Electrochromic Polymers for Solar Cells

  • Suru Vivian JohnEmail author
  • Emmanuel I. Iwuoha
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


Electrochromic materials have attracted a lot of research interest for their fascinating spectro-electrochemical properties and commercial applications. A large number of inorganic and organic electrochromic materials ranging from transition metal oxides, metal coordination complexes, viologen systems, and conducting polymers are available. Electrochromic conducting polymers are exciting new class of electronic materials with a huge potential in the rapidly growing area of plastic electronics due to their electronic and optical properties, ease of processing, low-power consumption, flexibility, and low processing cost. They consist of vibrant colors and can be processed under simple ambient temperature. In this chapter, the general field of electrochromism is introduced, with coverage of the classes, operating principle, the experimental methods used in their study, and applications of electrochromic materials. Some of the most important examples of the major classes of electrochromic conducting polymers are highlighted. It surveyed electrochromic conducting polymers with a focus on their chemistry, electrochemistry, stability, and ability to enhance the performance of solar cell device.

List of Abbreviations


Diethylene glycol


Electrochromic device


Band gap


Electron paramagnetic resonance spectroscopy


Fourier transform infra red spectroscopy


Highest occupied molecular orbital


Indium tin oxide


Lowest unoccupied molecular orbital


Mott variable range hoping


Near infra red spectroscopy




Prussian blue


Poly (2,5-dimethoxyaniline)




poly(ethylene terephthalate)


