Advertisement

Self-healing Polymers: From Biological Systems to Highly Functional Polymers

  • Stefan Zechel
  • Martin D. Hager
  • Ulrich S. Schubert
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

The self-healing phenomenon is well-known from nature. Since the last 15 years, several approaches were developed in order to transfer this behavior into synthetic materials and to enable the preparation of multifunctional polymers. The following chapter summarizes the different polymers and their corresponding healing mechanism and provides an overview of the current state of the art. Additionally, the healing of functions as well as the characterization of the self-healing behavior is provided. Furthermore, a short comparison between polymers and other material classes is presented. Finally, the first commercial available systems are summarized showing the way for future developments in this area.

List of Abbreviations

Cp

Cyclopentadiene

DA

Diels-Alder

DCPD

Dicyclopentadiene

EHM

Eisenberg-Hird-Moore model

ENB

5-Ethylidene-2-norbornene

hDA

Hetero Diels-Alder

IR

Infrared spectroscopy

Mebip

2,6-Bis(methylbenzimidazolyl)pyridine

NMR

Nuclear magnetic resonance spectroscopy

PEG

Poly(ethylene glycol)

PIB

Poly(isobutylene)

PPG

Poly(propylene glycol)

RAFT

Reversible addition-fragmentation chain transfer

ROMP

Ring-opening metathesis polymerization

SAXS

Small angle X-ray scattering

TDCB

Tapered double cantilever beam

TEMPO

2,2,6,6-Tetramethylpiperidinyl-1-oxy

Notes

Acknowledgments

The authors thank the Deutsche Forschungsgemeinschaft (DFG, SPP 1568) for financial support.

