Polymer Blends

  • Ibrahim Khan
  • Muhammad Mansha
  • Mohammad Abu Jafar MazumderEmail author
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


In this chapter, we have presented different aspects of polymer blends, from fundamentals to the synthesis, physical and chemical properties, and applications. Polymer blends are made from the combination of two or more polymer components, having staggering and incredible applications in numerous fields due to their advanced properties. A brief introduction of the polymer blends about its origination and development is presented in the first part of this chapter; then important polymer blend types and synthesis methods are summarized with a brief discussion about their thermodynamic properties. Different characterization techniques were also discussed which can be used to determine the morphological, structural, chemical, and mechanical properties of these materials. The thermal, mechanical, and electrical properties of different polymer blends are discussed considering some recent applications of polymer blends in different industries.


Polymer blends Copolymer Miscibility Morphology Compatibilization Rheology 

List of Abbreviations


Acrylonitrile butadiene styrene


Atom transfer radical polymerization


Bulk heterojunction


Bovine serum albumin


Cellulose butyrate


Compound annual growth rate


Carboxymethyl cellulose acetate/cellulose acetate


Conjugated polymers


Diethylene carbonate


Direct injection molding


Dynamic mechanical analysis


Dimethyl carbonate


Differential scanning calorimetry


Ethyl butyl acrylate


Ethylene carbonate


Electrochemical double-layer capacitor


Energy-dispersive X-ray spectroscopy


Evaporative light scattering detector


Ethylene propylene diene


Poly(ethylene-co-vinyl acetate)/poly(styrene-co-acrylonitrile)


Graphene oxide


Gel permeation chromatography


High-density polyethylene


High-performance liquid chromatography


Interpenetrating polymer network


Low-density polyethylene


Linear low-density polyethylene


Mixed matrix membranes




Molecular weight




Nuclear magnetic resonance spectroscopy


Open circuit potential


Poly(vinylidene fluoride-co-hexafluoropropene)


Phosphoric acid

PA 6,6

Polyamide 6,6








Poly(butylene terephthalate)


Power conversion efficiency


Poly ε-caprolactone/poly lactic acid


Photodiode array detector






Poly(3, 4-ethylenedioxythiophene)


Polyethylene glycol fumarate


Partially fluorinated copolyester


Polymer of Intrinsic Microporosity-1


Pseudo-interpenetrating polymer networks






Poly(methyl methacrylate)


Poly(methyl methacrylate)/ethylene-co-vinyl acetate






Polymer solar cells




Polydispersity index




Poly vinyl alcohol




Poly(vinyl chloride)/ethylene-co-vinyl acetate


Poly(vinyl chloride)/poly(styrene-co-acrylonitrile)


Poly(vinylidene chloride-co-acrylonitrile)


Polyvinylidene fluoride


Poly(vinylidene fluoride-co-hexafluoro propylene)


Poly(vinyl alcohol)


Poly (4-vinylphenol)


Styrene butadiene rubber


Disodium 3,30-disulfate-4,40-dichlorodiphenyl sulfone


Scanning electron microscopy


Sulfonated fluorinated poly(arylene ether)


Semi-interpenetrating polymer network


Sulfonated poly(etherethereketone)


Sulfonated polyphenylene sulphone


Solvent resistance nanofiltration


Transmission electron microscopy


Thermogravimetric analysis




Tetramethyl bisphenol-A polycarbonate




Universal testing machine


Vanadium redox flow battery


Cross linked polyethylene


X-ray diffraction


Zeolitic imidazolate framework



The authors would like to gratefully acknowledge King Fahd University of Petroleum & Minerals (KFUPM) for providing excellent research facilities, and Deanship of Scientific Research, KFUPM, Saudi Arabia for financial assistance to carry out this research through internal grant project No. IN161036.