Ultra violate visible spectroscopy


Tungsten oxide


Variable transmission electrochromic windows


  1. 1.
    P.M.S. Monk, R.J. Mortimer, D.R. Rosseinsky, Electrochromism: Fundamentals and Application (VCH, Weinheim, 1995)CrossRefGoogle Scholar
  2. 2.
    M.M. Verghese, M.K. Ram, H. Vardhan, B.D. Malhotra, S.M. Ashraf, Electrochromic properties of polycarbazole films. Polymer 38, 1625–1629 (1997)CrossRefGoogle Scholar
  3. 3.
    C.G. Granqvist, Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam, 1995)Google Scholar
  4. 4.
    M. Green, The promise of electrochromic systems. Chem. Ind. (17), 641–644 (1996)Google Scholar
  5. 5.
    R. J. Mortimer, N. M. Rowley, J. A. McCleverty, T. J. Meyer, M. D. Ward (eds.), Metal Complexes as Dyes for Optical Data Storage and Electrochromic Materials in: Comprehensive Coordination Chemistry – II: From Biology to Nanotechnology (Elsevier, Oxford, 2004)Google Scholar
  6. 6.
    M.D. Ward, J.A. McCleverty, Non-innocent behaviour in mononuclear and polynuclear complexes: Consequences for redox and electronic spectroscopic properties. J. Chem. Soc. Dalton Trans., 275–288 (2002)Google Scholar
  7. 7.
    Z.C. Wu, Z.H. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, A.F. Hebard, A.G. Rinzler, Transparent, conductive carbon nanotube films. Science 305, 1273–1276 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    R.D. Rauh, Electrochromic windows: an overview. Electrochim. Acta 44, 3165–3176 (1999)CrossRefGoogle Scholar
  9. 9.
    P.M.S. Monk, The Viologens: Physicochemical Properties, Synthesis and Applications of the Salts of 4,40-Bipyridine (Wiley, Chichester, 1998)Google Scholar
  10. 10.
    T. A. Skotheim, R. L. Elsenbaumer, J. R. Reynolds (eds.), Handbook of Conducting Polymers (Marcel Dekker, New York, 1998)Google Scholar
  11. 11.
    J. Heinze, Electronically conducting polymers. Top. Curr. Chem. 152, 1–47 (1990)CrossRefGoogle Scholar
  12. 12.
    S.J. Higgins, Conjugated polymers incorporating pendant functional groups – synthesis and characterisation. Chem. Soc. Rev. 26, 247–257 (1997)CrossRefGoogle Scholar
  13. 13.
    M. Mastragostino, B. Scrosati (eds.), Electrochromic Devices in Applications of Electroactive Polymers (Chapman and Hall, London, 1993)Google Scholar
  14. 14.
    B. Scrosati, B. Scrosati (eds.), Laminated Electrochromic Displays and Windows in Applications of Electroactive Polymers (Chapman and Hall, London, 1993)Google Scholar
  15. 15.
    N. Miyata, S. Akiyoshi, Preparation and electrochromic properties of rf-sputtered molybdenum oxide films. J. Appl. Phys. 58, 1651–1655 (1985)CrossRefGoogle Scholar
  16. 16.
    L. Guerfi, H. Dao, Electrochromic molybdenum oxide thin films prepared by electrodeposition. J. Electrochem. Soc. 136, 2435–2436 (1989)CrossRefGoogle Scholar
  17. 17.
    K. Itaya, K. Shibayama, H. Akahoshi, S. Toshima, Prussian-blue-modified electrodes: an application for a stable electrochromic display device. J. Appl. Phys. 53, 804–805 (1982)CrossRefGoogle Scholar
  18. 18.
    D.M. DeLongchamp, P.T. Hammond, High-contrast electrochromism and controllable dissolution of assembled Prussian blue/polymer nanocomposites. Adv. Funct. Mater. 14, 224–232 (2004)CrossRefGoogle Scholar
  19. 19.
    D.C. Bookbinder, M.S. Wrighton, Electrochromic polymers covalently anchored to electrode surfaces. Optical and electrochemical properties of a viologen-based polymer. J. Electrochem. Soc. 130, 1080–1087 (1983)CrossRefGoogle Scholar
  20. 20.
    R.J. Mortimer, Organic electrochromic materials. Electrochim. Acta 44, 2971–2981 (1999)CrossRefGoogle Scholar
  21. 21.
    J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 2001)Google Scholar
  22. 22.
    R.J. Mortimer, J.C. Lindon, G.E. Tranter, J.L. Holmes (eds.), Electronic spectroscopy: spectroelectrochemistry applications, in Encyclopedia of Spectroscopy and Spectrometry, vol. 3 (Academic Press, London 1999)Google Scholar
  23. 23.