References

  1. 1.
    K. Liu, J. Du, J. Wu, L. Jiang, Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials. Nanoscale 4(3), 768–772 (2012).  https://doi.org/10.1039/C1NR11369KCrossRefPubMedGoogle Scholar
  2. 2.
    N. Du, X.Y. Liu, J. Narayanan, L. Li, M.L.M. Lim, D. Li, Design of superior spider silk: from nanostructure to mechanical properties. Biophys. J. 91(12), 4528–4535 (2006).  https://doi.org/10.1529/biophysj.106.089144CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Bioinspired structural materials. Nat. Mater. 14(1), 23–36 (2015).  https://doi.org/10.1038/nmat4089CrossRefPubMedGoogle Scholar
  4. 4.
    P. Fratzl, Biomimetic materials research: what can we really learn from nature’s structural materials? J. R. Soc. Interface 4(15), 637–642 (2007).  https://doi.org/10.1098/rsif.2007.0218CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    B. Bhushan, Biomimetics: lessons from nature–an overview. Philos. Trans. R. Soc. A 367(1893), 1445–1486 (2009).  https://doi.org/10.1098/rsta.2009.0011CrossRefGoogle Scholar
  6. 6.
    P.H. Jørgensen, C. Bang, T.T. Andreassen, Mechanical properties of skin graft wounds. Brit J Plast Surg 46(7), 565–569 (1993).  https://doi.org/10.1016/0007-1226(93)90106-LCrossRefPubMedGoogle Scholar
  7. 7.
    B. McKibbin, Biology of fracture healing in long bones. J. Bone Joint Surg. Brit. 60, 150–162 (1978)CrossRefPubMedGoogle Scholar
  8. 8.
    B.A. Uthgenannt, M.H. Kramer, J.A. Hwu, B. Wopenka, M.J. Silva, Skeletal self-repair: stress fracture healing by rapid formation and densification of woven bone. J. Bone Miner. Res. 22(10), 1548–1556 (2007).  https://doi.org/10.1359/jbmr.0070614CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Z. Rapti, A. Smerzi, K.Ø. Rasmussen, A.R. Bishop, C.H. Choi, A. Usheva, Healing length and bubble formation in DNA. Phys. Rev. E 73(5), 051902 (2006)CrossRefGoogle Scholar
  10. 10.
    J. Komenda, F. Michoux, P.J. Nixon, Keeping the green world alive: the repair cycle, in Self-Healing at the Nanoscale, ed. by V. Amendola, M. Meneghetti (Taylor & Francis Group, Boca Raton, 2012), pp. 3–22Google Scholar
  11. 11.
    M. Kragl, D. Knapp, E. Nacu, S. Khattak, M. Maden, H.H. Epperlein, E.M. Tanaka, Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460(7251), 60–65 (2009).  https://doi.org/10.1038/nature08152CrossRefPubMedGoogle Scholar
  12. 12.
    M.R.J. Carlson, S.V. Bryant, D.M. Gardiner, Expression of Msx-2 during development, regeneration, and wound healing in axolotl limbs. J. Exp. Zool. 282(6), 715–723 (1998).  https://doi.org/10.1002/(SICI)1097-010X(19981215)282:6<715::AID-JEZ7>3.0.CO;2-FCrossRefPubMedGoogle Scholar
  13. 13.
    R.S. Trask, H.R. Williams, I.P. Bond, Self-healing polymer composites: mimicking nature to enhance performance. Bioinspir. Biomim. 2(1), P1 (2007)CrossRefPubMedGoogle Scholar
  14. 14.
    X. Yin, Z. Liu, D. Wang, X. Pei, B. Yu, F. Zhou, Bioinspired self-healing organic materials: chemical mechanisms and fabrications. J. Bionic. Eng. 12(1), 1–16 (2015).  https://doi.org/10.1016/S1672-6529(14)60095-0CrossRefGoogle Scholar
  15. 15.
    S. van der Zwaag, N.H. van Dijk, H.M. Jonkers, S.D. Mookhoek, W.G. Sloof, Self-healing behaviour in man-made engineering materials: bioinspired but taking into account their intrinsic character. Philos. Trans. R. Soc. A 367(1894), 1689–1704 (2009).  https://doi.org/10.1098/rsta.2009.0020CrossRefGoogle Scholar
  16. 16.
    C.J. Norris, G.J. Meadway, M.J. O'Sullivan, I.P. Bond, R.S. Trask, Self-healing fibre reinforced composites via a bioinspired vasculature. Adv. Funct. Mater. 21(19), 3624–3633 (2011).  https://doi.org/10.1002/adfm.201101100CrossRefGoogle Scholar
  17. 17.
    M.D. Hager, P. Greil, C. Leyens, S. van der Zwaag, U.S. Schubert, Self-healing materials. Adv. Mater. 22(47), 5424–5430 (2010).  https://doi.org/10.1002/adma.201003036CrossRefPubMedGoogle Scholar
  18. 18.
    S.J. García, H.R. Fischer, S. van der Zwaag, A critical appraisal of the potential of self healing polymeric coatings. Prog. Org. Coat. 72(3), 211–221 (2011).  https://doi.org/10.1016/j.porgcoat.2011.06.016CrossRefGoogle Scholar
  19. 19.
    S. Billiet, X.K.D. Hillewaere, R.F.A. Teixeira, F.E. Du Prez, Chemistry of crosslinking processes for self-healing polymers. Macromol. Rapid Commun. 34(4), 290–309 (2013).  https://doi.org/10.1002/marc.201200689CrossRefPubMedGoogle Scholar
  20. 20.
    X.K.D. Hillewaere, F.E. Du Prez, Fifteen chemistries for autonomous external self-healing polymers and composites. Prog. Polym. Sci. 49–50, 121–153 (2015).  https://doi.org/10.1016/j.progpolymsci.2015.04.004CrossRefGoogle Scholar
  21. 21.
    S.J. Garcia, Effect of polymer architecture on the intrinsic self-healing character of polymers. Eur. Polym. J. 53, 118–125 (2014).  https://doi.org/10.1016/j.eurpolymj.2014.01.026CrossRefGoogle Scholar
  22. 22.
    S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler, S.R. Sriram, E.N. Brown, S. Viswanathan, Autonomic healing of polymer composites. Nature 409(6822), 794–797 (2001).  https://doi.org/10.1038/35057232CrossRefPubMedGoogle Scholar
  23. 23.
    M.D. Chipara, M. Chipara, E. Shansky, J.M. Zaleski, Self-healing of high elasticity block copolymers. Polym. Adv. Technol. 20(4), 427–431 (2009).  https://doi.org/10.1002/pat.1296CrossRefGoogle Scholar
  24. 24.
    C.L. Mangun, A.C. Mader, N.R. Sottos, S.R. White, Self-healing of a high temperature cured epoxy using poly(dimethylsiloxane) chemistry. Polymer 51(18), 4063–4068 (2010).  https://doi.org/10.1016/j.polymer.2010.06.050CrossRefGoogle Scholar
  25. 25.
    S.H. Cho, H.M. Andersson, S.R. White, N.R. Sottos, P.V. Braun, Polydimethylsiloxane-based self-healing materials. Adv. Mater. 18(8), 997–1000 (2006).  https://doi.org/10.1002/adma.200501814CrossRefGoogle Scholar
  26. 26.
    M.W. Keller, S.R. White, N.R. Sottos, A self-healing poly(dimethyl siloxane) elastomer. Adv. Funct. Mater. 17(14), 2399–2404 (2007).  https://doi.org/10.1002/adfm.200700086CrossRefGoogle Scholar
  27. 27.
    M.W. Keller, S.R. White, N.R. Sottos, Torsion fatigue response of self-healing poly(dimethylsiloxane) elastomers. Polymer 49(13–14), 3136–3145 (2008).  https://doi.org/10.1016/j.polymer.2008.04.041CrossRefGoogle Scholar
  28. 28.
    Y. Tao, Z. Lin, R. Min Zhi, Z. Ming Qiu, Self-healing woven glass fabric/epoxy composites with the healant consisting of micro-encapsulated epoxy and latent curing agent. Smart Mater. Struct. 17(1), 015019 (2008)CrossRefGoogle Scholar
  29. 29.
    T.S. Coope, U.F.J. Mayer, D.F. Wass, R.S. Trask, I.P. Bond, Self-healing of an epoxy resin using scandium(III) triflate as a catalytic curing agent. Adv. Funct. Mater. 21(24), 4624–4631 (2011).  https://doi.org/10.1002/adfm.201101660CrossRefGoogle Scholar
  30. 30.
    C.J. Hansen, S.R. White, N.R. Sottos, J.A. Lewis, Accelerated self-healing via ternary interpenetrating microvascular networks. Adv. Funct. Mater. 21(22), 4320–4326 (2011).  https://doi.org/10.1002/adfm.201101553CrossRefGoogle Scholar
  31. 31.
    K.S. Toohey, C.J. Hansen, J.A. Lewis, S.R. White, N.R. Sottos, Delivery of two-part self-healing chemistry via microvascular networks. Adv. Funct. Mater. 19(9), 1399–1405 (2009).  https://doi.org/10.1002/adfm.200801824CrossRefGoogle Scholar
  32. 32.
    C.J. Hansen, W. Wu, K.S. Toohey, N.R. Sottos, S.R. White, J.A. Lewis, Self-healing materials with interpenetrating microvascular networks. Adv. Mater. 21(41), 4143–4147 (2009).  https://doi.org/10.1002/adma.200900588CrossRefGoogle Scholar
  33. 33.
    Y.C. Yuan, X.J. Ye, M.Z. Rong, M.Q. Zhang, G.C. Yang, J.Q. Zhao, Self-healing epoxy composite with heat-resistant healant. ACS Appl. Mater. Interfaces 3(11), 4487–4495 (2011).  https://doi.org/10.1021/am201182jCrossRefPubMedGoogle Scholar
  34. 34.
    Y. Yan Chao, Y. Yueping, R. Min Zhi, C. Haibin, W. Jingshen, Z. Ming Qiu, Q. Shi Xiang, Y. Gui Cheng, Self-healing of low-velocity impact damage in glass fabric/epoxy composites using an epoxy–mercaptan healing agent. Smart Mater. Struct. 20(1), 015024 (2011)CrossRefGoogle Scholar