  1. 1.
    P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953)Google Scholar
  2. 2.
    A.D. Jenkins, P. Kratochvíl, R.F.T. Stepto, U.W. Suter, Glossary of basic terms in polymer science (IUPAC recommendations, 1996). Pure Appl. Chem. 68, 2287–2311 (1996)CrossRefGoogle Scholar
  3. 3.
    L.A. Utracki, History of commercial polymer alloys and blends (from a perspective of the patent literature). Polym. Eng. Sci. 35, 352–417 (1995)Google Scholar
  4. 4.
    T. Kyu, H. Xu, T. Guo, G. Wang, Encyclopedia of Polymer Blends (Wiley-VCH, Weinheim, 2010)Google Scholar
  5. 5.
    L.A. Utracki, Commercial Polymer Blends (Springer, Boston, 1998)CrossRefGoogle Scholar
  6. 6.
    P. Freyburger: Improvement in kneading-eviachines, US Patent, 180568 A (1876)Google Scholar
  7. 7.
    E.M. Chaffee: Making rubber fabrics, US Patent 16 (1836)Google Scholar
  8. 8.
    J.L. White, Development of internal-mixer Technology for the Rubber Industry. Rubber Chem. Technol. 65, 527–579 (1992)CrossRefGoogle Scholar
  9. 9.
  10. 10.
    J. Li, G. Ma, J. Sheng, Linear viscoelastic characteristics of in situ compatibilized binary polymer blends with viscoelastic properties of components variable. J. Polym. Sci. B Polym. Phys. 48, 1349–1362 (2010)CrossRefGoogle Scholar
  11. 11.
    P.J. Flory, Thermodynamics of high polymer solutions. J. Chem. Phys. 10, 51 (1942)CrossRefGoogle Scholar
  12. 12.
    E. Manias, L.A. Utracki, Thermodynamics of polymer blends, in Polymer Blends Handbook, (Springer, Dordrecht, 2014), pp. 171–289Google Scholar
  13. 13.
    P.J. Sabu Thomas, Y. Grohens, Characterization of Polymer Blends: Miscibility, Morphology and Interfaces (Wiley-VCH, Weinheim, 2014), p. 994Google Scholar
  14. 14.
    I.C. Sanchez, Polymer Blends, vol 1 (Academic Press, New York, 1978)Google Scholar
  15. 15.
    J. Yang, L. An, T. Xu, The glass transition temperatures of PS/PPO blends: Couchman volume-based equation and its verification. Polymer 42, 7887–7892 (2001)CrossRefGoogle Scholar
  16. 16.
    K.R. Sharma: In: Polym. Blends Copolym. 214th ACS Natl. Meet, ACS, Dallas (1998)Google Scholar
  17. 17.
    P. Shi, R. Schach, E. Munch, H. Montes, F. Lequeux, Glass transition distribution in miscible polymer blends: From calorimetry to rheology. Macromolecules 46, 3611–3620 (2013)CrossRefGoogle Scholar
  18. 18.
    Y. Yu, K.J. Choi, Crystallization in blends of poly(ethylene terephthalate) and poly(butylene terephthalate). Polym. Eng. Sci. 37, 91–95 (1997)CrossRefGoogle Scholar
  19. 19.
    P. Maiti, A.K. Dikshit, A.K. Nandi, Glass-transition temperature of poly(vinylidene fluoride)-poly(methyl acrylate) blends: Influence of aging and chain structure. J. Appl. Polym. Sci. 79, 1541–1548 (2001)CrossRefGoogle Scholar
  20. 20.
    L. Messe, R.E. Prud’homme, Orientation and relaxation study of polystyrene: Polystyrene/poly(phenylene oxide) blends. J. Polym. Sci. B Polym. Phys. 38, 1405–1415 (2000)CrossRefGoogle Scholar
  21. 21.
    W. Dong, M. He, H. Wang, F. Ren, J. Zhang, X. Zhao, Y. Li, PLLA/ABS blends compatibilized by reactive comb polymers: Double Tg depression and significantly improved toughness. ACS Sustain. Chem. Eng. 3, 2542–2550 (2015)CrossRefGoogle Scholar
  22. 22.
    H. Wang, W. Dong, Y. Li, Compatibilization of immiscible polymer blends using in situ formed janus nanomicelles by reactive blending. ACS Macro Lett. 4, 1398–1403 (2015)CrossRefGoogle Scholar
