• Rasel DasEmail author
  • Syed Mohammed Javaid Zaidi
  • Sayonthoni Das Tuhi
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


Polymeric membranes are currently extensively investigated for water purification. Strong motivations behind this are due to their unique structural characteristics such as high mechanical, thermal, and chemical stabilities. They are also flexible in nature in such a way that one can easily fold them into hollow fiber or flat sheet. Based on such features, an excellent pollutant selectivity and permeability of water have been observed; thereby a remarkable separation capacity is expected. This chapter covers a comprehensive discussion on the fabrication of both synthetic and biopolymeric membranes for water desalination. Fundamental knowledge on structures, types, functionalizations, and optimizations of different advanced polymer-based membranes, especially microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO), were discussed in details with their synthesis procedures. MF and UF membranes are suitable to retain larger organic and inorganic molecules, whereas NF and RO are popularly used to purify salty water. MF is usually prepared by cellulose acetate, polysulfone, poly(ether sulfone), and poly(vinylidene fluoride). Secondly, UF membrane is made by polysulfone, poly(ether sulfone), poly(vinylidene fluoride), poly(acrylonitrile), and poly(etherimide). Thirdly, polysulfone, polyamide poly(vinylidene fluoride), chitosan, and aquaporin are the major building blocks for NF membranes. Finally, cellulose acetate, polysulfone, and aromatic polyamides are the major constituents of RO membranes. Carbon nanotube is highlighted as a part of polymers’ composites membrane with respect to improved or novel performance, and the potential implications of those developments for future membrane technology are discussed. Finally, some of the research gaps and future prospects of polymeric membrane technologies are also highlighted.


Polymers Structures Functionalization Water purification Desalination 



Degree Celsius


Triblock copolymer with a hydrophobic B segment flanked by two identical hydrophilic A segments


Mammalian aquaporin 0 isoform


Mammalian aquaporin 1 isoform


Mammalian aquaglyceroporin 3 isoform


Mammalian aquaporin 4 isoform


Bacterial (E. coli) aquaporin Z isoform


Cellulose acetate


Cubic centemeter per centemeter square per second


Carbon nanotube


Carbon nanotube


Chemical oxygen demand


Cellulose triacetate




2-Dioleoyl-3-trimethylammonium-propane (chloride salt)


Gram per mol


Gallons per square foot per day


Graphene oxide


Gas separation


Kilo Dalton

kg h−1 m−2

Kilogram per hour per meter sqaure


Kilogram per cubic meter second

L m−2 h

Liter per meter square hour

L m−2 h−1 bar−1

Liter per meter square per hour per bar

L m−2 h−1

Liter per meter square per hour


Liter per hour meter square


Liter per meter square per hour


Liter per minute


Meter per second

m2 s−1

Meter square per second

m3 m−2 day−1

Cubic meter per meter square per day




Mililitre per centemeter square per second




Mixed matrix


Mixed matrix carbon nanotube



mPa−1 s−1

Meter per pascal per second


Molecular weight


Multiwalled carbon nanotubes




Nonsolvent-induced phase separation




Parts per million


Polyvinylidene di(fluoride)


