembled monolayers as a surface plasmon resonance sensor surface. Langmuir 20, 6808–6817 (2004)PubMedCrossRefGoogle Scholar
  199. 199.
    P. Singh, T. Onodera, Y. Mizuta, K. Matsumoto, N. Miura, K. Toko, Dendrimer modified biochip for detection of 2,4,6 trinitrotoluene on SPR immune sensor fabrication and advantages. Sensors Actuators B Chem. 137, 403–409 (2009)CrossRefGoogle Scholar
  200. 200.
    C.M. Yam, M. Deluge, D. Tang, A. Kumar, C. Cai, Preparation, characterization, resistance to protein adsorption, and specific avidin-biotin binding of poly(amidoamine) dendrimers functionalized with oligo(ethylene glycol) on gold. J. Colloid Interface Sci. 296, 118–130 (2006)PubMedCrossRefGoogle Scholar
  201. 201.
    J. Yan, J. Pei, Chromophore-functionalized dendrimers for sensing applications. Front. Chem. China 5, 134–149 (2010)CrossRefGoogle Scholar
  202. 202.
    M. Karadag, C. Geyik, D.O. Demirkol, F.N. Ertas, S. Timur, Modified gold surfaces by 6-(ferrocenyl)hexanethiol dendrimer gold nanoparticles as a platform for the mediated biosensing applications. Mater. Sci. Eng. C 33, 634–640 (2013)CrossRefGoogle Scholar
  203. 203.
    A. Myc, I.J. Majoros, T.P. Thomas, J.R. Baker, Dendrimer-based targeted delivery of an apoptotic sensor in cancer cells. Biomacromolecules 8, 13–18 (2007)PubMedCrossRefGoogle Scholar
  204. 204.
    A. Nantalaksakul, D.R. Reddy, T.S. Ahn, R.A. Kaysi, C.J. Bardeen, S. Thayumanavan, Dendrimer analogues of linear molecules to evaluate energy and charge-transfer properties. Org. Lett. 8, 2981–2984 (2006)PubMedCrossRefGoogle Scholar
  205. 205.
    Z. Xu, J.S. Moore, Rapid construction of large-size phenylacetylene dendrimers up to 12.5 nanometers in molecular diameter. Angew. Chem. Int. Ed. 32, 1354 (1993)CrossRefGoogle Scholar
  206. 206.
    D. Seebach, P.B. Rheiner, G. Greiveldinger, T. Butz, H. Sellner, Chiral dendrimers, in Dendrimers, ed. by F. Vögtle (Springer, Berlin/Heidelberg, 1998)Google Scholar
  207. 207.
    G. van Koten, J.T.B.H. Jastrzebski, Periphery-functionalized organometallic dendrimers for homogeneous catalysis. J. Mol. Catal. A 146, 317–323 (1999)CrossRefGoogle Scholar
  208. 208.
    G.E. Oosterom, N.J.H. Reek, P.C.J. Kramer, P.W.N.M. van Leeuwen, Transition metal catalysis using functionalized dendrimers. Angew. Chem. Int. Ed. 40, 1828–1849 (2001)CrossRefGoogle Scholar
  209. 209.
    R. Kreiter, A.W. Klej, R.J.M.K. Gebbink, G. van Koten, Dendritic catalysts. Top. Curr. Chem. 217, 163–197 (2001)CrossRefGoogle Scholar
  210. 210.
    R. van Heebeek, P.C.J. Kamer, P.W.N.M. van Leeuwen, J.N.H. Reek, Dendrimers as support for recoverable catalysts and reagents. Chem. Rev. 102, 3717–3756 (2002)CrossRefGoogle Scholar
  211. 211.
    L.J. Twyman, A.S.H. King, I.K. Martin, Catalysis inside dendrimers. Chem. Soc. Rev. 31, 69–82 (2002)PubMedCrossRefGoogle Scholar
  212. 212.
    S.H. King, L.J. Twyman, Heterogeneous and solid supported dendrimer catalysts. J. Chem. Soc. Perkin Trans. 1, 2209–2218 (2002)CrossRefGoogle Scholar
  213. 213.