  23. 23.
    W.N. Kim, C.M. Burns, Compatibility studies of polystyrene–polybutadiene blends by thermal analysis. J. Appl. Polym. Sci. 32, 2989–3004 (1986)CrossRefGoogle Scholar
  24. 24.
    Y. Shi, Phase behavior of polyamide 6/612 blends. SPE ANTEC™ Indianapolis 1, 76–80 (2016)Google Scholar
  25. 25.
    A.P. Azevedo De Carvalho, A. Da, S. Sirqueira, Effect of compatibilization in situ on PA/SEBS blends. Polimeros 26, 123–128 (2016)Google Scholar
  26. 26.
    A. Al-Jabareen, S. Illescas, M.L. Maspoch, O.O. Santana, Effects of composition and transesterification catalysts on the physico-chemical and dynamic properties of PC/PET blends rich in PC. J. Mater. Sci. 45, 6623–6633 (2010)CrossRefGoogle Scholar
  27. 27.
    R.D. Boyd, J.P.S. Badyal, Silent discharge treatment of immiscible polystyrene/polycarbonate polymer blend surfaces. Macromolecules 30, 3658–3663 (1997)CrossRefGoogle Scholar
  28. 28.
    D.R. Paul, J.W. Barlow, A binary interaction model for miscibility of copolymers in blends. Polymer 25, 487–494 (1984)CrossRefGoogle Scholar
  29. 29.
    K.R. Sharma, Mathematical modeling of partially miscible copolymers in blends. Polym. Mater. Sci. Eng. 78, 193–198 (1998)Google Scholar
  30. 30.
    P.R. Couchman, Compositional variation of glass-transition temperatures. 2. Application of the thermodynamic theory to compatible polymer blends. Macromolecules 11, 1156–1161 (1978)CrossRefGoogle Scholar
  31. 31.
    R.V. Sekharan, B.T. Abraham, E.T. Thachil, Utilization of waste expanded polystyrene: Blends with silica-filled natural rubber. Mater. Des. 40, 221–228 (2012)CrossRefGoogle Scholar
  32. 32.
    Z. Starý, T. Pemsel, J. Baldrian, H. Münstedt, Influence of a compatibilizer on the morphology development in polymer blends under elongation. Polymer 53, 1881–1889 (2012)CrossRefGoogle Scholar
  33. 33.
    B.M. Wood, S.R. Coles, S. Maggs, J. Meredith, K. Kirwan, Use of lignin as a compatibiliser in hemp/epoxy composites. Compos. Sci. Technol. 71, 1804–1810 (2011)CrossRefGoogle Scholar
  34. 34.
    A.I. Khalf, D.E.E. Nashar, N.A. Maziad, Effect of grafting cellulose acetate and methylmethacrylate as compatibilizer onto NBR/SBR blends. Mater. Des. 31, 2592–2598 (2010)CrossRefGoogle Scholar
  35. 35.
    B. Kouini, A. Serier, Properties of polypropylene/polyamide nanocomposites prepared by melt processing with a PP-g-MAH compatibilizer. Mater. Des. 34, 313–318 (2012)CrossRefGoogle Scholar
  36. 36.
    IUPAC, Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials. Pure Appl. Chem. 79(1801) (2007)Google Scholar
  37. 37.
    IUPAC, Polymer blend, in IUPAC Compend. Chem. Terminol, (IUPAC, Research Triangle Park, 1996)Google Scholar
  38. 38.
    F.W. Billmeyer, Textbook of Polymer Science, 2nd edn. (Wiley-Interscience, New York, 1971), p. 598Google Scholar
  39. 39.
    R. Casper, L. Morbitzer, Struktur und eigenschaften von mehrphasenkunststoffen I. Verträglichkeit von polymeren im festen zustand. Angew. Makromol. Chemie. 58, 1–35 (1977)CrossRefGoogle Scholar
  40. 40.
    M.L. Huggins, Thermodynamic properties of liquids, including solutions. IX. Thermodynamic properties of polymer solutions. Polym. J. 4, 502–514 (1973)CrossRefGoogle Scholar
  41. 41.
    E. Díez, G. Ovejero, M.D. Romero, I. Díaz, Polymer–solvent interaction parameters of SBS rubbers by inverse gas chromatography measurements. Fluid Phase Equilib. 308, 107–113 (2011)CrossRefGoogle Scholar