  35. 35.
    Y.C. Yuan, M.Z. Rong, M.Q. Zhang, G.C. Yang, Study of factors related to performance improvement of self-healing epoxy based on dual encapsulated healant. Polymer 50(24), 5771–5781 (2009).  https://doi.org/10.1016/j.polymer.2009.10.019CrossRefGoogle Scholar
  36. 36.
    Y.C. Yuan, M.Z. Rong, M.Q. Zhang, J. Chen, G.C. Yang, X.M. Li, Self-healing polymeric materials using epoxy/mercaptan as the healant. Macromolecules 41(14), 5197–5202 (2008).  https://doi.org/10.1021/ma800028dCrossRefGoogle Scholar
  37. 37.
    S. Billiet, W. Van Camp, X.K.D. Hillewaere, H. Rahier, F.E. Du Prez, Development of optimized autonomous self-healing systems for epoxy materials based on maleimide chemistry. Polymer 53(12), 2320–2326 (2012).  https://doi.org/10.1016/j.polymer.2012.03.061CrossRefGoogle Scholar
  38. 38.
    X.K.D. Hillewaere, R.F.A. Teixeira, L.-T.T. Nguyen, J.A. Ramos, H. Rahier, F.E. Du Prez, Autonomous self-healing of epoxy thermosets with thiol-isocyanate chemistry. Adv. Funct. Mater. 24(35), 5575–5583 (2014).  https://doi.org/10.1002/adfm.201400580CrossRefGoogle Scholar
  39. 39.
    M. Gragert, M. Schunack, W.H. Binder, Azide/alkyne-“click”-reactions of encapsulated reagents: toward self-healing materials. Macromol. Rapid Commun. 32(5), 419–425 (2011).  https://doi.org/10.1002/marc.201000687CrossRefPubMedGoogle Scholar
  40. 40.
    S.R. White, J.S. Moore, N.R. Sottos, B.P. Krull, W.A. Santa Cruz, R.C.R. Gergely, Restoration of large damage volumes in polymers. Science 344(6184), 620–623 (2014).  https://doi.org/10.1126/science.1251135CrossRefPubMedGoogle Scholar
  41. 41.
    L.M. Meng, Y.C. Yuan, M.Z. Rong, M.Q. Zhang, A dual mechanism single-component self-healing strategy for polymers. J. Mater. Chem. 20(29), 6030–6038 (2010).  https://doi.org/10.1039/C0JM00268BCrossRefGoogle Scholar
  42. 42.
    A.M. Peterson, R.E. Jensen, G.R. Palmese, Room-temperature healing of a thermosetting polymer using the Diels−Alder reaction. ACS Appl. Mater. Interfaces 2(4), 1141–1149 (2010).  https://doi.org/10.1021/am9009378CrossRefPubMedGoogle Scholar
  43. 43.
    P.A. Pratama, M. Sharifi, A.M. Peterson, G.R. Palmese, Room temperature self-healing thermoset based on the Diels–Alder reaction. ACS Appl. Mater. Interfaces 5(23), 12425–12431 (2013).  https://doi.org/10.1021/am403459eCrossRefPubMedGoogle Scholar
  44. 44.
    P.A. Pratama, A.M. Peterson, G.R. Palmese, The role of maleimide structure in the healing of furan-functionalized epoxy-amine thermosets. Polym. Chem. 4(18), 5000–5006 (2013).  https://doi.org/10.1039/C3PY00084BCrossRefGoogle Scholar
  45. 45.
    N.W. Khun, D.W. Sun, M.X. Huang, J.L. Yang, C.Y. Yue, Wear resistant epoxy composites with diisocyanate-based self-healing functionality. Wear 313(1–2), 19–28 (2014).  https://doi.org/10.1016/j.wear.2014.02.011CrossRefGoogle Scholar
  46. 46.
    J.F. Patrick, N.R. Sottos, S.R. White, Microvascular based self-healing polymeric foam. Polymer 53(19), 4231–4240 (2012).  https://doi.org/10.1016/j.polymer.2012.07.021CrossRefGoogle Scholar
  47. 47.
    S.M. Bleay, C.B. Loader, V.J. Hawyes, L. Humberstone, P.T. Curtis, A smart repair system for polymer matrix composites. Compos. A: Appl. Sci. Manufact. 32(12), 1767–1776 (2001).  https://doi.org/10.1016/S1359-835X(01)00020-3CrossRefGoogle Scholar
  48. 48.
    F. Omosola, R. Kevin, B. Biswajit, Glass fibre polyester composite with in vivo vascular channel for use in self-healing. Smart Mater. Struct. 23(9), 095017 (2014)CrossRefGoogle Scholar
  49. 49.
    M. Motuku, U.K. Vaidya, G.M. Janowski, Parametric studies on self-repairing approaches for resin infused composites subjected to low velocity impact. Smart Mater. Struct. 8(5), 623 (1999)CrossRefGoogle Scholar
  50. 50.
    S. Zainuddin, T. Arefin, A. Fahim, M.V. Hosur, J.D. Tyson, A. Kumar, J. Trovillion, S. Jeelani, Recovery and improvement in low-velocity impact properties of e-glass/epoxy composites through novel self-healing technique. Compos. Struct. 108, 277–286 (2014).  https://doi.org/10.1016/j.compstruct.2013.09.023CrossRefGoogle Scholar
  51. 51.
    X. Chen, F. Wudl, A.K. Mal, H. Shen, S.R. Nutt, New thermally remendable highly cross-linked polymeric materials. Macromolecules 36(6), 1802–1807 (2003).  https://doi.org/10.1021/ma0210675CrossRefGoogle Scholar
  52. 52.
    X. Chen, M.A. Dam, K. Ono, A. Mal, H. Shen, S.R. Nutt, K. Sheran, F. Wudl, A thermally re-mendable cross-linked polymeric material. Science 295(5560), 1698–1702 (2002).  https://doi.org/10.1126/science.1065879CrossRefPubMedGoogle Scholar
  53. 53.
    N. Bai, K. Saito, G.P. Simon, Synthesis of a diamine cross-linker containing Diels-Alder adducts to produce self-healing thermosetting epoxy polymer from a widely used epoxy monomer. Polym. Chem. 4(3), 724–730 (2013).  https://doi.org/10.1039/C2PY20611KCrossRefGoogle Scholar
  54. 54.
    P. Du, M. Wu, X. Liu, Z. Zheng, X. Wang, T. Joncheray, Y. Zhang, Diels–Alder-based crosslinked self-healing polyurethane/urea from polymeric methylene diphenyl diisocyanate. J. Appl. Polym. Sci. 131(9) (2014).  https://doi.org/10.1002/app.40234
  55. 55.
    P. Du, X. Liu, Z. Zheng, X. Wang, T. Joncheray, Y. Zhang, Synthesis and characterization of linear self-healing polyurethane based on thermally reversible Diels-Alder reaction. RSC Adv. 3(35), 15475–15482 (2013).  https://doi.org/10.1039/C3RA42278JCrossRefGoogle Scholar
  56. 56.
    M.J. Barthel, T. Rudolph, A. Teichler, R.M. Paulus, J. Vitz, S. Hoeppener, M.D. Hager, F.H. Schacher, U.S. Schubert, Self-healing materials via reversible crosslinking of poly(ethylene oxide)-block-poly(furfuryl glycidyl ether) (PEO-b-PFGE) block copolymer films. Adv. Funct. Mater. 23(39), 4921–4932 (2013).  https://doi.org/10.1002/adfm.201300469CrossRefGoogle Scholar
  57. 57.
    R.K. Bose, J. Kötteritzsch, S.J. Garcia, M.D. Hager, U.S. Schubert, S. van der Zwaag, A rheological and spectroscopic study on the kinetics of self-healing in a single-component diels–alder copolymer and its underlying chemical reaction. J. Polym. Sci. Part A: Polym. Chem. 52(12), 1669–1675 (2014).  https://doi.org/10.1002/pola.27164CrossRefGoogle Scholar
  58. 58.
    J. Kötteritzsch, M.D. Hager, U.S. Schubert, Tuning the self-healing behavior of one-component intrinsic polymers. Polymer 69, 321–329 (2015).  https://doi.org/10.1016/j.polymer.2015.03.027CrossRefGoogle Scholar
  59. 59.
    J. Kötteritzsch, S. Stumpf, S. Hoeppener, J. Vitz, M.D. Hager, U.S. Schubert, One-component intrinsic self-healing coatings based on reversible crosslinking by Diels–Alder cycloadditions. Macromol. Chem. Phys. 214(14), 1636–1649 (2013).  https://doi.org/10.1002/macp.201200712CrossRefGoogle Scholar
  60. 60.
    N. Yoshie, S. Saito, N. Oya, A thermally-stable self-mending polymer networked by Diels–Alder cycloaddition. Polymer 52(26), 6074–6079 (2011).  https://doi.org/10.1016/j.polymer.2011.11.007CrossRefGoogle Scholar
  61. 61.
    E.B. Murphy, E. Bolanos, C. Schaffner-Hamann, F. Wudl, S.R. Nutt, M.L. Auad, Synthesis and characterization of a single-component thermally remendable polymer network: staudinger and Stille revisited. Macromolecules 41(14), 5203–5209 (2008).  https://doi.org/10.1021/ma800432gCrossRefGoogle Scholar
  62. 62.
    P. Reutenauer, E. Buhler, P.J. Boul, S.J. Candau, J.M. Lehn, Room temperature dynamic polymers based on Diels–Alder chemistry. Chem. Eur. J. 15(8), 1893–1900 (2009).  https://doi.org/10.1002/chem.200802145CrossRefPubMedGoogle Scholar
  63. 63.
    K.K. Oehlenschlaeger, J.O. Mueller, J. Brandt, S. Hilf, A. Lederer, M. Wilhelm, R. Graf, M.L. Coote, F.G. Schmidt, C. Barner-Kowollik, Adaptable hetero Diels–Alder networks for fast self-healing under mild conditions. Adv. Mater. 26(21), 3561–3566 (2014).  https://doi.org/10.1002/adma.201306258CrossRefPubMedGoogle Scholar
  64. 64.