    M. Zhao, R.M. Crooks, Homogeneous hydrogenation catalysis with monodisperse, dendrimer-encapsulated Pd and Pt nanoparticles. Angew. Chem. Int. Ed. 38, 364–366 (1999)CrossRefGoogle Scholar
  214. 214.
    S. Chandra, M.D. Patel, H. Lang, D. Bahadur, Dendrimer-functionalized magnetic nanoparticles: a new electrode material for electrochemical energy storage devices. J. Power Sources 280, 217–226 (2015)CrossRefGoogle Scholar
  215. 215.
    G.J. Ledesma, G.I.L. Escalante, T.W. Chapman, L.G. Arriaga, V. Baglio, V. Antonucci, Pt dendrimer nanocomposites for oxygen reduction reaction in direct methanol fuel cells. J. Solid State Electrochem. 12, 835–840 (2010)CrossRefGoogle Scholar
  216. 216.
    J.H. Lee, H.S. Shin, H.W. Rhee, Y.T. Kim, M.K. Song, M.S. Kim, Composite electrolyte membrane with nanoscopic dendrimers and method of preparing the same, US 2006116479 (2006)Google Scholar
  217. 217.
    A.D. Liyanage, J.P. Ferraris, I.H. Musselman, Y.D. Joo, T.E. Andersson, D.Y. Son, Nafion-sulfonated dendrimer composite membranes for fuel cell applications. J. Membr. Sci. 392, 175–180 (2012)CrossRefGoogle Scholar
  218. 218.
    J.H. Lee, J. Won, I.H. Oh, H.Y. Ha, E.A. Cho, Y.S. Kang, Effects of polyamidoamine dendrimers on the catalytic layers of a membrane electrode assembly in fuel cells. Macromol. Res. 12, 101–106 (2006)CrossRefGoogle Scholar
  219. 219.
    A. Alvarez, C. Guzma, S. Rivas, L.A. Godinez, A. Sacca, A. Carbone, E. Passalacqua, L.G. Arriaga, J.L. Garcı, Composites membranes based on Nafion and PAMAM dendrimers for PEMFC applications. Int. J. Hydrog. Energy 39, 16686–16693 (2014)CrossRefGoogle Scholar
  220. 220.
    J. Maignan, S. Genard, Use of hyperbranched polymer and dendrimers comprising a particular group as film-forming agent, film-forming composition comprising same and use particularly in cosmetics and pharmaceutics, L’Oreal, U.S. Patent 6432423 (2002)Google Scholar
  221. 221.
    J.M.J. Frechet, D.A. Tomalia (eds.), Dendrimers and Other Dendritic Polymers (Wiley, New York, 2001)Google Scholar
  222. 222.
    M.S. Diallo, Water treatment by dendrimer enhanced filtration, U.S. Patent Application, US 1006/0021938 A1 (2006)Google Scholar
  223. 223.
    M.S. Diallo, S. Christie, P. Swaminathan, J.H. Johnson, W.A. Goddard, Dendrimer enhanced ultrafiltration: recovery of Cu(II) from aqueous solutions using Gx-NH2 PAMAM dendrimers with ethylene diamine core. Environ. Sci. Technol. 39, 1366–1377 (2005)PubMedCrossRefGoogle Scholar
  224. 224.
    M.P. Breton, Ink compositions with dendrimer grafts; Xerox Corporation, U.S. Patent 5,266,106 (1993)Google Scholar
  225. 225.
    E. Verdonck, L. Vanmaele, Ink compositions for ink jet printing; Agfa-Gevaert, U.S. Patent 6,300,388 B1 (2001)Google Scholar
  226. 226.
    L. Vanmaele, E. Verdonck, Ink compositions for ink jet printing, U.S. Patent 6,310,115 (2001)Google Scholar
  227. 227.
    T.T. Gaurav, C.H. Hannah, The role of dendrimers in topical drug delivery. Pharm. Technol. 32, 88–98 (2008)Google Scholar
  228. 228.