  42. 42.
    H. Patil, R.V. Tiwari, M.A. Repka, Hot-melt extrusion: From theory to application in pharmaceutical formulation. AAPS Pharm. Sci. Tech. 17, 20–42 (2016)CrossRefGoogle Scholar
  43. 43.
    J.L. White, S.H. Bumm, Polymer blend compounding and processing, in Encyclopedia of Polymer Blends, vol. 2, (Wiley-VCH, Weinheim, 2011), pp. 1–26Google Scholar
  44. 44.
    D.H. Killheffer, Banbury the Master Mixer, vol 6 (Palmerton, New York, 1962)Google Scholar
  45. 45.
    U. Siemann, Solvent Cast Technology – A Versatile Tool for Thin Film Production, vol 130 (Springer, Berlin/Heidelberg, 2005), pp. 1–14Google Scholar
  46. 46.
    G. Zhu, F. Wang, K. Xu, Q. Gao, Y. Liu, Study on properties of poly(vinyl alcohol)/polyacrylonitrile blend film. Polímeros Ciência E Tecnol. 23, 146–151 (2013)CrossRefGoogle Scholar
  47. 47.
    N. Ignjatović, V. Wu, Z. Ajduković, T. Mihajilov-Krstev, V. Uskoković, D. Uskoković, Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues. Mater. Sci. Eng. C Mater. Biol. Appl. 60, 357–364 (2016)CrossRefPubMedCentralGoogle Scholar
  48. 48.
    K. Guo, H. Qi, F. Wang, Y. Zhu, Fabrication of boron- and nitrogen-doped carbon nanoparticles by stress from pyrolysis of borazine-containing arylacetylene. RSC Adv. 4, 6330–6336 (2014)CrossRefGoogle Scholar
  49. 49.
    R.A.A. Muzzarelli, M. El Mehtedi, M. Mattioli-Belmonte, Emerging biomedical applications of nano-chitins and nano-chitosans obtained via advanced eco-friendly technologies from marine resources. Mar. Drugs 12, 5468–5502 (2014)CrossRefPubMedCentralGoogle Scholar
  50. 50.
    J.P. Tomba, X. Ye, F. Li, M.A. Winnik, W. Lau, Polymer blend latex films: Miscibility and polymer diffusion studied by energy transfer. Polymer 49, 2055–2064 (2008)CrossRefGoogle Scholar
  51. 51.
    J. Feng, M.A. Winnik, R.R. Shivers, B. Clubb, Polymer blend latex films: Morphology and transparency. Macromolecules 28, 7671–7682 (1995)CrossRefGoogle Scholar
  52. 52.
    M. Hajian, C. Sadrmohaghegh, G. Scott, Polymer blends—IV. Eur. Polym. J. 20, 135–138 (1984)CrossRefGoogle Scholar
  53. 53.
    A.L.B. Ramirez, Z.S. Kean, J.A. Orlicki, M. Champhekar, S.M. Elsakr, W.E. Krause, S.L. Craig, Mechanochemical strengthening of a synthetic polymer in response to typically destructive shear forces. Nat. Chem. 5, 757–761 (2013)CrossRefPubMedCentralGoogle Scholar
  54. 54.
    J.V. Alemán, A.V. Chadwick, J. He, M. Hess, K. Horie, R.G. Jones, P. Kratochvíl, I. Meisel, I. Mita, G. Moad, S. Penczek, R.F.T. Stepto, Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC recommendations 2007). Pure Appl. Chem. 79, 1801–1829 (2007)CrossRefGoogle Scholar
  55. 55.
    L.H. Sperling, Introduction to Physical Polymer Science, 2nd edn. (Wiley, New York, 2015)Google Scholar
  56. 56.
    S.F. Wang, X. Li, R.L. Agapov, C. Wesdemiotis, M.D. Foster, Probing surface concentration of cyclic/linear blend films using surface layer MALDI-TOF mass spectrometry. ACS Macro Lett. 1, 1024–1027 (2012)CrossRefGoogle Scholar
  57. 57.
    L. Dou, Y. Liu, Z. Hong, G. Li, Y. Yang, Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem. Rev. 115, 12633–12665 (2015)CrossRefPubMedCentralGoogle Scholar
  58. 58.
    J.F. Masson, R.S.J. Manley, Solid-state NMR of some cellulose/synthetic polymer blends. Macromolecules 25, 589–592 (1992)CrossRefGoogle Scholar