Reverse osmosis


Sulfonated polyethersulfones


Single-walled carbon nanotubes


Thin film composite


Thermally induced phase separation




Vertically aligned


Vertical aligned carbon nanotube


Vapor-induced phase separation


Water permeation




  1. 1.
    V.K. Gupta, I. Ali, T.A. Saleh, A. Nayak, S. Agarwal, Chemical treatment technologies for waste-water recycling—An overview. RSC Adv. 2(16), 6380–6388 (2012)CrossRefGoogle Scholar
  2. 2.
    M.M. Pendergast, E.M. Hoek, A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 4(6), 1946–1971 (2011)CrossRefGoogle Scholar
  3. 3.
    W. Koros, G. Fleming, Membrane-based gas separation. J. Memb. Sci. 83(1), 1–80 (1993)CrossRefGoogle Scholar
  4. 4.
    K. Wangnick, IDA Worldwide Desalting Plants Inventory. Report No. 18. Prepared and published by Wangnick Consulting. Wangnick Consulting GmbH Kuhstedtermoor, 19A, D-27442 Gnarrenburg, Germany, 2004Google Scholar
  5. 5.
    M. Ulbricht, Advanced functional polymer membranes. Polymer 47(7), 2217–2262 (2006)CrossRefGoogle Scholar
  6. 6.
    I. Pinnau, B. Freeman, Formation and modification of polymeric membranes: Overview, in Membrane Formation and Modification, vol. 744 (American Chemical Society, Washington, DC, 2000), pp. 1–22Google Scholar
  7. 7.
    M. C. Porter, Handbook of industrial membrane technology. United States: N. p., (1989). WebGoogle Scholar
  8. 8.
    I. Pinnau, W.J. Koros, A qualitative skin layer formation mechanism for membranes made by dry/wet phase inversion. J. Polym. Sci. B Polym. Phys. 31(4), 419–427 (1993)CrossRefGoogle Scholar
  9. 9.
    J. Ren, R. Wang, Preparation of polymeric membranes, in Membrane and Desalination Technologies (Springer, New York, 2011), pp. 47–100Google Scholar
  10. 10.
    I. Pinnau, B.D. Freeman, Advanced materials for membrane separations (American Chemical Society, Washington, DC, 2004)CrossRefGoogle Scholar
  11. 11.
    S. Nunes, K. V. Peinemann, Membrane Market, in Membrane Technology: in the Chemical Industry (Wiley, Weinheim, 2001), pp. 4–5Google Scholar
  12. 12.
    A. Wilkinson, A. McNaught, IUPAC Compendium of Chemical Terminology, (the “Gold Book”) (Blackwell Scientific Publications, Oxford, 1997)Google Scholar
  13. 13.
    P. Bernardo, E. Drioli, G. Golemme, Membrane gas separation: A review/state of the art. Ind. Eng. Chem. Res. 48(10), 4638–4663 (2009)CrossRefGoogle Scholar
  14. 14.
    M. Hirose, H. Ito, M. Maeda, K. Tanaka, Highly permeable composite reverse osmosis membrane, method of producing the same, and method of using the same. Google Patents (1997)Google Scholar
  15. 15.
    M. Paul, H.B. Park, B.D. Freeman, A. Roy, J.E. McGrath, J. Riffle, Synthesis and crosslinking of partially disulfonated poly (arylene ether sulfone) random copolymers as candidates for chlorine resistant reverse osmosis membranes. Polymer 49(9), 2243–2252 (2008)CrossRefGoogle Scholar
  16. 16.
    P. Singh, P. Ray, P. Kallem, S. Maurya, G. Trivedi, Structure and performance of nanofiltration membrane prepared in a large-scale at CSIR-CSMCRI using indigenous coating unit. Desalination 288, 8–15 (2012)CrossRefGoogle Scholar
  17. 17.
    J.-M. Laine, J.P. Hagstrom, M.M. Clark, J. Mallevialle, Effects of ultrafiltration membrane composition. J. Am. Water Works Assoc. 81, 61–67 (1989)CrossRefGoogle Scholar
  18. 18.
    Y. Wang, J.-H. Kim, K.-H. Choo, Y.-S. Lee, C.-H. Lee, Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization. J. Memb. Sci. 169(2), 269–276 (2000)CrossRefGoogle Scholar
  19. 19.
    R. Kesting, The four tiers of structure in integrally skinned phase inversion membranes and their relevance to the various separation regimes. J. Appl. Polym. Sci. 41(11–12), 2739–2752 (1990)CrossRefGoogle Scholar
  20. 20.
    G. Guillen, E.M. Hoek, Modeling the impacts of feed spacer geometry on reverse osmosis and nanofiltration processes. Chem. Eng. J. 149(1), 221–231 (2009)CrossRefGoogle Scholar
  21. 21.
    M. Mondor, C. Moresoli, Experimental verification of the shear-induced hydrodynamic diffusion model of crossflow microfiltration, with consideration of the transmembrane pressure axial variation. J. Memb. Sci. 175(1), 119–137 (2000)CrossRefGoogle Scholar
  22. 22.
    S. Madaeni, N. Ghaemi, Characterization of self-cleaning RO membranes coated with TiO 2 particles under UV irradiation. J. Memb. Sci. 303(1), 221–233 (2007)CrossRefGoogle Scholar
  23. 23.