    J. Ling, M.Z. Rong, M.Q. Zhang, Coumarin imparts repeated photochemical remendability to polyurethane. J. Mater. Chem. 21(45), 18373–18380 (2011).  https://doi.org/10.1039/C1JM13467ACrossRefGoogle Scholar
  65. 65.
    J. Ling, M.Z. Rong, M.Q. Zhang, Photo-stimulated self-healing polyurethane containing dihydroxyl coumarin derivatives. Polymer 53(13), 2691–2698 (2012).  https://doi.org/10.1016/j.polymer.2012.04.016CrossRefGoogle Scholar
  66. 66.
    C.-M. Chung, Y.-S. Roh, S.-Y. Cho, J.-G. Kim, Crack healing in polymeric materials via photochemical [2+2] cycloaddition. Chem. Mater. 16(21), 3982–3984 (2004).  https://doi.org/10.1021/cm049394+CrossRefGoogle Scholar
  67. 67.
    P. Froimowicz, H. Frey, K. Landfester, Towards the generation of self-healing materials by means of a reversible photo-induced approach. Macromol. Rapid Commun. 32(5), 468–473 (2011).  https://doi.org/10.1002/marc.201000643CrossRefPubMedGoogle Scholar
  68. 68.
    N. Kuhl, S. Bode, R.K. Bose, J. Vitz, A. Seifert, S. Hoeppener, S.J. Garcia, S. Spange, S. van der Zwaag, M.D. Hager, U.S. Schubert, Acylhydrazones as reversible covalent crosslinkers for self-healing polymers. Adv. Funct. Mater. 25(22), 3295–3301 (2015).  https://doi.org/10.1002/adfm.201501117CrossRefGoogle Scholar
  69. 69.
    H. Li, J. Bai, Z. Shi, J. Yin, Environmental friendly polymers based on schiff-base reaction with self-healing, remolding and degradable ability. Polymer 85, 106–113 (2016).  https://doi.org/10.1016/j.polymer.2016.01.050CrossRefGoogle Scholar
  70. 70.
    J. Canadell, H. Goossens, B. Klumperman, Self-healing materials based on disulfide links. Macromolecules 44(8), 2536–2541 (2011).  https://doi.org/10.1021/ma2001492CrossRefGoogle Scholar
  71. 71.
    M. Pepels, I. Filot, B. Klumperman, H. Goossens, Self-healing systems based on disulfide-thiol exchange reactions. Polym. Chem. 4(18), 4955–4965 (2013).  https://doi.org/10.1039/C3PY00087GCrossRefGoogle Scholar
  72. 72.
    U. Lafont, H. van Zeijl, S. van der Zwaag, Influence of cross-linkers on the cohesive and adhesive self-healing ability of polysulfide-based thermosets. ACS Appl. Mater. Interfaces 4(11), 6280–6288 (2012).  https://doi.org/10.1021/am301879zCrossRefPubMedGoogle Scholar
  73. 73.
    Z.Q. Lei, H.P. Xiang, Y.J. Yuan, M.Z. Rong, M.Q. Zhang, Room-temperature self-healable and remoldable cross-linked polymer based on the dynamic exchange of disulfide bonds. Chem. Mater. 26(6), 2038–2046 (2014).  https://doi.org/10.1021/cm4040616CrossRefGoogle Scholar
  74. 74.
    R. Martin, A. Rekondo, A. Ruiz de Luzuriaga, G. Cabanero, H.J. Grande, I. Odriozola, The processability of a poly(urea-urethane) elastomer reversibly crosslinked with aromatic disulfide bridges. J. Mater. Chem. A 2(16), 5710–5715 (2014).  https://doi.org/10.1039/C3TA14927GCrossRefGoogle Scholar
  75. 75.
    A. Rekondo, R. Martin, A. Ruiz de Luzuriaga, G. Cabanero, H.J. Grande, I. Odriozola, Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater. Horiz 1(2), 237–240 (2014).  https://doi.org/10.1039/C3MH00061CCrossRefGoogle Scholar
  76. 76.
    J.A. Yoon, J. Kamada, K. Koynov, J. Mohin, R. Nicolaÿ, Y. Zhang, A.C. Balazs, T. Kowalewski, K. Matyjaszewski, Self-healing polymer films based on thiol–disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy. Macromolecules 45(1), 142–149 (2012).  https://doi.org/10.1021/ma2015134CrossRefGoogle Scholar
  77. 77.
    Y. Amamoto, H. Otsuka, A. Takahara, K. Matyjaszewski, Self-healing of covalently cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light. Adv. Mater. 24(29), 3975–3980 (2012).  https://doi.org/10.1002/adma.201201928CrossRefPubMedGoogle Scholar
  78. 78.
    A.Z.M. Esteves AC, S. van der Zwaag, S.J. Garcia, Healable dual organic–inorganic crosslinked sol–gel based polymers: crosslinking density and tetrasulfide content effect. J. Polym. Sci. Part A: Polym. Chem. 52(14), 1953–1961 (2014).  https://doi.org/10.1002/pola.27200CrossRefGoogle Scholar
  79. 79.
    H. Ying, Y. Zhang, J. Cheng, Dynamic urea bond for the design of reversible and self-healing polymers. Nat. Commun. 5 (2014).  https://doi.org/10.1038/ncomms4218
  80. 80.
    F. Wang, M.Z. Rong, M.Q. Zhang, Reversibility of solid state radical reactions in thermally remendable polymers with C-ON bonds. J. Mater. Chem. 22(26), 13076–13084 (2012).  https://doi.org/10.1039/C2JM30578JCrossRefGoogle Scholar
  81. 81.
    Y. Ce, M.Z. Rong, M.Q. Zhang, Z.P. Zhang, Y.C. Yuan, Self-healing of polymers via synchronous covalent bond fission/radical recombination. Chem. Mater. 23(22), 5076–5081 (2011).  https://doi.org/10.1021/cm202635wCrossRefGoogle Scholar
  82. 82.
    Y. Ce, M.Z. Rong, M.Q. Zhang, Self-healing polyurethane elastomer with thermally reversible alkoxyamines as crosslinkages. Polymer 55(7), 1782–1791 (2014).  https://doi.org/10.1016/j.polymer.2014.02.033CrossRefGoogle Scholar
  83. 83.
    K. Imato, M. Nishihara, T. Kanehara, Y. Amamoto, A. Takahara, H. Otsuka, Self-healing of chemical gels cross-linked by diarylbibenzofuranone-based trigger-free dynamic covalent bonds at room temperature. Angew. Chem. Int. Ed. 51(5), 1138–1142 (2012).  https://doi.org/10.1002/anie.201104069CrossRefGoogle Scholar
  84. 84.
    M. Capelot, D. Montarnal, F. Tournilhac, L. Leibler, Metal-catalyzed transesterification for healing and assembling of thermosets. J. Am. Chem. Soc. 134(18), 7664–7667 (2012).  https://doi.org/10.1021/ja302894kCrossRefPubMedGoogle Scholar
  85. 85.
    D. Montarnal, M. Capelot, F. Tournilhac, L. Leibler, Silica-like malleable materials from permanent organic networks. Science 334(6058), 965–968 (2011).  https://doi.org/10.1126/science.1212648CrossRefPubMedGoogle Scholar
  86. 86.
    J.J. Cash, T. Kubo, A.P. Bapat, B.S. Sumerlin, Room-temperature self-healing polymers based on dynamic-covalent boronic esters. Macromolecules 48(7), 2098–2106 (2015).  https://doi.org/10.1021/acs.macromol.5b00210CrossRefGoogle Scholar
  87. 87.
    O.R. Cromwell, J. Chung, Z. Guan, Malleable and self-healing covalent polymer networks through tunabled dynamic boronic ester bonds. J. Am. Chem. Soc. 137(20), 6492–6495 (2015).  https://doi.org/10.1021/jacs.5b03551CrossRefPubMedGoogle Scholar
  88. 88.
    D. Döhler, H. Peterlik, W.H. Binder, A dual crosslinked self-healing system: supramolecular and covalent network formation of four-arm star polymers. Polymer 69, 264–273 (2015).  https://doi.org/10.1016/j.polymer.2015.01.073CrossRefGoogle Scholar
  89. 89.
    F. Herbst, S. Seiffert, W.H. Binder, Dynamic supramolecular poly(isobutylene)s for self-healing materials. Polym. Chem. 3(11), 3084–3092 (2012).  https://doi.org/10.1039/C2PY20265DCrossRefGoogle Scholar
  90. 90.
    S. Chen, N. Mahmood, M. Beiner, W.H. Binder, Self-healing materials from V- and H-shaped supramolecular architectures. Angew. Chem. Int. Ed. 54(35), 10188–10192 (2015).  https://doi.org/10.1002/anie.201504136CrossRefGoogle Scholar
  91. 91.
    Y. Chen, Z. Guan, Self-healing thermoplastic elastomer brush copolymers having a glassy polymethylmethacrylate backbone and rubbery polyacrylate-amide brushes. Polymer 69, 249–254 (2015).  https://doi.org/10.1016/j.polymer.2015.03.023CrossRefGoogle Scholar
  92. 92.
    M. Yan, J. Tang, H.-L. Xie, B. Ni, H.-L. Zhang, E.-Q. Chen, Self-healing and phase behavior of liquid crystalline elastomer based on a block copolymer constituted of a side-chain liquid crystalline polymer and a hydrogen bonding block. J. Mater. Chem. C 3(33), 8526–8534 (2015).  https://doi.org/10.1039/C5TC01603GCrossRefGoogle Scholar
  93. 93.
    Y. Chen, A.M. Kushner, G.A. Williams, Z. Guan, Multiphase design of autonomic self-healing thermoplastic elastomers. Nat. Chem. 4(6), 467–472 (2012).  https://doi.org/10.1038/nchem.1314CrossRefPubMedGoogle Scholar
  94. 94.
    N. Roy, E. Buhler, J.-M. Lehn, The tris-urea motif and its incorporation into polydimethylsiloxane-based supramolecular materials presenting self-healing features. Chem. Eur. J. 19(27), 8814–8820 (2013).  https://doi.org/10.1002/chem.201203518CrossRefPubMedGoogle Scholar