  59. 59.
    I. Kindgren, Compounding of Electrically Conductive Two Phase Polymer Blends (Chalmers University of Technology, Göteborg, 2012), pp. 1–52Google Scholar
  60. 60.
    Z. Wang, C.W. Macosko, F.S. Bates, Fluorine-enriched melt-blown fibers from polymer blends of poly(butylene terephthalate) and a fluorinated multiblock copolyester. ACS Appl. Mater. Interfaces 8, 754–761 (2015)CrossRefPubMedCentralGoogle Scholar
  61. 61.
    Q. Lv, D. Wu, H. Xie, H: Crystallization of poly(ε-caprolactone) in its immiscible blend with polylactide: Insight into the role of annealing histories. RSC Adv. 6, 37721–37730 (2016)CrossRefGoogle Scholar
  62. 62.
    T. Li, J. Zhang, D.K. Schneiderman, Toughening glassy poly(lactide) with block copolymer micelles. ACS Macro Lett. 5, 359–364 (2016)CrossRefGoogle Scholar
  63. 63.
    C.S. Moran, A. Barthelon, A. Pearsall, Biorenewable blends of polyamide-4,10 and polyamide-6,10. J. Appl. Polym. Sci. 43126, 1–9 (2016)Google Scholar
  64. 64.
    M. Rady, E. Arquis, A comparative study of phase changing characteristics of granular phase change materials using DSC and T-history methods. FDMP 6, 137–152 (2010)Google Scholar
  65. 65.
    T.M. Nair, M.G. Kumaran, G. Unnikrishna, V.B. Pillai, Dynamic mechanical analysis of ethylene-propylene-diene monomer rubber and styrene-butadiene rubber blends. J. Appl. Polym. Sci. 112, 72–81 (2009)CrossRefGoogle Scholar
  66. 66.
    A.W. Coats, J.P. Redfern, Thermogravimetric analysis. A review. Analyst 88, 906–924 (1963)CrossRefGoogle Scholar
  67. 67.
    G. Justin, A. Guiseppi-Elie, Characterization of electroconductive blends of poly(HEMA-co-PEGMA-co-HMMA-co-SPMA) and poly(Py-co-PyBA). Biomacromolecules 10, 2539–2549 (2009)CrossRefPubMedCentralGoogle Scholar
  68. 68.
    M.K. Daletou, M. Geormezi, E. Vogli, G.A. Voyiatzis, S.G. Neophytides, The interaction of H3PO4 and steam with PBI and TPS polymeric membranes. A TGA and Raman study. J. Mater. Chem. A 2, 1117–1127 (2014)CrossRefGoogle Scholar
  69. 69.
    Z. Yang, C.D. Han, Rheology of miscible polymer blends with hydrogen bonding. Macromolecules 41, 2104–2118 (2008)CrossRefGoogle Scholar
  70. 70.
    A.C. Badino, M.C.R. Facciotti, W. Schmidell, Construction and operation of an impeller rheometer for on-line rheological characterization of non-Newtonian fermentation broths. Braz. J. Chem. Eng. 14 (1997). Scholar
  71. 71.
    Y.S. Lipatov, V.F. Shumsky, I.P. Getmanchuk, A.N. Gorbatenko, Rheology of polymer blends. Rheol. Acta 21, 270–279 (1982)CrossRefGoogle Scholar
  72. 72.
    C.M. Gómez, J.E. Figueruelo, A. Campos, Thermodynamics of a polymer blend solution system studied by gel permeation chromatography and viscosity. Macromol. Chem. Phys. 200, 246–255 (1999)CrossRefGoogle Scholar
  73. 73.
    S. Ameen, V. Ali, M. Zulfequar, M. Mazharul Haq, M. Husain, Synthesis and characterization of polyaniline-polyvinyl chloride blends doped with sulfamic acid in aqueous tetrahydrofuran. Open Chem. 4, 565–577 (2006)CrossRefGoogle Scholar
  74. 74.
    B. Pukánszky, F. Tüdõs, Miscibility and mechanical properties of polymer blends, Makromol. Chemie. Macromol. Symp. 38, 221–231 (1990)CrossRefGoogle Scholar
  75. 75.
    N. Aranburu, J.I. Eguiazábal, Improved mechanical properties of compatibilized polypropylene/polyamide-12 blends. Int. J. Polym. Sci. 2015, 1–8 (2015)CrossRefGoogle Scholar
  76. 76.