    S. Madaeni, S. Zinadini, V. Vatanpour, Preparation of superhydrophobic nanofiltration membrane by embedding multiwalled carbon nanotube and polydimethylsiloxane in pores of microfiltration membrane. Sep. Purif. Technol. 111, 98–107 (2013)CrossRefGoogle Scholar
  24. 24.
    L. Liu, M. Son, S. Chakraborty, C. Bhattacharjee, H. Choi, Fabrication of ultra-thin polyelectrolyte/carbon nanotube membrane by spray-assisted layer-by-layer technique: Characterization and its anti-protein fouling properties for water treatment. Desalin. Water Treat. 51(31–33), 6194–6200 (2013)CrossRefGoogle Scholar
  25. 25.
    G. Song, A. Sengupta, X. Qian, S.R. Wickramasinghe, Investigation on suppression of fouling by magnetically responsive nanofiltration membranes. Separation and Purification Technology. 205, 94–104 (2018)Google Scholar
  26. 26.
    P. Wu, M. Imai, Novel biopolymer composite membrane involved with selective mass transfer and excellent water permeability, in Advancing Desalination (INTECH Open Access Publisher, Rijeka, 2012)Google Scholar
  27. 27.
    R.W. Baker, Membrane technology (Wiley Online Library, 2000)Google Scholar
  28. 28.
    S. Loeb, S. Sourirajan, High-flow semipermeable membranes for separation of water from saline solutions. Adv. Chem. Ser. 38, 117 (1961)CrossRefGoogle Scholar
  29. 29.
    R. Kesting, S. Sourirajan, in Reverse Osmosis and Synthetic Membranes: Theory-Technology-Engineering, ed. by S. Sourirajan (National Research Council Canada, Ottawa, 1977) pp. 89–110Google Scholar
  30. 30.
    A. Sagle, B. Freeman, Fundamentals of membranes for water treatment, in The future of desalination in Texas, vol. 2 (Texas Water Development Board, Texas, 2004), pp. 137–154Google Scholar
  31. 31.
    Y. Wen-E, Y. Pu-Chen, W. Yi-Kuan, Modified cellulose acetate flat membranes for desalination. J. Polym. Sci. A: Polym. Chem. 26(10), 2683–2694 (1988)CrossRefGoogle Scholar
  32. 32.
    M.A. El-Taraboulsi, M.A. Mandil, H.E.-S.M. Ali, Reverse osmosis studies on desalination membranes formed from chemically modified cellulose acetate. Carbohydr. Res. 13(1), 83–88 (1970)CrossRefGoogle Scholar
  33. 33.
    D. Parker, J. Bussink, H. T. Grampel, G. W. Wheatley, E. U. Dorf, E. Ostlinning, K. Reinking, F. Schubert, O. Jünger, R. Wagener, Polymers, High-Temperature, in Ullmann’s Encyclopedia of Industrial Chemistry (Verlag Chemie, Weinheim, 2002)Google Scholar
  34. 34.
    H.-G. Yuan, T.-Y. Liu, Y.-Y. Liu, X.-L. Wang, A homogeneous polysulfone nanofiltration membrane with excellent chlorine resistance for removal of Na2SO4 from brine in chloralkali process. Desalination 379, 16–23 (2016)CrossRefGoogle Scholar
  35. 35.
    M.A. Hickner, H. Ghassemi, Y.S. Kim, B.R. Einsla, J.E. McGrath, Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104(10), 4587–4612 (2004)PubMedCrossRefGoogle Scholar
  36. 36.
    F. Fayyazi, E.A. Feijani, H. Mahdavi, Chemically modified polysulfone membrane containing palladium nanoparticles: Preparation, characterization and application as an efficient catalytic membrane for Suzuki reaction. Chem. Eng. Sci. 134, 549–554 (2015)CrossRefGoogle Scholar
  37. 37.
    W. Wang, X. Huang, H. Yin, W. Fan, T. Zhang, L. Li, C. Mao, Polyethylene glycol acrylate-grafted polysulphone membrane for artificial lungs: Plasma modification and haemocompatibility improvement. Biomed. Mater. 10(6), 065022 (2015)PubMedCrossRefGoogle Scholar
  38. 38.
    Y. Zhang, C. Yu, Z. Lü, S. Yu, Modification of polysulfone ultrafiltration membrane by sequential deposition of cross-linked poly (vinyl alcohol)(PVA) and sodium carboxymethyl cellulose (CMCNa) for nanofiltration. Desalin. Water Treat. 57(38), 1–12 (2015)CrossRefGoogle Scholar
  39. 39.
    A. Ahmad, A. Abdulkarim, B. Ooi, S. Ismail, Recent development in additives modifications of polyethersulfone membrane for flux enhancement. Chem. Eng. J. 223, 246–267 (2013)CrossRefGoogle Scholar
  40. 40.
    M.S.A. Rahaman, A.F. Ismail, A. Mustafa, A review of heat treatment on polyacrylonitrile fiber. Polym. Degrad. Stab. 92(8), 1421–1432 (2007)CrossRefGoogle Scholar
  41. 41.
    B.P. Tripathi, N.C. Dubey, R. Subair, S. Choudhury, M. Stamm, Enhanced hydrophilic and antifouling polyacrylonitrile membrane with polydopamine modified silica nanoparticles. RSC Adv. 6(6), 4448–4457 (2016)CrossRefGoogle Scholar
  42. 42.