    A. Patidar, D.S. Thakur, Dendrimers-potential carriers for drug delivery. Int. J. Pharm. Sci. Nanotechnol. 4, 1383–1389 (2011)Google Scholar
  229. 229.
    S. Jana, Dendrimers: synthesis, properties, and drug delivery biomedical applications. Am. J. Res. Pharmtech 2, 32–55 (2012)Google Scholar
  230. 230.
    P. Kumar, Dendrimer: a novel polymer for drug delivery. J. Innov. Trends Pharm. Sci. 1, 252–269 (2010)Google Scholar
  231. 231.
    D.A. Tomalia, Dendrimers – an enabling synthetic science to controlled organic nanostructures, in Handbook of Nanoscience, Engineering and Technology, ed. by W.A. Goddard III, S.E. Lyshevski (CRC Press LLC, Washington, DC, 2002)Google Scholar
  232. 232.
    H.C. Yoon, D. Lee, H.S. Kim, Reversible affinity interactions of antibody molecules at functionalized dendrimer monolayer: affinity-sensing surface with reusability. Anal. Chim. Acta 456, 209–218 (2002)CrossRefGoogle Scholar
  233. 233.
    R. Benters, C.M. Niemeyer, D. Drutschmann, D. Blohm, D. Wohrle, DNA microarrays with PAMAM dendritic linker systems. Nucleic Acid Res. 30, 1–11 (2002)CrossRefGoogle Scholar
  234. 234.
    S.D. Konda, S. Wang, M. Brechbiel, E.C. Wiener, Biodistribution of a 153 Gdfolate dendrimer, generation = 4, in mice with folate-receptor positive and negative ovarian tumor xenografts. Investig. Radiol. 37, 199–204 (2002)CrossRefGoogle Scholar
  235. 235.
    S. Supattapone, K. Nishina, J.R. Rees, Pharmacological approaches to prion research. Biochem. Pharmacol. 63, 1383–1388 (2002)PubMedCrossRefGoogle Scholar
  236. 236.
    S.B.A. Halkes, I. Vrasidas, G.R. Rooijer, A.J.J. Van den Berg, R.M.J. Liskamp, R.J. Pieters, Synthesis and biological activity of polygalloyl-dendrimers as stable tannic acid mimics. Bioorg. Med. Chem. Lett. 12, 1567–1570 (2002)PubMedCrossRefGoogle Scholar
  237. 237.
    A.T. Yordanov, K.I. Yamada, M.C. Krishna, J.B. Mitchell, E. Woller, M. Cloninger, M.W. Brechbiel, Spin-labeled dendrimers in EPR imaging with low molecular weight nitroxides. Angew. Chem. Int. Ed. Engl. 40, 2690–2692 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  238. 238.
    A. Akbarzadeh, H. Mikaeili, D. Asgari, N. Zarghami, R. Mohammad, S. Davaran, Preparation and in-vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers. Int. J. Nanomedicine 7, 511–526 (2012)PubMedPubMedCentralGoogle Scholar
  239. 239.
    A. Abolfazl, Z. Nosratollah, M. Haleh, A. Davoud, A.G. Mohammad, K.H. Khaksar, D. Soodabeh, Synthesis, characterization and in vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled delivery of doxorubicin. Int. J. Nanotechnol. Sci. Environ. 5, 13–25 (2012)Google Scholar
  240. 240.
    A. Akbarzadeh, M. Samiei, S.W. Joo, M. Anzaby, Y. Hanifehpour, H.T. Nasrabadi, Synthesis, characterization and in vitro studies of doxorubicinloaded magnetic nanoparticles grafted to smart copolymers on A549 lung cancer cell line. J. Nanobiotechnol. 10, 46–58 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Balappa B. Munavalli
    • 1
  • Satishkumar R. Naik
    • 1
  • Anand I. Torvi
    • 1
  • Mahadevappa Y. Kariduraganavar
    • 1
    Email author
  1. 1.Department of ChemistryKarnatak UniversityDharwadIndia

Personalised recommendations