    R.J. Mortimer, J.C. Lindon, G.E. Tranter, J.L. Holmes (eds.), Electronic spectroscopy: spectroelectrochemistry methods and instrumentation, in Encyclopedia of Spectroscopy and Spectrometry (Academic Press, London 1999)Google Scholar
  24. 24.
    M. Jerry, Advanced Organic Chemistry Reactions, Mechanisms and Structure, 3rd edn. (Wiley, New York, 1985)Google Scholar
  25. 25.
    H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of poly(acetylene), (CH)x. J. Chem. Soc. Chem. Commun. 16, 578–579 (1977)CrossRefGoogle Scholar
  26. 26.
    S. Lefrant, L.S. Lichtman, M. Temkin, D.C. Fitchten, D.C. Miller, G.E. Whitwell, J.M. Burlich, Raman scattering in (CH)x and (CH)x treated with bromine and iodine. Solid State Commun. 29, 191–196 (1979)CrossRefGoogle Scholar
  27. 27.
    C.K. Chiang, C.B. Fincher Jr., Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, A.G. MacDiarmid, Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39, 1098–1101 (1977)CrossRefGoogle Scholar
  28. 28.
    H.A.M. van Mullekom, J.A.J.M. Vekemans, E.E. Havinga, E.W. Meijer, Developments in the chemistry and band gap engineering of donor-acceptor substituted conjugated polymers. Mater. Sci. Eng. 32, 1–40 (1991)CrossRefGoogle Scholar
  29. 29.
    A. Pron, P. Rannou, Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Prog. Polym. Sci. 27, 135–190 (2002)CrossRefGoogle Scholar
  30. 30.
    C. Lungenschmied, G. Dennler, G. Czeremuzskin, M. Latrèche, H. Neugebauer, N.S. Sariciftci, Flexible encapsulation for organic solar cells, Proc. SPIE 6197, Photonics for Solar Energy Systems 619712 (2006).
  31. 31.
    J. Heeger, T. A. Skotheim (eds.), Handbook of Conducting Polymers (Marcel Dekker, New York, 1986)Google Scholar
  32. 32.
    P. Kar, Doping in Conjugated Polymers (Wiley, Hoboken, 2013)CrossRefGoogle Scholar
  33. 33.
    N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258, 1474–1476 (1992)PubMedCrossRefGoogle Scholar
  34. 34.
    G. MacDiarmid, “Synthetic metals,”: a novel role for organic polymers (Nobel prize 2000 lecture). Curr. Appl. Phys. 1, 269–279 (2001)CrossRefGoogle Scholar
  35. 35.
    P. Rannou, A. Gawlicka, D. Berner, A. Pron, M. Nechtschein, D. Djurado, Spectroscopic, structural and transport properties of conducting polyaniline processed from fluorinated alcohols. Macromolecules 31, 3007–3015 (1998)CrossRefGoogle Scholar
  36. 36.
    M. Reghu, Y. Cao, D. Moses, A.J. Heeger, Counterion-induced processibility of polyaniline: transport at the metal-insulator boundary. Phys. Rev. B 47, 1758–1764 (1993)CrossRefGoogle Scholar
  37. 37.
    H. Naarmann, N. Theophilou, New process for the production of metal-like, stable polyacetylene. Synth. Met. 22, 1–8 (1987)CrossRefGoogle Scholar
  38. 38.
    T. Hagiwara, M. Hirasaka, K. Sato, M. Yamamura, Enhancement of the electrical conductivity of polypyrrole film by stretching: influence of the polymerization conditions. Synth. Met. 36, 241–252 (1990)CrossRefGoogle Scholar
  39. 39.
    O. Yoon, M. Reghu, D. Moses, A.J. Heeger, Transport near the metal-insulator transition: polypyrrole doped with PF6. Phys. Rev. B 49, 10851–10863 (1994)CrossRefGoogle Scholar
  40. 40.
    K. Gurunathan, A.V. Murugan, R. Marimuthu, U.P. Mulik, D.P. Amalnerkar, Electrochemically synthesised conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices. Mater. Chem. Phys. 61, 173–191 (1999)CrossRefGoogle Scholar
  41. 41.
    G. Zotti, H.S. Nalwa (eds.), Electrochemical synthesis of polyheterocycles and their applications. in Handbook of Organic Conductive Molecules and Polymers (Wiley, Chichester, 1997)Google Scholar
  42. 42.
    E.M. Genies, M. Lapkowski, Spectroelectrochemical study of polyaniline versus potential in the equilibrium state. J. Electroanal. Chem. 220, 67–82 (1987)CrossRefGoogle Scholar
  43. 43.
    E. Stilwell, S.-M. Park, Electrochemistry of conducting polymers. V. In situ spectroelectrochemical studies of polyaniline films. J. Electrochem. Soc. 136, 427–433 (1989)CrossRefGoogle Scholar
  44. 44.