  95. 95.
    P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, L. Leibler, Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451(7181), 977–980 (2008).  https://doi.org/10.1038/nature06669CrossRefPubMedGoogle Scholar
  96. 96.
    D. Montarnal, P. Cordier, C. Soulié-Ziakovic, F. Tournilhac, L. Leibler, Synthesis of self-healing supramolecular rubbers from fatty acid derivatives, diethylene triamine, and urea. J. Polym. Sci. Part A: Polym. Chem. 46(24), 7925–7936 (2008).  https://doi.org/10.1002/pola.23094CrossRefGoogle Scholar
  97. 97.
    A. Faghihnejad, K.E. Feldman, J. Yu, M.V. Tirrell, J.N. Israelachvili, C.J. Hawker, E.J. Kramer, H. Zeng, Adhesion and surface interactions of a self-healing polymer with multiple hydrogen-bonding groups. Adv. Funct. Mater. 24(16), 2322–2333 (2014).  https://doi.org/10.1002/adfm.201303013CrossRefGoogle Scholar
  98. 98.
    R. Chang, Y. Huang, G. Shan, Y. Bao, X. Yun, T. Dong, P. Pan, Alternating poly(lactic acid)/poly(ethylene-co-butylene) supramolecular multiblock copolymers with tunable shape memory and self-healing properties. Polym. Chem. 6(32), 5899–5910 (2015).  https://doi.org/10.1039/C5PY00742ACrossRefGoogle Scholar
  99. 99.
    J. Hentschel, A.M. Kushner, J. Ziller, Z. Guan, Self-healing supramolecular block copolymers. Angew. Chem. Int. Ed. 51(42), 10561–10565 (2012).  https://doi.org/10.1002/anie.201204840CrossRefGoogle Scholar
  100. 100.
    S. Burattini, H.M. Colquhoun, B.W. Greenland, W. Hayes, A novel self-healing supramolecular polymer system. Faraday Discuss. 143(1), 251–264 (2009).  https://doi.org/10.1039/B900859DCrossRefPubMedGoogle Scholar
  101. 101.
    S. Burattini, B.W. Greenland, D.H. Merino, W. Weng, J. Seppala, H.M. Colquhoun, W. Hayes, M.E. Mackay, I.W. Hamley, S.J. Rowan, A healable supramolecular polymer blend based on aromatic π−π stacking and hydrogen-bonding interactions. J. Am. Chem. Soc. 132(34), 12051–12058 (2010).  https://doi.org/10.1021/ja104446rCrossRefPubMedGoogle Scholar
  102. 102.
    S. Burattini, B.W. Greenland, W. Hayes, M.E. Mackay, S.J. Rowan, H.M. Colquhoun, A supramolecular polymer based on tweezer-type π−π stacking interactions: molecular design for healability and enhanced toughness. Chem. Mater. 23(1), 6–8 (2011).  https://doi.org/10.1021/cm102963kCrossRefGoogle Scholar
  103. 103.
    S.J. Kalista, T.C. Ward, Thermal characteristics of the self-healing response in poly(ethylene-co-methacrylic acid) copolymers. J. R. Soc. Interface 4(13), 405–411 (2007).  https://doi.org/10.1098/rsif.2006.0169CrossRefPubMedGoogle Scholar
  104. 104.
    S.J. Kalista, J.R. Pflug, R.J. Varley, Effect of ionic content on ballistic self-healing in EMAA copolymers and ionomers. Polym. Chem. 4(18), 4910–4926 (2013).  https://doi.org/10.1039/C3PY00095HCrossRefGoogle Scholar
  105. 105.
    S.J. Kalista, T.C. Ward, Z. Oyetunji, Self-healing of poly(ethylene-co-methacrylic acid) copolymers following projectile puncture. Mech. Adv. Mater. Struct. 14(5), 391–397 (2007).  https://doi.org/10.1080/15376490701298819CrossRefGoogle Scholar
  106. 106.
    R.J. Varley, S. van der Zwaag, Development of a quasi-static test method to investigate the origin of self-healing in ionomers under ballistic conditions. Polym. Test. 27(1), 11–19 (2008).  https://doi.org/10.1016/j.polymertesting.2007.07.013CrossRefGoogle Scholar
  107. 107.
    R.J. Varley, S. van der Zwaag, Towards an understanding of thermally activated self-healing of an ionomer system during ballistic penetration. Acta Mater. 56(19), 5737–5750 (2008).  https://doi.org/10.1016/j.actamat.2008.08.008CrossRefGoogle Scholar
  108. 108.
    R.K. Bose, N. Hohlbein, S.J. Garcia, A.M. Schmidt, S. van der Zwaag, Connecting supramolecular bond lifetime and network mobility for scratch healing in poly(butyl acrylate) ionomers containing sodium, zinc and cobalt. Phys. Chem. Chem. Phys. 17(3), 1697–1704 (2015).  https://doi.org/10.1039/C4CP04015ECrossRefPubMedGoogle Scholar
  109. 109.
    R.K. Bose, N. Hohlbein, S.J. Garcia, A.M. Schmidt, S. van der Zwaag, Relationship between the network dynamics, supramolecular relaxation time and healing kinetics of cobalt poly(butyl acrylate) ionomers. Polymer 69, 228–232 (2015).  https://doi.org/10.1016/j.polymer.2015.03.049CrossRefGoogle Scholar
  110. 110.
    N. Hohlbein, A. Shaaban, A.M. Schmidt, Remote-controlled activation of self-healing behavior in magneto-responsive ionomeric composites. Polymer 69, 301–309 (2015).  https://doi.org/10.1016/j.polymer.2015.04.024CrossRefGoogle Scholar
  111. 111.
    S. Bode, R.K. Bose, S. Matthes, M. Ehrhardt, A. Seifert, F.H. Schacher, R.M. Paulus, S. Stumpf, B. Sandmann, J. Vitz, A. Winter, S. Hoeppener, S.J. Garcia, S. Spange, S. van der Zwaag, M.D. Hager, U.S. Schubert, Self-healing metallopolymers based on cadmium bis(terpyridine) complex containing polymer networks. Polym. Chem. 4(18), 4966–4973 (2013).  https://doi.org/10.1039/C3PY00288HCrossRefGoogle Scholar
  112. 112.
    S. Bode, L. Zedler, F.H. Schacher, B. Dietzek, M. Schmitt, J. Popp, M.D. Hager, U.S. Schubert, Self-healing polymer coatings based on crosslinked metallosupramolecular copolymers. Adv. Mater. 25(11), 1634–1638 (2013).  https://doi.org/10.1002/adma.201203865CrossRefPubMedGoogle Scholar
  113. 113.
    S. Bode, M. Enke, R.K. Bose, F.H. Schacher, S.J. Garcia, S. van der Zwaag, M.D. Hager, U.S. Schubert, Correlation between scratch healing and rheological behavior for terpyridine complex based metallopolymers. J. Mater. Chem. A 3(44), 22145–22153 (2015).  https://doi.org/10.1039/C5TA05545HCrossRefGoogle Scholar
  114. 114.
    M. Burnworth, L. Tang, J.R. Kumpfer, A.J. Duncan, F.L. Beyer, G.L. Fiore, S.J. Rowan, C. Weder, Optically healable supramolecular polymers. Nature 472(7343), 334–337 (2011).  https://doi.org/10.1038/nature09963CrossRefPubMedGoogle Scholar
  115. 115.
    S. Coulibaly, A. Roulin, S. Balog, M.V. Biyani, E.J. Foster, S.J. Rowan, G.L. Fiore, C. Weder, Reinforcement of optically healable supramolecular polymers with cellulose nanocrystals. Macromolecules 47(1), 152–160 (2014).  https://doi.org/10.1021/ma402143cCrossRefGoogle Scholar
  116. 116.
    M. Enke, S. Bode, J. Vitz, F.H. Schacher, M.J. Harrington, M.D. Hager, U.S. Schubert, Self-healing response in supramolecular polymers based on reversible zinc–histidine interactions. Polymer 69, 274–282 (2015).  https://doi.org/10.1016/j.polymer.2015.03.068CrossRefGoogle Scholar
  117. 117.
    D. Mozhdehi, S. Ayala, O.R. Cromwell, Z. Guan, Self-healing multiphase polymers via dynamic metal–ligand interactions. J. Am. Chem. Soc. 136(46), 16128–16131 (2014).  https://doi.org/10.1021/ja5097094CrossRefPubMedGoogle Scholar
  118. 118.
    F. Zeng, Y. Han, Z.-C. Yan, C.-Y. Liu, C.-F. Chen, Supramolecular polymer gel with multi stimuli responsive, self-healing and erasable properties generated by host–guest interactions. Polymer 54(26), 6929–6935 (2013).  https://doi.org/10.1016/j.polymer.2013.10.048CrossRefGoogle Scholar
  119. 119.
    S. Li, H.-Y. Lu, Y. Shen, C.-F. Chen, A stimulus-response and self-healing supramolecular polymer gel based on host–guest interactions. Macromol. Chem. Phys. 214(14), 1596–1601 (2013).  https://doi.org/10.1002/macp.201300229CrossRefGoogle Scholar
  120. 120.
    M. Zhang, D. Xu, X. Yan, J. Chen, S. Dong, B. Zheng, F. Huang, Self-healing supramolecular gels formed by crown ether based host–guest interactions. Angew. Chem. Int. Ed. 51(28), 7011–7015 (2012).  https://doi.org/10.1002/anie.201203063CrossRefGoogle Scholar
  121. 121.
    T.-W. Chuo, T.-C. Wei, Y.-L. Liu, Electrically driven self-healing polymers based on reversible guest–host complexation of β-cyclodextrin and ferrocene. J. Polym. Sci. Part A: Polym. Chem. 51(16), 3395–3403 (2013).  https://doi.org/10.1002/pola.26736CrossRefGoogle Scholar
  122. 122.