    B. Liang, W. Zhan, G. Qi, S. Lin, Q. Nan, Y. Liu, B. Cao, K. Pan, High performance graphene oxide/polyacrylonitrile composite pervaporation membranes for desalination applications. J. Mater. Chem. A 3(9), 5140–5147 (2015)CrossRefGoogle Scholar
  43. 43.
    Y. Xiao, X. Liu, D. Wang, Y. Lin, Y. Han, X. Wang, Feasibility of using an innovative PVDF MF membrane prior to RO for reuse of a secondary municipal effluent. Desalination 311, 16–23 (2013)CrossRefGoogle Scholar
  44. 44.
    Z. Zhao, J. Zheng, M. Wang, H. Zhang, C.C. Han, High performance ultrafiltration membrane based on modified chitosan coating and electrospun nanofibrous PVDF scaffolds. J. Memb. Sci. 394, 209–217 (2012)CrossRefGoogle Scholar
  45. 45.
    G.-d. Kang, Y.-m. Cao, Application and modification of poly (vinylidene fluoride)(PVDF) membranes–a review. J. Memb. Sci. 463, 145–165 (2014)CrossRefGoogle Scholar
  46. 46.
    E.-S. Kim, Y.J. Kim, Q. Yu, B. Deng, Preparation and characterization of polyamide thin-film composite (TFC) membranes on plasma-modified polyvinylidene fluoride (PVDF). J. Memb. Sci. 344(1), 71–81 (2009)CrossRefGoogle Scholar
  47. 47.
    S. Liang, Y. Kang, A. Tiraferri, E.P. Giannelis, X. Huang, M. Elimelech, Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles. ACS Appl. Mater. Interfaces 5(14), 6694–6703 (2013)PubMedCrossRefGoogle Scholar
  48. 48.
    W.R. Bowen, S.Y. Cheng, T.A. Doneva, D.L. Oatley, Manufacture and characterisation of polyetherimide/sulfonated poly (ether ether ketone) blend membranes. J. Memb. Sci. 250, 1), 1–1),10 (2005)CrossRefGoogle Scholar
  49. 49.
    Y.L. Thuyavan, N. Anantharaman, G. Arthanareeswaran, A. Ismail, R. Mangalaraja, Preparation and characterization of TiO 2-sulfonated polymer embedded polyetherimide membranes for effective desalination application. Desalination 365, 355–364 (2015)CrossRefGoogle Scholar
  50. 50.
    Y.-F. Mi, Q. Zhao, Y.-L. Ji, Q.-F. An, C.-J. Gao, A novel route for surface zwitterionic functionalization of polyamide nanofiltration membranes with improved performance. J. Memb. Sci. 490, 311–320 (2015)CrossRefGoogle Scholar
  51. 51.
    Y. Hu, K. Lu, F. Yan, Y. Shi, P. Yu, S. Yu, S. Li, C. Gao, Enhancing the performance of aromatic polyamide reverse osmosis membrane by surface modification via covalent attachment of polyvinyl alcohol (PVA). J. Memb. Sci. 501, 209–219 (2016)CrossRefGoogle Scholar
  52. 52.
    X. Li, W. Yang, H. Li, Y. Wang, M.M. Bubakir, Y. Ding, Y. Zhang, Water filtration properties of novel composite membranes combining solution electrospinning and needleless melt electrospinning methods. J. Appl. Polym. Sci. 132(10), 1–8 (2015)Google Scholar
  53. 53.
    S.A.A.N. Nasreen, S. Sundarrajan, S.A.S. Nizar, R. Balamurugan, S. Ramakrishna, Advancement in electrospun nanofibrous membranes modification and their application in water treatment. Membranes 3(4), 266–284 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    F. Soyekwo, Q.G. Zhang, C. Deng, Y. Gong, A.M. Zhu, Q.L. Liu, Highly permeable cellulose acetate nanofibrous composite membranes by freeze-extraction. J. Memb. Sci. 454, 339–345 (2014)CrossRefGoogle Scholar
  55. 55.
    T. Sheng, H. Chen, S. Xiong, X. Chen, Y. Wang, Atomic layer deposition of polyimide on microporous polyethersulfone membranes for enhanced and tunable performances. AICHE J. 60(10), 3614–3622 (2014)CrossRefGoogle Scholar
  56. 56.
    K. Pan, R. Ren, B. Liang, L. Li, H. Li, B. Cao, Synthesis of pH-responsive polyethylene terephthalate track-etched membranes by grafting hydroxyethyl-methacrylate using atom-transfer radical polymerization method. J. Appl. Polym. Sci. 131(20), 40912 (2014)Google Scholar
  57. 57.
    E. Eren, A. Sarihan, B. Eren, H. Gumus, F.O. Kocak, Preparation, characterization and performance enhancement of polysulfone ultrafiltration membrane using PBI as hydrophilic modifier. J. Memb. Sci. 475, 1–8 (2015)CrossRefGoogle Scholar
  58. 58.
    X. Fan, Y. Su, X. Zhao, Y. Li, R. Zhang, J. Zhao, Z. Jiang, J. Zhu, Y. Ma, Y. Liu, Fabrication of polyvinyl chloride ultrafiltration membranes with stable antifouling property by exploring the pore formation and surface modification capabilities of polyvinyl formal. J. Memb. Sci. 464, 100–109 (2014)CrossRefGoogle Scholar
  59. 59.
    T. Mohammadi, E. Saljoughi, Effect of production conditions on morphology and permeability of asymmetric cellulose acetate membranes. Desalination 243(1), 1–7 (2009)CrossRefGoogle Scholar
  60. 60.