    G. Tourillon, D. Gourier, F. Garnier, D. Vivien, Electron spin resonance study of electrochemically generated polythiophene and derivatives. J. Phys. Chem. 88, 1049–1051 (1984)CrossRefGoogle Scholar
  45. 45.
    S.H. Glarum, J.H. Marshall, Electron delocalization in poly(aniline). J. Phys. Chem. 92, 4210–4217 (1988)CrossRefGoogle Scholar
  46. 46.
    M. Genies, M. Lapkowski, Electrochemical in situ EPR evidence of two polaron-dipolaron states in polyaniline. J. Electroanal. Chem. 236, 199–208 (1987)CrossRefGoogle Scholar
  47. 47.
    J.F. Oudard, R.D. Allendoerfer, R.A. Osteryoung, EPR simultaneous electrochemical measurements on polypyrrole in ambient temperature ionic liquids. J. Electroanal. Chem. 241, 231–240 (1988)CrossRefGoogle Scholar
  48. 48.
    F. Genoud, J. Kruszka, M. Nechtschein, M. Zagorska, I. Kulszewicz-Bajer, A. Pron, Electrochemical doping of poly(butylthiophene) and poly(dibutylbithiophene)-in situ EPR and conductivity studies. J. Chim. Phys. 87, 57–66 (1990)CrossRefGoogle Scholar
  49. 49.
    N.S. Sariciftci, H. Kuzmany, H. Neugebauer, A. Neckel, Structural and electronic transitions in polyaniline: a Fourier transform infrared spectroscopic study. J. Chem. Phys. 92, 4530–4539 (1990)CrossRefGoogle Scholar
  50. 50.
    H. Neugebauer, C. Kvanrnsrtom, C. Brabec, N.S. Sariciftci, R. Kiebooms, F. Wudl, S. Luzzati, Infrared spectroelectrochemical investigations on the doping of soluble poly(isothianaphthene methine) (pim). J. Chem. Phys. 110, 12108–12115 (1999)CrossRefGoogle Scholar
  51. 51.
    S. Srinivasan, H. Neugebauer, N.S. Sariciftci, Electrochemically induced IRAV modes of BeCHA-PPV studied with in situ FTIR-ATR spectroscopy. Synth. Met. 84, 635–636 (1997)CrossRefGoogle Scholar
  52. 52.
    T. Yohannes, H. Neugebauer, S. Luzzati, M. Catellani, S.A. Jenekhe, N.S. Sariciftci, Multiple electrochemical doping induced insulator to conductor transitions observed in the conjugated ladder polymer polybenzimidazobemzophenanthroline. J. Phys. Chem. 104, 9430–9437 (2000)CrossRefGoogle Scholar
  53. 53.
    M. Lapkowski, K. Berrada, S. Quillard, G. Louarn, S. Lefrant, A. Pron, Electrochemical oxidation of polyaniline in nonaqueous electrolytes: in situ Raman spectroscopic studies. Macromolecules 28, 1233–1238 (1995)CrossRefGoogle Scholar
  54. 54.
    M. Zagorska, I. Kulszewicz-Bajer, A. Pron, J. Sukiennik, P. Raimond, F. Kajzar, A.-J. Attias, M. Lapkowski, Preparation and spectroelectrochemical characterization of copolymers of 3-alkylthiophenes and thiophenes functionalized with an azo chromophore. Macromolecules 31, 9146–9153 (1998)CrossRefGoogle Scholar
  55. 55.
    A. Pron, I. Kulszewicz, D. Bilaud, J. Przyluski, Reaction of FeCl3 with polyacetylene, (CH)x, and poly(p-phenylene), (p-C6H4)x. J. Chem. Soc. Chem. Commun. 15, 783–784 (1981)CrossRefGoogle Scholar
  56. 56.
    A. Pron, M. Zagorska, Z. Kucharski, M. Lukasiak, J. Suwalski, Mossbauer spectroscopy studies of polyacetylene doped with iron chloride complexes. Mater. Res. Bull. 17, 1505–1510 (1982)CrossRefGoogle Scholar
  57. 57.
    S.C. Gau, J. Milliken, A. Pron, A.G. MacDiarmid, A.J. Heeger, Organic metals. New class of p-type dopants converting polyacetylene, (CH)x into the metallic state. J. Chem. Soc. Chem. Commun. 15, 662–663 (1979)CrossRefGoogle Scholar
  58. 58.
    N.F. Mot, Conduction in non-crystalline materials. Philos. Mag. 19, 835–852 (1969)CrossRefGoogle Scholar
  59. 59.
    W.P. Su, J.R. Schrieffer, A.J. Heeger, Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979)CrossRefGoogle Scholar
  60. 60.
    M. Nechtschein, F. Devreux, F. Genoud, E. Vieil, J.M. Pernaut, E, Genies: Polarons, bipolarons and charge interactions in polypyrrole: physical and electrochemical approaches. Synth. Met. 15, 59–78 (1986)Google Scholar
  61. 61.
    P. Mungkalodom, N. Paradee, A. Sirivat, P. Hormnirun, Synthesis of poly (2,5-dimethoxyaniline) and electrochromic properties. Mater. Res. 18, 669–676 (2015)CrossRefGoogle Scholar
  62. 62.