    M. Nakahata, Y. Takashima, H. Yamaguchi, A. Harada, Redox-responsive self-healing materials formed from host–guest polymers. Nat. Commun. 2, 511 (2011).  https://doi.org/10.1038/ncomms1521CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    T. Kakuta, Y. Takashima, M. Nakahata, M. Otsubo, H. Yamaguchi, A. Harada, Preorganized hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host–guest-monomers that contain cyclodextrins and hydrophobic guest groups. Adv. Mater. 25(20), 2849–2853 (2013).  https://doi.org/10.1002/adma.201205321CrossRefPubMedGoogle Scholar
  124. 124.
    T. Kakuta, Y. Takashima, T. Sano, T. Nakamura, Y. Kobayashi, H. Yamaguchi, A. Harada, Adhesion between semihard polymer materials containing cyclodextrin and adamantane based on host–guest interactions. Macromolecules 48(3), 732–738 (2015).  https://doi.org/10.1021/ma502316dCrossRefGoogle Scholar
  125. 125.
    D.J. Byrne, J. Hardy, R.A.B.. Wood, R. McIntosh, A. Cuschieri, Effect of fibrin glues on the mechanical properties of healing wounds. Br. J. Surg. 78(7), 841–843 (1991).  https://doi.org/10.1002/bjs.1800780723
  126. 126.
    M.B. Schaffler, E.L. Radin, D.B. Burr, Mechanical and morphological effects of strain rate on fatigue of compact bone. Bone 10(3), 207–214 (1989).  https://doi.org/10.1016/8756-3282(89)90055-0CrossRefPubMedGoogle Scholar
  127. 127.
    I.H. Kalfas, Principles of bone healing. Neurosurg. Focus. 10(4), 1–4 (2001).  https://doi.org/10.3171/foc.2001.10.4.2CrossRefGoogle Scholar
  128. 128.
    M.J. Harrington, H.S. Gupta, P. Fratzl, J.H. Waite, Collagen insulated from tensile damage by domains that unfold reversibly: in situ X-ray investigation of mechanical yield and damage repair in the mussel byssus. J. Struct. Biol. 167(1), 47–54 (2009).  https://doi.org/10.1016/j.jsb.2009.03.001CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    K.S. Toohey, N.R. Sottos, J.A. Lewis, J.S. Moore, S.R. White, Self-healing materials with microvascular networks. Nat. Mater. 6(8), 581–585 (2007).  https://doi.org/10.1038/nmat1934CrossRefPubMedGoogle Scholar
  130. 130.
    J.W.C. Pang, I.P. Bond, A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility. Compos. Sci. Technol. 65(11–12), 1791–1799 (2005).  https://doi.org/10.1016/j.compscitech.2005.03.008CrossRefGoogle Scholar
  131. 131.
    I.P. Bond, R.S. Trask, H.R. Williams, Self-healing fiber-reinforced polymer composites. MRS Bull. 33(08), 770–774 (2008).  https://doi.org/10.1557/mrs2008.164CrossRefGoogle Scholar
  132. 132.
    R.S. Trask, C.J. Norris, I.P. Bond, Stimuli triggered self-healing functionality in advanced fibre reinforced composites. J. Intell. Mater. Syst. Struct. (2013).  https://doi.org/10.1177/1045389x13505006
  133. 133.
    T.S. Coope, D.F. Wass, R.S. Trask, I.P. Bond, Metal triflates as catalytic curing agents in self-healing fibre reinforced polymer composite materials. Macromol. Mater. Eng. 299(2), 208–218 (2014).  https://doi.org/10.1002/mame.201300026CrossRefGoogle Scholar
  134. 134.
    A.R. Hamilton, N.R. Sottos, S.R. White, Self-healing of internal damage in synthetic vascular materials. Adv. Mater. 22(45), 5159–5163 (2010).  https://doi.org/10.1002/adma.201002561CrossRefPubMedGoogle Scholar
  135. 135.
    N. Kuhl, S. Bode, M.D. Hager, U.S. Schubert, Self-healing polymers based on reversible covalent bonds. Adv. Polym. Sci. (2016).  https://doi.org/10.1007/12_2015_336
  136. 136.
    M. Enke, D. Döhler, S. Bode, W.H. Binder, M.D. Hager, U.S. Schubert, Intrinsic self-healing polymers based on supramolecular interactions: state of the art and future directions. Adv. Polym. Sci. (2016).  https://doi.org/10.1007/12_2015_345
  137. 137.
    P. Froimowicz, D. Klinger, K. Landfester, Photoreactive nanoparticles as nanometric building blocks for the generation of self-healing hydrogel thin films. Chem. Eur. J. 17(44), 12465–12475 (2011).  https://doi.org/10.1002/chem.201100685CrossRefPubMedGoogle Scholar
  138. 138.
    L. Hu, X. Cheng, A. Zhang, A facile method to prepare UV light-triggered self-healing polyphosphazenes. J. Mater. Sci. 50(5), 2239–2246 (2014).  https://doi.org/10.1007/s10853-014-8786-yCrossRefGoogle Scholar
  139. 139.
    N. Oya, P. Sukarsaatmadja, K. Ishida, N. Yoshie, Photoinduced mendable network polymer from poly(butylene adipate) end-functionalized with cinnamoyl groups. Polym. J. 44(7), 724–729 (2012)CrossRefGoogle Scholar
  140. 140.
    Y.-L. Liu, T.-W. Chuo, Self-healing polymers based on thermally reversible Diels-Alder chemistry. Polym. Chem. 4(7), 2194–2205 (2013).  https://doi.org/10.1039/C2PY20957HCrossRefGoogle Scholar
  141. 141.
    A. Gandini, The furan/maleimide Diels–Alder reaction: a versatile click–unclick tool in macromolecular synthesis. Prog. Polym. Sci. 38(1), 1–29 (2013).  https://doi.org/10.1016/j.progpolymsci.2012.04.002CrossRefGoogle Scholar
  142. 142.
    Y.-L. Liu, C.-Y. Hsieh, Crosslinked epoxy materials exhibiting thermal remendablility and removability from multifunctional maleimide and furan compounds. J. Polym. Sci. Part A: Polym. Chem. 44(2), 905–913 (2006).  https://doi.org/10.1002/pola.21184CrossRefGoogle Scholar
  143. 143.
    C. Zeng, H. Seino, J. Ren, K. Hatanaka, N. Yoshie, Self-healing bio-based furan polymers cross-linked with various bis-maleimides. Polymer 54(20), 5351–5357 (2013).  https://doi.org/10.1016/j.polymer.2013.07.059CrossRefGoogle Scholar
  144. 144.
    C. Zeng, H. Seino, J. Ren, K. Hatanaka, N. Yoshie, Bio-based furan polymers with self-healing ability. Macromolecules 46(5), 1794–1802 (2013).  https://doi.org/10.1021/ma3023603CrossRefGoogle Scholar
  145. 145.
    J.A. Syrett, G. Mantovani, W.R.S. Barton, D. Price, D.M. Haddleton, Self-healing polymers prepared via living radical polymerisation. Polym. Chem. 1(1), 102–106 (2010).  https://doi.org/10.1039/B9PY00316ACrossRefGoogle Scholar
  146. 146.
    B.D. Fairbanks, S.P. Singh, C.N. Bowman, K.S. Anseth, Photodegradable, photoadaptable hydrogels via radical-mediated disulfide fragmentation reaction. Macromolecules 44(8), 2444–2450 (2011).  https://doi.org/10.1021/ma200202wCrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    A.P. Bapat, J.G. Ray, D.A. Savin, B.S. Sumerlin, Redox-responsive dynamic-covalent assemblies: stars and miktoarm stars. Macromolecules 46(6), 2188–2198 (2013).  https://doi.org/10.1021/ma400169mCrossRefGoogle Scholar
  148. 148.
    N. Roy, B. Bruchmann, J.-M. Lehn, DYNAMERS: dynamic polymers as self-healing materials. Chem. Soc. Rev. 44(11), 3786–3807 (2015).  https://doi.org/10.1039/C5CS00194CCrossRefPubMedGoogle Scholar
  149. 149.
    M.E. Belowich, J.F. Stoddart, Dynamic imine chemistry. Chem. Soc. Rev. 41(6), 2003–2024 (2012).  https://doi.org/10.1039/C2CS15305JCrossRefPubMedGoogle Scholar
  150. 150.
    M. Ciaccia, S. Di Stefano, Mechanisms of imine exchange reactions in organic solvents. Org. Biomol. Chem. 13(3), 646–654 (2015).  https://doi.org/10.1039/C4OB02110JCrossRefPubMedGoogle Scholar
  151. 151.
    G. Schaeffer, E. Buhler, S.J. Candau, J.-M. Lehn, Double dynamic supramolecular polymers of covalent oligo-dynamers. Macromolecules 46(14), 5664–5671 (2013).  https://doi.org/10.1021/ma400449uCrossRefGoogle Scholar
  152. 152.
    A.K.H. Hirsch, E. Buhler, J.-M. Lehn, Biodynamers: self-organization-driven formation of doubly dynamic proteoids. J. Am. Chem. Soc. 134(9), 4177–4183 (2012).  https://doi.org/10.1021/ja2099134CrossRefPubMedGoogle Scholar
  153. 153.
    G. Deng, C. Tang, F. Li, H. Jiang, Y. Chen, Covalent cross-linked polymer gels with reversible sol−gel transition and self-healing properties. Macromolecules 43(3), 1191–1194 (2010).  https://doi.org/10.1021/ma9022197CrossRefGoogle Scholar
  154. 154.
    G. Deng, F. Li, H. Yu, F. Liu, C. Liu, W. Sun, H. Jiang, Y. Chen, Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol–gel transitions. ACS Macro Lett. 1(2), 275–279 (2012).  https://doi.org/10.1021/mz200195nCrossRefGoogle Scholar
  155. 155.
    Y. Gao, Q. Luo, S. Qiao, L. Wang, Z. Dong, J. Xu, J. Liu, Enzymetically regulating the self-healing of protein hydrogels with high healing efficiency. Angew. Chem. Int. Ed. 53(35), 9343–9346 (2014).  https://doi.org/10.1002/anie.201404531CrossRefGoogle Scholar