    N. Pezeshk, D. Rana, R. Narbaitz, T. Matsuura, Novel modified PVDF ultrafiltration flat-sheet membranes. J. Memb. Sci. 389, 280–286 (2012)CrossRefGoogle Scholar
  61. 61.
    T. Shibutani, T. Kitaura, Y. Ohmukai, T. Maruyama, S. Nakatsuka, T. Watabe, H. Matsuyama, Membrane fouling properties of hollow fiber membranes prepared from cellulose acetate derivatives. J. Memb. Sci. 376(1), 102–109 (2011)CrossRefGoogle Scholar
  62. 62.
    M. Sinha, M. Purkait, Increase in hydrophilicity of polysulfone membrane using polyethylene glycol methyl ether. J. Memb. Sci. 437, 7–16 (2013)CrossRefGoogle Scholar
  63. 63.
    A. Qin, X. Li, X. Zhao, D. Liu, C. He, Preparation and characterization of nano-chitin whisker reinforced PVDF membrane with excellent antifouling property. J. Memb. Sci. 480, 1–10 (2015)CrossRefGoogle Scholar
  64. 64.
    N. Derlon, J. Mimoso, T. Klein, S. Koetzsch, E. Morgenroth, Presence of biofilms on ultrafiltration membrane surfaces increases the quality of permeate produced during ultra-low pressure gravity-driven membrane filtration. Water Res. 60, 164–173 (2014)PubMedCrossRefGoogle Scholar
  65. 65.
    M. Sinha, M. Purkait, Preparation and characterization of novel pegylated hydrophilic pH responsive polysulfone ultrafiltration membrane. J. Memb. Sci. 464, 20–32 (2014)CrossRefGoogle Scholar
  66. 66.
    E. Saljoughi, S.M. Mousavi, Preparation and characterization of novel polysulfone nanofiltration membranes for removal of cadmium from contaminated water. Sep. Purif. Technol. 90, 22–30 (2012)CrossRefGoogle Scholar
  67. 67.
    E.M. Van Wagner, A.C. Sagle, M.M. Sharma, Y.-H. La, B.D. Freeman, Surface modification of commercial polyamide desalination membranes using poly (ethylene glycol) diglycidyl ether to enhance membrane fouling resistance. J. Memb. Sci. 367(1), 273–287 (2011)CrossRefGoogle Scholar
  68. 68.
    J.O. Abitoye, P. Mukherjee, K. Jones, Ion implantation: Effect on flux and rejection properties of NF membranes. Environ. Sci. Technol. 39(17), 6487–6493 (2005)PubMedCrossRefGoogle Scholar
  69. 69.
    A. Ghosh, R. Bindal, S. Prabhakar, P. Tewari, Composite polyamide reverse osmosis (RO) membranes–recent developments and future directions. BARC Newslett. 321, 43–51 (2011)Google Scholar
  70. 70.
    S.F. Anis, B.S. Lalia, R. Hashaikeh, Controlling swelling behavior of poly (vinyl) alcohol via networked cellulose and its application as a reverse osmosis membrane. Desalination 336, 138–145 (2014)CrossRefGoogle Scholar
  71. 71.
    G. Sabad e, S. Waheed, A. Ahmad, S.M. Khan, M. Hussain, T. Jamil, M. Zuber, Synthesis, characterization and permeation performance of cellulose acetate/polyethylene glycol-600 membranes loaded with silver particles for ultra low pressure reverse osmosis. J. Taiwan Inst. Chem. Eng. 57, 129–138 (2015)CrossRefGoogle Scholar
  72. 72.
    H.I. Kim, S.S. Kim, Plasma treatment of polypropylene and polysulfone supports for thin film composite reverse osmosis membrane. J. Memb. Sci. 286(1), 193–201 (2006)CrossRefGoogle Scholar
  73. 73.
    A.K. Ghosh, E.M. Hoek, Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes. J. Memb. Sci. 336(1), 140–148 (2009)CrossRefGoogle Scholar
  74. 74.
    J. Wei, X. Jian, C. Wu, S. Zhang, C. Yan, Influence of polymer structure on thermal stability of composite membranes. J. Memb. Sci. 256(1), 116–121 (2005)Google Scholar
  75. 75.
    C. Wu, S. Zhang, D. Yang, X. Jian, Preparation, characterization and application of a novel thermal stable composite nanofiltration membrane. J. Memb. Sci. 326(2), 429–434 (2009)CrossRefGoogle Scholar
  76. 76.
    A. Sorrentino, G. Gorrasi, V. Vittoria, Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci. Technol. 18(2), 84–95 (2007)CrossRefGoogle Scholar
  77. 77.
    J. Bajpai, R. Shrivastava, A. Bajpai, Dynamic and equilibrium studies on adsorption of Cr (VI) ions onto binary bio-polymeric beads of cross linked alginate and gelatin. Colloids Surf., A: Physicochem. Eng. Asp. 236(1), 81–90 (2004)CrossRefGoogle Scholar
  78. 78.
    M.N.R. Kumar, A review of chitin and chitosan applications. React. Funct. Polym. 46(1), 1–27 (2000)CrossRefGoogle Scholar
  79. 79.
    P.K. Dutta, J. Dutta, V. Tripathi, Chitin and chitosan: Chemistry, properties and applications. J. Sci. Ind. Res. 63(1), 20–31 (2004)Google Scholar
  80. 80.
    M. Rinaudo, Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 31(7), 603–632 (2006)CrossRefGoogle Scholar
  81. 81.