    J.L. Bredas, R. Silbey, D.S. Boudreaux, R.R. Chance, Chain-length dependence of electronic and electrochemical properties of conjugated systems: polyacetylene, polyphenylene, polythiophene, and polypyrrole. J. Am. Chem. Soc. 105, 6555–6559 (1983)CrossRefGoogle Scholar
  63. 63.
    R.J. Mortimer, A.L. Dyer, J.R. Reynolds, Electrochromic organic and polymeric materials for display applications. Displays 27, 2–18 (2006)CrossRefGoogle Scholar
  64. 64.
    A. Argun, P.-H. Aubert, B.C. Thompson, I. Schwendeman, C.L. Gaupp, J. Hwang, N.J. Pinto, D.B. Tanner, A.G. MacDiarmid, J.R. Reynolds, Multicolored electrochromism in polymers: structures and devices. Chem. Mater. 16, 4401–4412 (2004)CrossRefGoogle Scholar
  65. 65.
    J.C. Lacroix, K.K. Kanazawa, A. Diaz, Polyaniline: a very fast electrochromic material. J. Electrochem. Soc. 136, 1308–1313 (1989)CrossRefGoogle Scholar
  66. 66.
    J.C. Gustafsson, B. Liedberg, O. Inganäs, In situ spectroscopic investigations of electrochromism and ion transport in a poly (3,4-ethylenedioxythiophene) electrode in a solid state electrochemical cell author links open the overlay panel. Solid State Ionics 69, 145–152 (1994)CrossRefGoogle Scholar
  67. 67.
    D. Kumar, M. Welsh, M.C. Morvant, F. Piroux, K.A. Abboud, J.R. Reynolds, Conducting poly(3,4-alkylenedioxythiophene) derivatives as fast electrochromics with high-contrast ratios. Chem. Mater. 10, 896–902 (1998)CrossRefGoogle Scholar
  68. 68.
    M.-A. De Paoli, G. Casalbore-Miceli, E.M. Girotto, W.A. Gazotti, All polymeric solid state electrochromic devices. Electrochim. Acta 44, 2983–2991 (1999)CrossRefGoogle Scholar
  69. 69.
    C. Thompson, P. Schottland, K. Zong, J.R. Reynolds, In situ colorimetric analysis of electrochromic polymers and devices. Chem. Mater. 12, 1563–1571 (2000)CrossRefGoogle Scholar
  70. 70.
    I. Schwendeman, R. Hickman, G. Sönmez, P. Schottland, K. Zong, D.M. Welsh, J.R. Reynolds, Enhanced contrast dual polymer electrochromic devices. Chem. Mater. 14, 3118–3122 (2002)CrossRefGoogle Scholar
  71. 71.
    W. Lu, A.G. Fadeev, B.H. Qi, E. Smela, B.R. Mattes, J. Ding, G.M. Spinks, J. Mazurkiewicz, D.Z. Zhou, G.G. Wallace, D.R. MacFarlane, S.A. Forsyth, M. Forsyth, Use of ionic liquids for pi-conjugated polymer electrochemical devices. Science 297, 983–987 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    R.J. Mortimer, Electrochromic materials. Chem. Soc. Rev. 26, 147–156 (1997)CrossRefGoogle Scholar
  73. 73.
    A. Nekrasov, V.F. Ivanov, A.V. Vannikov, Analysis of the structure of polyaniline absorption spectra based on spectroelectrochemical data. J. Electroanal. Chem. 482, 1711–1727 (2000)CrossRefGoogle Scholar
  74. 74.
    T.-H. Lin, K.-C. Ho, A complementary electrochromic device based on polyaniline and poly(3,4-ethylenedioxythiophene). Sol. Energy Mater. Sol. Cells 90, 506–520 (2006)CrossRefGoogle Scholar
  75. 75.
    S.J. Yoo, J. Cho, J.W. Lim, S.H. Park, J. Jang, Y.-E. Sung, High contrast ratio and fast switching polymeric electrochromic films based on water-dispersible polyaniline-poly(4-styrenesulfonate) nanoparticles. Electrochem. Commun. 12, 164–167 (2010)CrossRefGoogle Scholar
  76. 76.
    J. Jang, J. Ha, J. Cho, Fabrication of water-dispersible polyaniline-poly(4-styrenesulfonate) nanoparticles for inkjet-printed chemical-sensor applications. Adv. Mater. 19, 1772–1775 (2007)CrossRefGoogle Scholar
  77. 77.
    M. Gazard, J.C. Dubois, M. Champagne, F. Garnier, G. Tourillon, Electrooptical properties of thin films of polyheterocycles. J. Phys. Colloq. 44, C3-537-C533-542 (1983)CrossRefGoogle Scholar
  78. 78.
    M.A. Druy, R.J. Seymour, Poly (2,2′ – Bithiophene): An electrochromic conducting polymer. J. Phys. Colloq. 44, C3-595-C593-598 (1983)CrossRefGoogle Scholar
  79. 79.
    M. Aizawa, S. Watanable, H. Shinohara, H. Shirakawa, Electrochemical cation doping of a polythienylene film. J. Chem. Soc. Chem. Commun. (5), 264–265 (1985)Google Scholar
  80. 80.
    J. Zmija, M.J. Malachowski, New organic electrochromic materials and theirs applications. J. Achiev. Mater. Manuf. Eng. 48, 14–23 (2011)Google Scholar