    P.C. Chung, P.F. Green, The elastic mechanical response of nanoscale thin films of miscible polymer/polymer blends. Macromolecules 48, 3991–3996 (2015)CrossRefGoogle Scholar
  77. 77.
    P.P. Lizymol, S. Thomas, Thermal behaviour of polymer blends: A comparison of the thermal properties of miscible and immiscible systems. Polym. Degrad. Stab. 41, 59–64 (1993)CrossRefGoogle Scholar
  78. 78.
    S. Takahashi, H. Okada, S. Nobukawa, M. Yamaguchi, Optical properties of polymer blends composed of poly(methyl methacrylate) and ethylene–vinyl acetate copolymer. Eur. Polym. J. 48, 974–980 (2012)CrossRefGoogle Scholar
  79. 79.
    G.H. Kim, D. Lee, A. Shanker, L. Shao, M.S. Kwon, D. Gidley, J. Kim, K.P. Pipe, High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat. Mater. 14, 295–300 (2015)CrossRefPubMedCentralGoogle Scholar
  80. 80.
    V.T. Magalad, G.S. Gokavi, C. Ranganathaiah, M.H. Burshe, C. Han, D.D. Dionysiou, M.N. Nadagouda, T.M. Aminabhavi, Polymeric blend nanocomposite membranes for ethanol dehydration—Effect of morphology and membrane–solvent interactions. J. Memb. Sci. 430, 321–329 (2013)CrossRefGoogle Scholar
  81. 81.
    M.F.Z. Kadir, S.R. Majid, A.K. Arof, Plasticized chitosan–PVA blend polymer electrolyte based proton battery. Electrochim. Acta 55, 1475–1482 (2010)CrossRefGoogle Scholar
  82. 82.
    J. Liu, W. Li, X. Zuo, S. Liu, Z. Li, Polyethylene-supported polyvinylidene fluoride–cellulose acetate butyrate blended polymer electrolyte for lithium ion battery. J. Power Sources 226, 101–106 (2013)CrossRefGoogle Scholar
  83. 83.
    C. Tao, M.H. Gao, B.H. Yin, B. Li, Y.P. Huang, G. Xu, J. J, Bao: A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries. Electrochim. Acta 257, 31–39 (2017)CrossRefGoogle Scholar
  84. 84.
    M. Hazarika, T. Jana, Novel proton exchange membrane for fuel cell developed from blends of polybenzimidazole with fluorinated polymer. Eur. Polym. J. 49, 1564–1576 (2013)CrossRefGoogle Scholar
  85. 85.
    S.M. Mathew, K. Kesavan, S. Rajendran, Structural and electrochemical analysis of PMMA based gel electrolyte membranes. Int. J. Electrochem. 2015, 1–7 (2015)CrossRefGoogle Scholar
  86. 86.
    S.Y. Jung, S.Y. Ko, J.O. Park, S. Park, Enhanced ionic polymer metal composite actuator with porous nafion membrane using zinc oxide particulate leaching method. Smart Mater. Struct. 24, 037007 (2015)CrossRefGoogle Scholar
  87. 87.
    M.R. Moghareh Abed, S.C. Kumbharkar, A.M. Groth, K. Li, Economical production of PVDF-g-POEM for use as a blend in preparation of PVDF based hydrophilic hollow fiber membranes. Sep. Purif. Technol. 106, 47–55 (2013)CrossRefGoogle Scholar
  88. 88.
    A.F. Bushell, M.P. Attfield, C.R. Mason, P.M. Budd, Y. Yampolskii, L. Starannikova, A. Rebrov, F. Bazzarelli, P. Bernardo, J. Carolus Jansen, M. Lanč, K. Friess, V. Shantarovich, V. Gustov, V. Isaeva, Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. J. Memb. Sci. 427, 48–62 (2013)CrossRefGoogle Scholar
  89. 89.
    D. Chen, S. Kim, V. Sprenkle, M.A. Hickner, Composite blend polymer membranes with increased proton selectivity and lifetime for vanadium redox flow batteries. J. Power Sources 231, 301–306 (2013)CrossRefGoogle Scholar
  90. 90.
    B. Han, D. Zhang, Z. Shao, L. Kong, S. Lv, Preparation and characterization of cellulose acetate/carboxymethyl cellulose acetate blend ultrafiltration membranes. Desalination 311, 80–89 (2013)CrossRefGoogle Scholar