    H.-M. Cauchie, Chitin production by arthropods in the hydrosphere. Hydrobiologia 470(1–3), 63–95 (2002)CrossRefGoogle Scholar
  82. 82.
    C. Jeuniaux, M.F. Voss-Foucart, Chitin biomass and production in the marine environment. Biochem. Syst. Ecol. 19(5), 347–356 (1991)CrossRefGoogle Scholar
  83. 83.
    M.S. Rao, W.F. Stevens, Fermentation of shrimp biowaste under different salt concentrations with amylolytic and non-amylolytic lactobacillus strains for chitin production. Food Technol. Biotechnol. 44(1), 83–87 (2006)Google Scholar
  84. 84.
    S. Arai, F. Akiya, Desalination reverse osmotic membranes and their preparation. Google Patents (1978)Google Scholar
  85. 85.
    E. Brychcy, M. Malik, P. Drożdżewski, Ż. Król, A. Jarmoluk, Physicochemical and antibacterial properties of carrageenan and Gelatine hydrosols and hydrogels incorporated with acidic electrolyzed water. Polymers 7(12), 2638–2649 (2015)CrossRefGoogle Scholar
  86. 86.
    A.V. Briones, T. Sato, U.G. Bigol, Antibacterial activity of polyethylenimine/carrageenan multilayer against pathogenic bacteria. Adv. Chem. Eng. Sci. 4(2), 233–241 (2014)CrossRefGoogle Scholar
  87. 87.
    L.A. Cira, S. Huerta, G.M. Hall, K. Shirai, Pilot scale lactic acid fermentation of shrimp wastes for chitin recovery. Process Biochem. 37(12), 1359–1366 (2002)CrossRefGoogle Scholar
  88. 88.
    T.D. Leathers, Biotechnological production and applications of pullulan. Appl. Microbiol. Biotechnol. 62(5–6), 468–473 (2003)PubMedCrossRefGoogle Scholar
  89. 89.
    S. Yuen, Pullulan and its applications. Process Biochem. 22, 7–9 (1974)Google Scholar
  90. 90.
    S. Kasapis, I.M. Al-Marhoobi, Bridging the divide between the high-and low-solid analyses in the gelatin/κ-carrageenan mixture. Biomacromolecules 6(1), 14–23 (2005)PubMedCrossRefGoogle Scholar
  91. 91.
    C. Viebke, P. Williams, Determination of molecular mass distribution of κ-carrageenan and xanthan using asymmetrical flow field-flow fractionation. Food Hydrocoll. 14(3), 265–270 (2000)CrossRefGoogle Scholar
  92. 92.
    P. Wu, M. Imai, Outstanding molecular size recognition and regulation of water permeability on K-carrageenan-pullulan membrane involved in synergistic Design of Composite Polysaccharides–Structure. Procedia Eng. 42, 1313–1325 (2012)CrossRefGoogle Scholar
  93. 93.
    K.Y. Lee, D.J. Mooney, Alginate: Properties and biomedical applications. Prog. Polym. Sci. 37(1), 106–126 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    J.-S. Yang, Y.-J. Xie, W. He, Research progress on chemical modification of alginate: A review. Carbohydr. Polym. 84(1), 33–39 (2011)CrossRefGoogle Scholar
  95. 95.
    G.M. Preston, T.P. Carroll, W.B. Guggino, P. Agre, Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256(5055), 385–387 (1992)PubMedCrossRefGoogle Scholar
  96. 96.
    K. Ishibashi, S. Hara, S. Kondo, Aquaporin water channels in mammals. Clin. Exp. Nephrol. 13(2), 107–117 (2009)PubMedCrossRefGoogle Scholar
  97. 97.
    A. Engel, Y. Fujiyoshi, T. Gonen, T. Walz, Junction-forming aquaporins. Curr. Opin. Struct. Biol. 18(2), 229–235 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    M.J. Borgnia, D. Kozono, G. Calamita, P.C. Maloney, P. Agre, Functional reconstitution and characterization of AqpZ, the E. coli water channel protein. J. Mol. Biol. 291(5), 1169–1179 (1999)PubMedCrossRefGoogle Scholar
  99. 99.
    D. Kozono, M. Yasui, L.S. King, P. Agre, Aquaporin water channels: Atomic structure molecular dynamics meet clinical medicine. J. Clin. Invest. 109(11), 1395–1399 (2002)PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    B.L. de Groot, H. Grubmüller, Water permeation across biological membranes: Mechanism and dynamics of aquaporin-1 and GlpF. Science 294(5550), 2353–2357 (2001)PubMedCrossRefGoogle Scholar
  101. 101.
    K. Murata, K. Mitsuoka, T. Hirai, T. Walz, P. Agre, J.B. Heymann, A. Engel, Y. Fujiyoshi, Structural determinants of water permeation through aquaporin-1. Nature 407(6804), 599–605 (2000)PubMedCrossRefGoogle Scholar
  102. 102.
    M. Amiry-Moghaddam, O.P. Ottersen, The molecular basis of water transport in the brain. Nat. Rev. Neurosci. 4(12), 991–1001 (2003)PubMedCrossRefGoogle Scholar
  103. 103.
    H. Yabu, Y. Hirai, M. Shimomura, Electroless plating of honeycomb and pincushion polymer films prepared by self-organization. Langmuir 22(23), 9760–9764 (2006)PubMedCrossRefGoogle Scholar