  81. 81.
    M. Dietrich, J. Heinze, G. Heywang, F. Jonas, Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes. J. Electroanal. Chem. 369, 87–92 (1994)CrossRefGoogle Scholar
  82. 82.
    P.M. Beaujuge, S.V. Vasilyeva, S. Ellinger, T.D. McCarley, J.R. Reynolds, Unsaturated linkages in dioxythiophene-benzothiadiazole donor-acceptor electrochromic polymers: the key role of conformational freedom. Macromolecules 42, 3694–3706 (2009)CrossRefGoogle Scholar
  83. 83.
    G. Heywang, F. Jonas, Poly(alkylenedioxythiophene)s – new, very stable conducting polymers. Adv. Mater. 4, 116–118 (1992)CrossRefGoogle Scholar
  84. 84.
    H. Sonmez, B. Sonmez, C.K.F. Shen, F. Wudl, Red, green, and blue colors in polymeric electrochromics. Adv. Mater. 16, 1905–1908 (2004)CrossRefGoogle Scholar
  85. 85.
    J. Sankaran, R. Reynolds, High-contrast electrochromic polymers from alkyl-derivatized poly(3,4-ethylenedioxythiophenes). Macromolecules 30, 2582–2588 (1997)CrossRefGoogle Scholar
  86. 86.
    C. Schwendeman, L. Gaupp, J.M. Hancock, L.B. Groenendaal, J.R. Reynolds, Perfluoralkanoate-substituted PEDOT for electrochromic device applications. Adv. Funct. Mater. 13, 541–547 (2003)CrossRefGoogle Scholar
  87. 87.
    P. Lock, S.G. Im, K.K. Gleason, Oxidative chemical vapor deposition of electrically conducting poly 3,4 ethylenedioxythiophene (PEDOT) films. Macromolecules 39, 5326–5329 (2006)CrossRefGoogle Scholar
  88. 88.
    S.I. Cho, R. Xiao, S.B. Lee, Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) nanotubes towards fast window-type electrochromic devices. Nanotechnology 18, 405705 (2007)CrossRefGoogle Scholar
  89. 89.
    P. Manisankar, C. Vedhi, G. Selvanathan, H. Gurumallesh Prabu, Influence of surfactants on the electrochromic behavior of poly (3,4-ethylenedioxythiophene). J. Appl. Polym. Sci. 104, 3285–3291 (2007)CrossRefGoogle Scholar
  90. 90.
    M. Deepa, S. Bhandari, M. Arora, R. Kant, Electrochromic response of nanostructured poly(3,4-ethylenedioxythiophene) films grown in an aqueous micellar solution. Macromol. Chem. Phys. 209, 137–149 (2008)CrossRefGoogle Scholar
  91. 91.
    S.I. Cho, S.B. Lee, Fast electrochemistry of conductive polymer nanotubes: synthesis, mechanism, and application. Acc. Chem. Res. 41, 699–707 (2008)PubMedCrossRefGoogle Scholar
  92. 92.
    T.-H. Su, S.-H. Hsiao, G.-S. Liou, Novel family of triphenylamine-containing, hole-transporting, amorphous, aromatic polyamides with stable electrochromic properties. J. Polym. Sci. Part A Polym. Chem. 43, 2085–2098 (2005)CrossRefGoogle Scholar
  93. 93.
    G.-S. Liou, S.-H. Hsiao, T.-H. Su, Synthesis, luminescence and electrochromism of aromatic poly(amine–amide)s with pendent triphenylamine moieties. J. Mater. Chem. 15, 1812–1820 (2005)CrossRefGoogle Scholar
  94. 94.
    G.-S. Liou, Y.-L. Yang, Y.O. Su, Synthesis and evaluation of photoluminescent and electrochemical properties of new aromatic polyamides and polyimides with a kink 1,2-phenylenediamine moiety. J. Polym. Sci. Part A Polym. Chem. 44, 2587–2603 (2006)CrossRefGoogle Scholar
  95. 95.
    G.-S. Liou, H.-W. Chen, H.-J. Yen, Poly(amine-amide-imide)s bearing pendent N-carbazolylphenyl moieties: synthesis and electrochromic properties. Macromol. Chem. Phys. 207, 1589–1598 (2006)CrossRefGoogle Scholar
  96. 96.
    G.-S. Liou, S.-H. Hsiao, W.-C. Chen, H.-J. Yen, A new class of high Tg and organosoluble aromatic poly(amine-1,3,4-oxadiazole)s containing donor and acceptor moieties for blue-light-emitting materials. Macromolecules 39, 6036–6045 (2006)CrossRefGoogle Scholar
  97. 97.
    H.-J. Yen, H.-Y. Lin, G.-S. Liou, Novel starburst triarylamine-containing electroactive aramids with highly stable electrochromism in near-infrared and visible light regions. Chem. Mater. 23, 1874–1882 (2011)CrossRefGoogle Scholar
  98. 98.
    C.-W. Chang, G.-S. Liou, S.-H. Hsiao, Highly stable anodic green electrochromic aromatic polyamides: synthesis and electrochromic properties. J. Mater. Chem. 17, 1007–1015 (2007)CrossRefGoogle Scholar