  156. 156.
    J. Nicolas, Y. Guillaneuf, C. Lefay, D. Bertin, D. Gigmes, B. Charleux, Nitroxide-mediated polymerization. Prog. Polym. Sci. 38(1), 63–235 (2013).  https://doi.org/10.1016/j.progpolymsci.2012.06.002CrossRefGoogle Scholar
  157. 157.
    T. Janoschka, A. Teichler, B. Häupler, T. Jähnert, M.D. Hager, U.S. Schubert, Reactive inkjet printing of cathodes for organic radical batteries. Adv. Energy Mater. 3(8), 1025–1028 (2013).  https://doi.org/10.1002/aenm.201300036CrossRefGoogle Scholar
  158. 158.
    R. Hoogenboom, Hard autonomous self-healing supramolecular materials— a contradiction in terms? Angew. Chem. Int. Ed. 51(48), 11942–11944 (2012).  https://doi.org/10.1002/anie.201205226CrossRefGoogle Scholar
  159. 159.
    F. Herbst, D. Döhler, P. Michael, W.H. Binder, Self-healing polymers via supramolecular forces. Macromol. Rapid Commun. 34(3), 203–220 (2013).  https://doi.org/10.1002/marc.201200675CrossRefPubMedGoogle Scholar
  160. 160.
    J. Cortese, C. Soulié-Ziakovic, S. Tencé-Girault, L. Leibler, Suppression of mesoscopic order by complementary interactions in supramolecular polymers. J. Am. Chem. Soc. 134(8), 3671–3674 (2012).  https://doi.org/10.1021/ja2119496CrossRefPubMedGoogle Scholar
  161. 161.
    A.V. Ambade, S.K. Yang, M. Weck, Supramolecular ABC triblock copolymers. Angew. Chem. Int. Ed. 48(16), 2894–2898 (2009).  https://doi.org/10.1002/anie.200805116CrossRefGoogle Scholar
  162. 162.
    S. Burattini, B.W. Greenland, D. Chappell, H.M. Colquhoun, W. Hayes, Healable polymeric materials: a tutorial review. Chem. Soc. Rev. 39(6), 1973–1985 (2010).  https://doi.org/10.1039/B904502NCrossRefPubMedGoogle Scholar
  163. 163.
    L.R. Hart, N.A. Nguyen, J.L. Harries, M.E. Mackay, H.M. Colquhoun, W. Hayes, Perylene as an electron-rich moiety in healable, complementary π–π stacked, supramolecular polymer systems. Polymer 69, 293–300 (2015).  https://doi.org/10.1016/j.polymer.2015.03.028CrossRefGoogle Scholar
  164. 164.
    S. Burattini, H.M. Colquhoun, J.D. Fox, D. Friedmann, B.W. Greenland, P.J.F. Harris, W. Hayes, M.E. Mackay, S.J. Rowan, A self-repairing, supramolecular polymer system: healability as a consequence of donor-acceptor [small pi]-[small pi] stacking interactions. Chem. Commun. 44, 6717–6719 (2009).  https://doi.org/10.1039/B910648KCrossRefGoogle Scholar
  165. 165.
    J. Fox, J.J. Wie, B.W. Greenland, S. Burattini, W. Hayes, H.M. Colquhoun, M.E. Mackay, S.J. Rowan, High-strength, healable, supramolecular polymer nanocomposites. J. Am. Chem. Soc. 134(11), 5362–5368 (2012).  https://doi.org/10.1021/ja300050xCrossRefPubMedGoogle Scholar
  166. 166.
  167. 167.
  168. 168.
    A. Eisenberg, Clustering of ions in organic polymers. A theoretical approach. Macromolecules 3(2), 147–154 (1970).  https://doi.org/10.1021/ma60014a006CrossRefGoogle Scholar
  169. 169.
    A. Eisenberg, B. Hird, R.B. Moore, A new multiplet-cluster model for the morphology of random ionomers. Macromolecules 23(18), 4098–4107 (1990).  https://doi.org/10.1021/ma00220a012CrossRefGoogle Scholar
  170. 170.
    K. Tadano, E. Hirasawa, H. Yamamoto, S. Yano, Order-disorder transition of ionic clusters in ionomers. Macromolecules 22(1), 226–233 (1989).  https://doi.org/10.1021/ma00191a043CrossRefGoogle Scholar
  171. 171.
    T. Haase, I. Rohr, K. Thoma, Dynamic temperature measurements on a thermally activated self-healing ionomer. J. Intell. Mater. Syst. Struct. 25(1), 25–30 (2014).  https://doi.org/10.1177/1045389x12444487CrossRefGoogle Scholar
  172. 172.
    B. Sandmann, S. Bode, M.D. Hager, U.S. Schubert, Metallopolymers as an emerging class of self-healing materials. Adv. Polym. Sci. 262, 239–257 (2013)CrossRefGoogle Scholar
  173. 173.
    G.R. Whittell, M.D. Hager, U.S. Schubert, I. Manners, Functional soft materials from metallopolymers and metallosupramolecular polymers. Nat. Mater. 10(3), 176–188 (2011).  https://doi.org/10.1038/nmat2966CrossRefPubMedGoogle Scholar
  174. 174.
    Z. Wang, M.W. Urban, Facile UV-healable polyethylenimine-copper (C2H5N-cu) supramolecular polymer networks. Polym. Chem. 4(18), 4897–4901 (2013).  https://doi.org/10.1039/C2PY20844JCrossRefGoogle Scholar
  175. 175.
    S. Kupfer, L. Zedler, J. Guthmuller, S. Bode, M.D. Hager, U.S. Schubert, J. Popp, S. Grafe, B. Dietzek, Self-healing mechanism of metallopolymers investigated by QM/MM simulations and Raman spectroscopy. Phys. Chem. Chem. Phys. 16(24), 12422–12432 (2014).  https://doi.org/10.1039/C4CP00562GCrossRefPubMedGoogle Scholar
  176. 176.
    E. Vaccaro, J.H. Waite, Yield and post-yield behavior of mussel byssal thread: a self-healing biomolecular material. Biomacromolecules 2(3), 906–911 (2001).  https://doi.org/10.1021/bm0100514CrossRefPubMedGoogle Scholar
  177. 177.
    S. Schmidt, A. Reinecke, F. Wojcik, D. Pussak, L. Hartmann, M.J. Harrington, Metal-mediated molecular self-healing in histidine-rich mussel peptides. Biomacromolecules 15(5), 1644–1652 (2014).  https://doi.org/10.1021/bm500017uCrossRefPubMedGoogle Scholar
  178. 178.
    H. Ceylan, M. Urel, T.S. Erkal, A.B.. Tekinay, A. Dana, M.O. Guler, Mussel inspired dynamic cross-linking of self-healing peptide nanofiber network. Adv. Funct. Mater. 23(16), 2081–2090 (2013).  https://doi.org/10.1002/adfm.201202291
  179. 179.
    J.J. Wilker, The iron-fortified adhesive system of marine mussels. Angew. Chem. Int. Ed. 49(44), 8076–8078 (2010).  https://doi.org/10.1002/anie.201003171CrossRefGoogle Scholar
  180. 180.
    M.J. Harrington, A. Masic, N. Holten-Andersen, J.H. Waite, P. Fratzl, Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science 328(5975), 216–220 (2010).  https://doi.org/10.1126/science.1181044CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    S. Krauss, T.H. Metzger, P. Fratzl, M.J. Harrington, Self-repair of a biological fiber guided by an ordered elastic framework. Biomacromolecules 14(5), 1520–1528 (2013).  https://doi.org/10.1021/bm4001712CrossRefPubMedGoogle Scholar
  182. 182.
    M. Krogsgaard, M.A. Behrens, J.S. Pedersen, H. Birkedal, Self-healing mussel-inspired multi-pH-responsive hydrogels. Biomacromolecules 14(2), 297–301 (2013).  https://doi.org/10.1021/bm301844uCrossRefPubMedGoogle Scholar
  183. 183.
    N. Holten-Andersen, M.J. Harrington, H. Birkedal, B.P. Lee, P.B. Messersmith, K.Y.C. Lee, J.H. Waite, pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc. Natl. Acad. Sci. 108(7), 2651–2655 (2011).  https://doi.org/10.1073/pnas.1015862108CrossRefPubMedGoogle Scholar
  184. 184.
    R. Dong, Y. Liu, Y. Zhou, D. Yan, X. Zhu, Photo-reversible supramolecular hyperbranched polymer based on host-guest interactions. Polym. Chem. 2(12), 2771–2774 (2011).  https://doi.org/10.1039/C1PY00426CCrossRefGoogle Scholar
  185. 185.
    J. Ahner, S. Bode, M. Micheel, B. Dietzek, M.D. Hager, Self-healing functional polymeric materials. Adv. Polym. Sci. (2016).  https://doi.org/10.1007/12_2015_333
  186. 186.
    K.A. Williams, A.J. Boydston, C.W. Bielawski, Towards electrically conductive, self-healing materials. J. R. Soc. Interface 4(13), 359–362 (2007).  https://doi.org/10.1098/rsif.2006.0202CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    B.C.K. Tee, C. Wang, R. Allen, Z. Bao, An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 7(12), 825–832 (2012).  https://doi.org/10.1038/nnano.2012.192CrossRefPubMedGoogle Scholar
  188. 188.
    C. Wang, H. Wu, Z. Chen, M.T. McDowell, Y. Cui, Z. Bao, Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5(12), 1042–1048 (2013).  https://doi.org/10.1038/nchem.1802CrossRefPubMedGoogle Scholar
  189. 189.
    M.M. Caruso, S.R. Schelkopf, A.C. Jackson, A.M. Landry, P.V. Braun, J.S. Moore, Microcapsules containing suspensions of carbon nanotubes. J. Mater. Chem. 19(34), 6093–6096 (2009).  https://doi.org/10.1039/B910673ACrossRefGoogle Scholar
  190. 190.