  104. 104.
    G.M. Whitesides, B. Grzybowski, Self-assembly at all scales. Science 295(5564), 2418–2421 (2002)PubMedCrossRefGoogle Scholar
  105. 105.
    D. Fierro, K. Buhr, C. Abetz, A. Boschetti-de-Fierro, V. Abetz, New insights into the control of self-assembly of block copolymer membranes. Aust. J. Chem. 62(8), 885–890 (2009)CrossRefGoogle Scholar
  106. 106.
    T. Smart, H. Lomas, M. Massignani, M.V. Flores-Merino, L.R. Perez, G. Battaglia, Block copolymer nanostructures. Nano Today 3(3), 38–46 (2008)CrossRefGoogle Scholar
  107. 107.
    M. Kumar, M.M. Payne, S.K. Poust, J.L. Zilles, Polymer-based biomimetic membranes for desalination, in Biomimetic Membranes for Sensor and Separation Applications, (Springer, Dordrecht, 2012), pp. 43–62Google Scholar
  108. 108.
    H. Shimizu, T. Fujita, New short interfering RNA-based therapies for glomerulonephritis. Nat. Rev. Nephrol. 7(7), 407–415 (2011)PubMedCrossRefGoogle Scholar
  109. 109.
    K. Yoon, K. Kim, X. Wang, D. Fang, B.S. Hsiao, B. Chu, High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 47(7), 2434–2441 (2006)CrossRefGoogle Scholar
  110. 110.
    Y.-L. Liu, Y.-H. Su, K.-R. Lee, J.-Y. Lai, Crosslinked organic–inorganic hybrid chitosan membranes for pervaporation dehydration of isopropanol–water mixtures with a long-term stability. J. Memb. Sci. 251(1–2), 233–238 (2005)CrossRefGoogle Scholar
  111. 111.
    T. Yang, R. Zall, Chitosan membranes for reverse osmosis application. J. Food Sci. 49(1), 91–93 (1984)CrossRefGoogle Scholar
  112. 112.
    A.G. Boricha, Z.V.P. Murthy, Preparation of N,O-carboxymethyl chitosan/cellulose acetate blend nanofiltration membrane and testing its performance in treating industrial wastewater. Chem. Eng. J. 157(2–3), 393–400 (2010)CrossRefGoogle Scholar
  113. 113.
    R. Huang, G. Chen, M. Sun, Y. Hu, C. Gao, Studies on nanofiltration membrane formed by diisocyanate cross-linking of quaternized chitosan on poly (acrylonitrile)(PAN) support. J. Memb. Sci. 286(1), 237–244 (2006)CrossRefGoogle Scholar
  114. 114.
    A.G. Boricha, Z. Murthy, Preparation and performance of N, O-carboxymethyl chitosan-polyether sulfone composite nanofiltration membrane in the separation of nickel ions from aqueous solutions. J. Appl. Polym. Sci. 110(6), 3596–3605 (2008)CrossRefGoogle Scholar
  115. 115.
    R. Huang, G. Chen, M. Sun, C. Gao, A novel composite nanofiltration (NF) membrane prepared from graft copolymer of trimethylallyl ammonium chloride onto chitosan (GCTACC)/poly (acrylonitrile)(PAN) by epichlorohydrin cross-linking. Carbohydr. Res. 341(17), 2777–2784 (2006)PubMedCrossRefGoogle Scholar
  116. 116.
    P. Wu, M. Imai, Excellent dyes removal and remarkable molecular size rejection of novel biopolymer composite membrane. Desalin. Water Treat. 51(25–27), 5237–5247 (2013)CrossRefGoogle Scholar
  117. 117.
    P.S. Zhong, T.-S. Chung, K. Jeyaseelan, A. Armugam, Aquaporin-embedded biomimetic membranes for nanofiltration. J. Memb. Sci. 407–408, 27–33 (2012)CrossRefGoogle Scholar
  118. 118.
    M. Kamachi, M. Kurihara, J. Stille, Synthesis of block polymers for desalination membranes. Preparation of block copolymers of 2-vinylpyridine and methacrylic acid or acrylic acid. Macromolecules 5(2), 161–167 (1972)CrossRefGoogle Scholar
  119. 119.
    J.S. Louie, I. Pinnau, I. Ciobanu, K.P. Ishida, A. Ng, M. Reinhard, Effects of polyether–polyamide block copolymer coating on performance and fouling of reverse osmosis membranes. J. Memb. Sci. 280(1), 762–770 (2006)CrossRefGoogle Scholar
  120. 120.
    R.M. Dorin, W.A. Phillip, H. Sai, J. Werner, M. Elimelech, U. Wiesner, Designing block copolymer architectures for targeted membrane performance. Polymer 55(1), 347–353 (2014)CrossRefGoogle Scholar
  121. 121.
    X. Li, R. Wang, C. Tang, A. Vararattanavech, Y. Zhao, J. Torres, T. Fane, Preparation of supported lipid membranes for aquaporin Z incorporation. Colloids Surf. B. Biointerfaces 94, 333–340 (2012)PubMedCrossRefGoogle Scholar
  122. 122.
    P.S. Zhong, T.-S. Chung, K. Jeyaseelan, A. Armugam, Aquaporin-embedded biomimetic membranes for nanofiltration. J. Memb. Sci. 407, 27–33 (2012)CrossRefGoogle Scholar
  123. 123.
    P.H. Duong, T.-S. Chung, K. Jeyaseelan, A. Armugam, Z. Chen, J. Yang, M. Hong, Planar biomimetic aquaporin-incorporated triblock copolymer membranes on porous alumina supports for nanofiltration. J. Memb. Sci. 409, 34–43 (2012)CrossRefGoogle Scholar