  99. 99.
    G.-S. Liou, C.-W. Chang, Highly stable anodic electrochromic aromatic polyamides containing N,N,N′,N′-tetraphenyl-p-phenylenediamine moieties: synthesis, electrochemical, and electrochromic properties. Macromolecules 41, 1667–1674 (2008)CrossRefGoogle Scholar
  100. 100.
    S.-H. Hsiao, G.-S. Liou, Y.-C. Kung, H.-J. Yen, High contrast ratio and rapid switching electrochromic polymeric films based on 4-(dimethylamino)triphenylamine-functionalized aromatic polyamides. Macromolecules 41, 2800–2808 (2008)CrossRefGoogle Scholar
  101. 101.
    C.-W. Chang, G.-S. Liou, Novel anodic electrochromic aromatic polyamides with multi-stage oxidative coloring based on N,N,N′,N′-tetraphenyl-p-phenylenediamine derivatives. J. Mater. Chem. 18, 5638–5646 (2008)CrossRefGoogle Scholar
  102. 102.
    C.-W. Chang, H.-J. Yen, K.-Y. Huang, J.-M. Yeh, G.-S. Liou, Novel organosoluble aromatic polyimides bearing pendant methoxy-substituted triphenylamine moieties: synthesis, electrochromic, and gas separation properties. J. Polym. Sci. Part A Polym. Chem. 46, 7937–7949 (2008)CrossRefGoogle Scholar
  103. 103.
    H.-J. Yen, G.-S. Liou, Solution-processable novel near-infrared electrochromic aromatic polyamides based on electroactive tetraphenyl-p-phenylenediamine moieties. Chem. Mater. 21, 4062–4070 (2009)CrossRefGoogle Scholar
  104. 104.
    H.-J. Yen, G.-S. Liou, Novel blue and red electrochromic poly (azomethine ether)s based on electroactive triphenylamine moieties. Org. Electron. 11, 299–310 (2010)CrossRefGoogle Scholar
  105. 105.
    S. Beaupré, J. Dumas, M. Leclerc, Toward the development of new textile/plastic electrochromic cells using triphenylamine-based copolymers. Chem. Mater. 18, 4011–4018 (2006)CrossRefGoogle Scholar
  106. 106.
    A. Argun, A. Cirpan, J.R. Reynolds, The first truly all-polymer electrochromic devices. Adv. Mater. 15, 1338–1341 (2003)CrossRefGoogle Scholar
  107. 107.
    World business council for sustainable development, 2009. Energy performance in buildings: transforming the market IS 2009–65, (2009)Google Scholar
  108. 108.
    D. Arasteh, S. Selkowitz, J. Apte, M. LaFrance, Zero energy windows, in Proceedings of the 2006 ACEEE Summer study on energy efficiency in buildings, Pacific Grove, 2006Google Scholar
  109. 109.
    U.S. Department of Energy, Energy Efficiency and Renewable Energy, 2011 Buildings energy data book, prepared by D&R international, Ltd., March 2012Google Scholar
  110. 110.
    N.L. Sbar, L. Podbelski, H.M. Yang, B. Pease, Electrochromic dynamic windows for office buildings. Int. J. Sustain. Built Environ. 1, 125–139 (2012)CrossRefGoogle Scholar
  111. 111.
    C.G. Granqvist, Switchable Glazing Technology: Electrochromic Fenestration for Energy-Efficient Buildings, in Nearly Zero Energy Building Refurbishment (Springer, London, 2013)Google Scholar
  112. 112.
    C. M. Lampert, C. G. Granqvist (eds.), Large-Area Chromogenics: Materials and Devices for Transmittance Control (SPIE Optical Engineering Press, Belling-ham, 1990)Google Scholar
  113. 113.
    C.M. Lampert, Large-area smart glass and integrated photovoltaics. Sol. Energy Mater. Sol. Cells 76, 489–499 (2003)CrossRefGoogle Scholar
  114. 114.
    G.P. Smestad, C.M. Lampert, Event report – solar power 2006, San José, CA. Sol. Energy Mater. Sol. Cells 91, 440–444 (2007)CrossRefGoogle Scholar
  115. 115.
    S. Lee, S.E. Selkowitz, R.D. Clear, D.L. DiBartolomeo, J.H. Klems, L.L. Fernandes, G.J. Ward, V. Inkarojrit, M. Yazdanian, Advancement of Electrochromic Windows, California Energy Commission. PIER, 2006 Publication number CEC-500-2006-052Google Scholar
  116. 116.
    C. Bechinger, S. Ferrere, A. Zaban, J. Sprague, B.A. Gregg, Photoelectrochromic windows and displays. Nature 383, 608–610 (1996)CrossRefGoogle Scholar
  117. 117.
    S.K. Deb, S.-H. Lee, C.E. Tracy, J.R. Pitts, B.A. Gregg, H.M. Branz, Stand-alone photovoltaic-powered electrochromic smart window. Electrochim. Acta 46, 2125–2130 (2001)CrossRefGoogle Scholar
  118. 118.
    A. Hauch, A. Georg, S. Baumgärtner, U.O. Krašovec, B. Orel, New photoelectrochromic device. Electrochim. Acta 46, 2131–2136 (2001)CrossRefGoogle Scholar
  119. 119.
    K.-S. Ahn, S.J. Yoo, M.-S. Kang, J.-W. Lee, Y.-E. Sung, Tandem dye-sensitized solar cell-powered electrochromic devices for the photovoltaic-powered smart window. J. Power Sources 168, 533–536 (2007)CrossRefGoogle Scholar
  120. 120.
    H. Jensen, F. Dam, J.R. Reynolds, A.L. Dyer, F.C. Krebs, Manufacture and demonstration of organic photovoltaic-powered electrochromic displays using roll coating methods and printable electrolytes. J. Polym. Sci. Part B Polym. Phys. 50, 536–545 (2012)CrossRefGoogle Scholar
  121. 121.
    S. Lee, E.S. Claybaugh, M. LaFrance, End user impacts of automated electrochromic windows in a pilot retrofit application. Energ. Buildings 47, 267–284 (2012)CrossRefGoogle Scholar
  122. 122.
    D.R. Rosseinsky, R.J. Mortimer, Electrochromic systems and the prospects for devices. Adv. Mater. 13, 783–793 (2001)CrossRefGoogle Scholar
  123. 123.
    S. Kuwabata, N. Takahashi, S. Hirao, H. Yoneyama, Light image formations on deprotonated polyaniline films containing titania particles. Chem. Mater. 5, 437–441 (1993)CrossRefGoogle Scholar
  124. 124.
    S. Nishizawa, H. Kuwabata, Yoneyama: photoimage formation in a TiO2 particle-incorporated prussian blue film. J. Electrochem. Soc. 143, 3462–3465 (1996)CrossRefGoogle Scholar
  125. 125.
    A. Hauch, A. Georg, U. Opara Krašovec, B. Orel, Comparison of photoelectrochromic devices with different layer configurations. J. Electrochem. Soc. 149, H159–H163 (2002)CrossRefGoogle Scholar
  126. 126.
    C. Xu, M. Taya, Electrochromic organic, polymer synthesis and devices utilizing electrochromic organic polymers, US Patent 7,038,828 B2, 2006Google Scholar
  127. 127.
    G. Sonmez, H. Meng, Q. Zhang, F. Wudl, A highly stable, new electrochromic polymer: Poly(1,4-bis(2-(3′-4′-ethylenedioxy)thienyl)-2-methoxy-5-2″-ethylhexyloxybenzene). Adv. Funct. Mater. 13, 726–731 (2003)CrossRefGoogle Scholar
  128. 128.
    G. Sonmez, H. Meng, F. Wudl, Organic polymeric electrochromic devices: polychromism with very high coloration efficiency. Chem. Mater. 16, 574–580 (2004)CrossRefGoogle Scholar
  129. 129.
    J.-Y. Liao, K.-C. Ho, A Photoelectrochromic device using a pedot thin film. J. New Mater. Electrochem. Syst. 8, 37–47 (2005)Google Scholar
  130. 130.
    C.-Y. Hsu, K.-M. Lee, J.-H. Huang, K.R. Justin Thomas, J.T. Lin, K.-C. Ho, A novel photoelectrochromic device with dual application based on poly(3,4-alkylenedioxythiophene) thin film and an organic dye. J. Power Sources 185, 1505–1508 (2008)CrossRefGoogle Scholar
  131. 131.
    D. Brotherson, D.S.K. Mudigonda, J.M. Osborn, J. Belk, J. Chen, D.C. Loveday, J.L. Boehme, J.P. Ferraris, D.L. Meeker, Tailoring the electrochromic properties of devices via polymer blends, copolymers, laminates and patterns. Electrochim. Acta 44, 2993 (1999)CrossRefGoogle Scholar
  132. 132.
    S.A. Sapp, G.A. Sotzing, J.L. Reddinger, J.R. Reynolds, Rapid switching solid state electrochromic devices based on complementary conducting polymer films. Adv. Mater. 8, 808–811 (1996)CrossRefGoogle Scholar
  133. 133.
    J. Roncali, Synthetic principles for bandgap control in linear π-conjugated systems. Chem. Rev. 97, 173–206 (1997)PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    S.A. Sapp, G.A. Sotzing, J.R. Reynolds, High contrast ratio and fast-switching dual polymer electrochromic devices. Chem. Mater. 10, 2101–2108 (1998)CrossRefGoogle Scholar
  135. 135.
    D.S.K. Mudigonda, D.L. Meeker, D.C. Loveday, J.M. Osborn, J.P. Ferraris, Compositional control of electrochromic properties in copolymers of N- vinylcarbazole and N-phenyl-2-(5′-vinyl-2′-thienyl)-5-(2″-thienyl)-pyrrole. Polymer 40, 3407–3412 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department Of ChemistryUniversity of the Western CapeBellvilleSouth Africa

Personalised recommendations