    S. Kang, A.R. Jones, J.S. Moore, S.R. White, N.R. Sottos, Microencapsulated carbon black suspensions for restoration of electrical conductivity. Adv. Funct. Mater. 24(20), 2947–2956 (2014).  https://doi.org/10.1002/adfm.201303427CrossRefGoogle Scholar
  191. 191.
    E. Palleau, S. Reece, S.C. Desai, M.E. Smith, M.D. Dickey, Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics. Adv. Mater. 25(11), 1589–1592 (2013).  https://doi.org/10.1002/adma.201203921CrossRefPubMedGoogle Scholar
  192. 192.
    J.-H. So, J. Thelen, A. Qusba, G.J. Hayes, G. Lazzi, M.D. Dickey, Reversibly deformable and mechanically tunable fluidic antennas. Adv. Funct. Mater. 19(22), 3632–3637 (2009).  https://doi.org/10.1002/adfm.200900604CrossRefGoogle Scholar
  193. 193.
    A.C. Jackson, J.A. Bartelt, P.V. Braun, Transparent self-healing polymers based on encapsulated plasticizers in a thermoplastic matrix. Adv. Funct. Mater. 21(24), 4705–4711 (2011).  https://doi.org/10.1002/adfm.201101574CrossRefGoogle Scholar
  194. 194.
    M. Saito, T. Nishimura, K. Sakiyama, S. Inagaki, Self-healing of optical functions by molecular metabolism in a swollen elastomer. AIP Adv. 2(4), 042118 (2012).  https://doi.org/10.1063/1.4764292CrossRefGoogle Scholar
  195. 195.
    Y. Zhang, C. Rocco, F. Karasu, L.G.J. van der Ven, R.A.T.M. van Benthem, X. Allonas, C. Croutxé-Barghorn, A.C.C. Esteves, G. de With, UV-cured self-replenishing hydrophobic polymer films. Polymer 69, 384–393 (2015).  https://doi.org/10.1016/j.polymer.2015.02.036CrossRefGoogle Scholar
  196. 196.
    T. Dikić, W. Ming, R.A.T.M. van Benthem, A.C.C. Esteves, G. de With, Self-replenishing surfaces. Adv. Mater. 24(27), 3701–3704 (2012).  https://doi.org/10.1002/adma.201200807CrossRefPubMedGoogle Scholar
  197. 197.
    A.C.C. Esteves, Y. Luo, M.W.P. van de Put, C.C.M. Carcouët, G. de With, Self-replenishing dual structured superhydrophobic coatings prepared by drop-casting of an all-in-one dispersion. Adv. Funct. Mater. 24(7), 986–992 (2014).  https://doi.org/10.1002/adfm.201301909CrossRefGoogle Scholar
  198. 198.
    S. Bode, M. Enke, M. Hernandez, R.K. Bose, A.M. Grande, S. van der Zwaag, U.S. Schubert, S.J. García, M.D. Hager, Characterization of self-healing polymers: from macroscopic healing tests to the molecular mechanism. Adv. Polym. Sci. (2016).  https://doi.org/10.1007/12_2015_341
  199. 199.
    D.C. Tuncaboylu, M. Sahin, A. Argun, W. Oppermann, O. Okay, Dynamics and large strain behavior of self-healing hydrogels with and without surfactants. Macromolecules 45(4), 1991–2000 (2012).  https://doi.org/10.1021/ma202672yCrossRefGoogle Scholar
  200. 200.
    E.B. Murphy, The return of photoelastic stress measurements: utilizing birefringence to monitor damage and repair in healable materials. J. Mater. Chem. 21(5), 1438–1446 (2011).  https://doi.org/10.1039/C0JM02308FCrossRefGoogle Scholar
  201. 201.
    A.M. Grande, S.J. Garcia, S. van der Zwaag, On the interfacial healing of a supramolecular elastomer. Polymer 56, 435–442 (2015).  https://doi.org/10.1016/j.polymer.2014.11.052CrossRefGoogle Scholar
  202. 202.
    E. Tsangouri, D. Aggelis, D. Van Hemelrijck, Quantifying thermoset polymers healing efficiency: a systematic review of mechanical testing. Prog. Polym. Sci. 49–50, 154–174 (2015).  https://doi.org/10.1016/j.progpolymsci.2015.06.002CrossRefGoogle Scholar
  203. 203.
    E.N. Brown, Use of the tapered double-cantilever beam geometry for fracture toughness measurements and its application to the quantification of self-healing. J. Strain Anal. Eng. Des. 46(3), 167–186 (2011).  https://doi.org/10.1177/0309324710396018CrossRefGoogle Scholar
  204. 204.
    M.R. Kessler, N.R. Sottos, S.R. White, Self-healing structural composite materials. Compos. Part A: Appl. Sci. Manufact. 34(8), 743–753 (2003).  https://doi.org/10.1016/S1359-835X(03)00138-6CrossRefGoogle Scholar
  205. 205.
    F. Maes, D. Montarnal, S. Cantournet, F. Tournilhac, L. Corte, L. Leibler, Activation and deactivation of self-healing in supramolecular rubbers. Soft Matter 8(5), 1681–1687 (2012).  https://doi.org/10.1039/C2SM06715CCrossRefGoogle Scholar
  206. 206.
    J.M. Vega, A.M. Grande, S. van der Zwaag, S.J. Garcia, On the role of free carboxylic groups and cluster conformation on the surface scratch healing behaviour of ionomers. Eur. Polym. J. 57, 121–126 (2014).  https://doi.org/10.1016/j.eurpolymj.2014.05.005CrossRefGoogle Scholar
  207. 207.
    M. Hernández, A.M. Grande, S. van der Zwaag, S.J. Garcia, Monitoring network and interfacial healing processes by broadband dielectric spectroscopy: a case study on natural rubber. ACS Appl. Mater. Interfaces (2016).  https://doi.org/10.1021/acsami.6b02259
  208. 208.
    B. Grabowski, C.C. Tasan, Self-healing metals. Adv. Polym. Sci. (2016).  https://doi.org/10.1007/12_2015_337
  209. 209.
    P. Greil, Generic principles of crack-healing ceramics. J. Adv. Ceram. 1(4), 249–267 (2013).  https://doi.org/10.1007/s40145-012-0020-2CrossRefGoogle Scholar
  210. 210.
    F. Tavangarian, G. Li, Crack healing and strength recovery in SiC/spinel nanocomposite. Ceram. Int. 41(7), 8702–8709 (2015).  https://doi.org/10.1016/j.ceramint.2015.03.088CrossRefGoogle Scholar
  211. 211.
    T. Ouyang, J. Wu, M. Yasir, T. Zhou, X. Fang, Y. Wang, D. Liu, J. Suo, Effect of TiC self-healing coatings on the cyclic oxidation resistance and lifetime of thermal barrier coatings. J. Alloys Compd. 656, 992–1003 (2016).  https://doi.org/10.1016/j.jallcom.2015.07.271CrossRefGoogle Scholar
  212. 212.
    H.J. Yang, Y.T. Pei, J.C. Rao, J.T.M. De Hosson, Self-healing performance of Ti2AlC ceramic. J. Mater. Chem. 22(17), 8304–8313 (2012).  https://doi.org/10.1039/C2JM16123KCrossRefGoogle Scholar
  213. 213.
    S. Li, G. Song, K. Kwakernaak, S. van der Zwaag, W.G. Sloof, Multiple crack healing of a Ti2AlC ceramic. J. Eur. Ceram. Soc. 32(8), 1813–1820 (2012).  https://doi.org/10.1016/j.jeurceramsoc.2012.01.017CrossRefGoogle Scholar
  214. 214.
    A.-S. Farle, C. Kwakernaak, S. van der Zwaag, W.G. Sloof, A conceptual study into the potential of Mn+1AXn-phase ceramics for self-healing of crack damage. J. Eur. Ceram. Soc. 35(1), 37–45 (2015).  https://doi.org/10.1016/j.jeurceramsoc.2014.08.046CrossRefGoogle Scholar
  215. 215.
    K. Van Tittelboom, N. De Belie, Self-healing in cementitious materials—a review. Materials 6(6), 2182 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  216. 216.
    M. Wu, B. Johannesson, M. Geiker, A review: self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Constr. Build. Mater. 28(1), 571–583 (2012).  https://doi.org/10.1016/j.conbuildmat.2011.08.086CrossRefGoogle Scholar
  217. 217.
    D. Snoeck, N. De Belie, From straw in bricks to modern use of microfibers in cementitious composites for improved autogenous healing – A review. Constr. Build. Mater. 95, 774–787 (2015).  https://doi.org/10.1016/j.conbuildmat.2015.07.018CrossRefGoogle Scholar
  218. 218.
    E. Tziviloglou, K. Van Tittelboom, D. Palin, J. Wang, M.G. Sierra-Beltran, Y.C. Ersan, R. Mors, V. Wiktor, H.M. Jonkers, E. Schlangen, N. De Belie, Bio-based self-healing concrete: from research to field application. Adv. Polym. Sci. (2016).  https://doi.org/10.1007/12_2015_332
  219. 219.
  220. 220.
  221. 221.
    http://www.autonomicmaterials.com/. (Last accessed: 02 May 2016)
  222. 222.
  223. 223.
    http://www.suprapolix.com/pages/polymers. (Last accessed: 21 Feb 2016)
  224. 224.
  225. 225.
    http://www.ruehl-ag.de/index.php?id=160. (Last accessed: 02 May 2016)
  226. 226.
    M.J. Harrington, O. Speck, T. Speck, S. Wagner, R. Weinkamer, Biological archetypes for self-healing materials. Adv. Polym. Sci. (2016).  https://doi.org/10.1007/12_2015_334

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Stefan Zechel
    • 1
    • 2
  • Martin D. Hager
    • 1
    • 2
  • Ulrich S. Schubert
    • 1
    • 2
  1. 1.Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaJenaGermany
  2. 2.Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaJenaGermany

Personalised recommendations