  124. 124.
    M. Wang, Z. Wang, X. Wang, S. Wang, W. Ding, C. Gao, Layer-by-layer assembly of aquaporin Z-incorporated biomimetic membranes for water purification. Environ. Sci. Technol. 49(6), 3761–3768 (2015)PubMedCrossRefGoogle Scholar
  125. 125.
    Y. Zhao, C. Qiu, X. Li, A. Vararattanavech, W. Shen, J. Torres, C. Hélix-Nielsen, R. Wang, X. Hu, A.G. Fane, C.Y. Tang, Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization. J. Memb. Sci. 423–424, 422–428 (2012)Google Scholar
  126. 126.
    S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)CrossRefGoogle Scholar
  127. 127.
    S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430), 603–605 (1993)CrossRefGoogle Scholar
  128. 128.
    Y.L. Zhao, J.F. Stoddart, Noncovalent functionalization of single-walled carbon nanotubes. Acc. Chem. Res. 42(8), 1161–1171 (2009)PubMedCrossRefGoogle Scholar
  129. 129.
    C.H. Ahn, Y. Baek, C. Lee, S.O. Kim, S. Kim, S. Lee, S.-H. Kim, S.S. Bae, J. Park, J. Yoon, Carbon nanotube-based membranes: Fabrication and application to desalination. J. Ind. Eng. Chem. 18(5), 1551–1559 (2012)CrossRefGoogle Scholar
  130. 130.
    B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G. Bachas, Aligned multiwalled carbon nanotube membranes. Science 303(5654), 62–65 (2004)PubMedCrossRefGoogle Scholar
  131. 131.
    J.-H. Choi, J. Jegal, W.-N. Kim, Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. J. Memb. Sci. 284(1), 406–415 (2006)CrossRefGoogle Scholar
  132. 132.
    L. Brunet, D. Lyon, K. Zodrow, J.-C. Rouch, B. Caussat, P. Serp, J.-C. Remigy, M. Wiesner, P. Alvarez, Properties of membranes containing semi-dispersed carbon nanotubes. Environ. Eng. Sci. 25(4), 565–576 (2008)CrossRefGoogle Scholar
  133. 133.
    A.S. Brady-Estévez, S. Kang, M. Elimelech, A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens. Small 4(4), 481–484 (2008)PubMedCrossRefGoogle Scholar
  134. 134.
    A. Tiraferri, C.D. Vecitis, M. Elimelech, Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties. ACS Appl. Mater. Interfaces 3(8), 2869–2877 (2011)PubMedCrossRefGoogle Scholar
  135. 135.
    P. Daraei, S.S. Madaeni, N. Ghaemi, M.A. Khadivi, B. Astinchap, R. Moradian, Enhancing antifouling capability of PES membrane via mixing with various types of polymer modified multi-walled carbon nanotube. J. Memb. Sci. 444, 184–191 (2013)CrossRefGoogle Scholar
  136. 136.
    J. nan Shen, C. chao Yu, H. min Ruan, C. jie Gao, B. Van der Bruggen, Preparation and characterization of thin-film nanocomposite membranes embedded with poly (methyl methacrylate) hydrophobic modified multiwalled carbon nanotubes by interfacial polymerization. J. Memb. Sci. 442, 18–26 (2013)CrossRefGoogle Scholar
  137. 137.
    F. Ahmed, C.M. Santos, J. Mangadlao, R. Advincula, D.F. Rodrigues, Antimicrobial PVK: SWNT nanocomposite coated membrane for water purification: Performance and toxicity testing. Water Res. 47(12), 3966–3975 (2013)PubMedCrossRefGoogle Scholar
  138. 138.
    S. Kar, M. Subramanian, A. Pal, A. Ghosh, R. Bindal, S. Prabhakar, J. Nuwad, C. Pillai, S. Chattopadhyay, P. Tewari, Preparation, characterisation and performance evaluation of anti-biofouling property of carbon nanotube-polysulfone nanocomposite membranes, in CARBON MATERIALS 2012 (CCM12): Carbon Materials for Energy Harvesting, Environment, Nanoscience and Technology, vol. 1 (AIP Publishing, New York, 2013), pp. 181–185Google Scholar
  139. 139.
    J. Yin, G. Zhu, B. Deng, Multi-walled carbon nanotubes (MWNTs)/polysulfone (PSU) mixed matrix hollow fiber membranes for enhanced water treatment. J. Memb. Sci. 437, 237–248 (2013)CrossRefGoogle Scholar
  140. 140.
    P. Shah, C. Murthy, Studies on the porosity control of MWCNT/polysulfone composite membrane and its effect on metal removal. J. Memb. Sci. 437, 90–98 (2013)CrossRefGoogle Scholar
  141. 141.
    M. Amini, M. Jahanshahi, A. Rahimpour, Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes. J. Memb. Sci. 435, 233–241 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Rasel Das
    • 1
    Email author
  • Syed Mohammed Javaid Zaidi
    • 2
  • Sayonthoni Das Tuhi
    • 3
  1. 1.Chemical DepartmentLeibniz Institute of Surface EngineeringLeipzigGermany
  2. 2.Center for Advanced materialsQatar UniversityDohaQatar
  3. 3.Department of MicrobiologyUniversity of ChittagongChittagongBangladesh

Personalised recommendations