  91. 91.
    A. Hashemi Doulabi, H. Mirzadeh, M. Imani, N. Samadi, Chitosan/polyethylene glycol fumarate blend film: Physical and antibacterial properties. Carbohydr. Polym. 92, 48–56 (2013)CrossRefPubMedCentralGoogle Scholar
  92. 92.
    Y.F. Zhao, L.P. Zhu, Z. Yi, B.K. Zhu, Y.Y. Xu, Improving the hydrophilicity and fouling-resistance of polysulfone ultrafiltration membranes via surface zwitterionicalization mediated by polysulfone-based triblock copolymer additive. J. Memb. Sci. 440, 40–47 (2013)CrossRefGoogle Scholar
  93. 93.
    M.Z.A. Yahya, A.K. Arof, Effect of oleic acid plasticizer on chitosan–lithium acetate solid polymer electrolytes. Eur. Polym. J. 39, 897–902 (2003)CrossRefGoogle Scholar
  94. 94.
    A. Manuel Stephan, Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 42, 21–42 (2006)CrossRefGoogle Scholar
  95. 95.
    A. Burke, Ultracapacitors: Why, how, and where is the technology. J. Power Sources 91, 37–50 (2000)CrossRefGoogle Scholar
  96. 96.
    M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors. Chem. Rev. 104, 4245–4270 (2004)CrossRefGoogle Scholar
  97. 97.
    Q. Li, H. Wang, Q. Dai, J. Yang, Y. Zhong, Novel activated carbons as electrode materials for electrochemical capacitors from a series of starch. Solid State Ionics 179, 269–273 (2008)CrossRefGoogle Scholar
  98. 98.
    Y.N. Sudhakar, M. Selvakumar, Lithium perchlorate doped plasticized chitosan and starch blend as biodegradable polymer electrolyte for supercapacitors. Electrochim. Acta 78, 398–405 (2012)CrossRefGoogle Scholar
  99. 99.
    D. Aradilla, F. Estrany, C. Alemán, Symmetric supercapacitors based on multilayers of conducting polymers. J. Phys. Chem. C 115, 8430–8438 (2011)CrossRefGoogle Scholar
  100. 100.
    N. Widjojo, T.-S. Chung, M. Weber, C. Maletzko, V. Warzelhan, A sulfonated polyphenylenesulfone (sPPSU) as the supporting substrate in thin film composite (TFC) membranes with enhanced performance for forward osmosis (FO). Chem. Eng. J. 220, 15–23 (2013)CrossRefGoogle Scholar
  101. 101.
    S. Mollá, V. Compañ, Polymer blends of SPEEK for DMFC application at intermediate temperatures. Int. J. Hydrog. Energy 39, 5121–5136 (2014)CrossRefGoogle Scholar
  102. 102.
    B.M. Ganesh, A.M. Isloor, A.F. Ismail, Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination 313, 199–207 (2013)CrossRefGoogle Scholar
  103. 103.
    A.K. Hołda, M. De Roeck, K. Hendrix, I.F.J. Vankelecom, The influence of polymer purity and molecular weight on the synthesis of integrally skinned polysulfone membranes. J. Memb. Sci. 446, 113–120 (2013)CrossRefGoogle Scholar
  104. 104.
    J. Tong, P. Guo, H. Zhang, J. Li, P. Zhang, C. Yang, D. Chen, Y. Xia, Synthesis of modified benzothiadiazole-thiophene-cored acceptor and carbazole/indolocarbazole alternating conjugated polymers and their photovoltaic applications. Polym. Bull. 72, 565–581 (2015)CrossRefGoogle Scholar
  105. 105.
    N. Dzulkurnain, A. Ahmad, N. Mohamed, P(MMA-EMA) random copolymer electrolytes incorporating sodium iodide for potential application in a dye-sensitized solar cell. Polymers (Basel) 7, 266–280 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ibrahim Khan
    • 1
  • Muhammad Mansha
    • 1
  • Mohammad Abu Jafar Mazumder
    • 1
    Email author
  1. 1.Chemistry DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations