Advertisement

Fiber-Reinforced Composites

  • Ajithkumar Manayan Parambil
  • Jiji Abraham
  • Praveen Kosappallyillom Muraleedharan
  • Deepu Gopakumar
  • Sabu Thomas
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

Fiber-reinforced composites (FRC) are widely used in spacecraft, helicopters, aircraft, ships, boats, automobiles, chemical processing equipments, biomedical devices, sports items, buildings, bridges infrastructure, etc. Nowadays, more and more exciting development on advanced forms of FRC materials are happening across the world. Development of high-performance resin systems, incorporating carbon nanotubes and other nanoparticles, are one among them. Polymer fibers have numerous imperative applications apart from using as reinforcement in composite materials. They are widely used in packaging, flooring, rope, textile industries, etc. In this context, the study on fiber-reinforced composites is very much important and the chapter gives an insight on the fiber-reinforced composites from macro to nanoscale.

References

  1. 1.
    A.M. Martin, Introduction of Fiber Reinforced Polymers-Polymer and Composites: Concepts, Properties and Process (INTECH Open Science, Rijeka, Croatia 2013)Google Scholar
  2. 2.
    S. Kalpakjian, S.R. Schmid, Manufacturing Engineering and Technology (Pearson, Upper Saddle River, 2014)Google Scholar
  3. 3.
    H. Qiting, G. Sufyan, L. Zhengmei, J. He, Q. Wei, L. Fang, K.V. Pekka, V.J.L. Lippo, Properties of discontinuous S2-glass fiber-particulate-reinforced resin composites with two different fiber length distributions. J. Prosthodont. Res. (2017).  https://doi.org/10.1016/j.jpor.2017.03.002
  4. 4.
    F.C. Campbell, Structural Composite Materials (ASM Internationals, Ohio, 2010)Google Scholar
  5. 5.
    S. Prachi, R. Sonu, R. Sunita, R. K. Diwan, Polypropylene/glass fiber composites for low cost orthotic aid, in Recent Trends in Materials and Devices (Springer, Cham, 2017)Google Scholar
  6. 6.
    Z. Zheng, Y. Gangfei, W. Helong, Y. Jie, K. Sritawat, C. Guozhong, Bistable behaviour and microstructure characterization of carbon fiber/epoxy resin anti-symmetric laminated cylindrical shell after thermal exposure. Compos. Sci. Technol. (2017).  https://doi.org/10.1016/j.compscitech.2016.11.019
  7. 7.
    J. Wu, H. Chen, Q. Wu, H. Liu, Z. Luo, Surface modification of carbon fibers and the selective laser sintering of modified carbon fiber/nylon 12 composite powder. Mater. Des. (2017).  https://doi.org/10.1016/j.matdes.2016.12.037
  8. 8.
    T.K. Nicholas, T.D. Lawrence, L. Andre, A. Per, Nanoscale toughening of carbon fiber reinforced/epoxy polymer composites (CFRPs) using a triblock copolymer. Polymer (2017).  https://doi.org/10.1016/j.polymer.2017.01.009
  9. 9.
    M. Maria, P. Paolo, P. Francesco, B. Fabrizio, L. Alberto, B. Ludovica, P. Paolo, Biological and mechanical characterization of carbon fiber frameworks for dental implant applications. Mater. Sci. Eng. C 70, 646–655 (2017)CrossRefGoogle Scholar
  10. 10.
    L. Hui, E. Karl, Recycling of carbon fiber-reinforced thermoplastic composite wastes from the aerospace industry. J. Compos. Mater. (2017).  https://doi.org/10.1177/0021998316671796
  11. 11.
    C. Tong, X. Ping, J. Mingyin, The property of polycarbonate/acrylonitrile butadiene styrene-based conductive composites filled by nickel-coated carbon fiber and nickel–graphite powder. Polym. Compos. 38, 157–163 (2017)CrossRefGoogle Scholar
  12. 12.
    L. Yong, P. Shuai, C. Yongjie, C. Xuefeng, Z. Chenyu, H. Xianhua, H. Keqing, Y. Muhuo, Fabrication and properties of precursor-derived SiBN ternary ceramic fibers. Mater. Des. 128, 150–156 (2017)CrossRefGoogle Scholar
  13. 13.
    N. Sun, W. Chi, J. Liying, Z. Juan, Z. Dahai, Controllable coating of boron nitride on ceramic fibers by CVD at low temperature. Ceram. Int. 43, 1509–1516 (2017)Google Scholar
  14. 14.
    G. Yanzi, W. Hao, J. Ke, S. Changwei, W. Xiaozhou, Preparation and characterization of SiC fibers with diverse electricalresistivity through pyrolysis under reactive atmospheres. J. Eur. Ceram. Soc. 37, 517–522 (2017)CrossRefGoogle Scholar
  15. 15.
    J. Xiaoyu, S. Changwei, W. Hao, C. Jun, L. Hao, Curing green fibres infusible by electron beam irradiation for the preparation of SiBNC ceramic fibres. Ceram. Int. (2017).  https://doi.org/10.1016/j.ceramint.2017.05.171
  16. 16.
    T.W. Frederick, Strong, small diameter, boron fibers by LCVD. Mater. Lett. 14, 198–202 (1992)CrossRefGoogle Scholar
  17. 17.
    D.D. John, C.D. David, Mechanism and kinetics of MgB2 synthesis from boron fibers. Acta Mater. 56, 5751–5763 (2008)CrossRefGoogle Scholar
  18. 18.
    K.M. Prewo, K.G. Kreider, The transverse tensile properties of boron fiber reinforced aluminium matrix composites. Metall. Trans. 3, 1972–2201 (1972)Google Scholar
  19. 19.
    Y. Kimura, Y. Kubo, N. Hayashi, High-performance boron-nitride fibers from poly (borazine) preceramics. Compos. Sci. Technol. 51, 173–179 (1994)CrossRefGoogle Scholar
  20. 20.
    K.Q. Qui, A.M. Wang, H.F. Zhang, B.Z. Ding, Z.Q. Hu, Mechanical properties of tungsten fiber reinforced ZrAlNiCuSi metallic glass matrix composite. Intermetallics 10, 1283–1288 (2002)CrossRefGoogle Scholar
  21. 21.
    H. Gietl, J. Riesh, J.W. Coenen, T. Hoschen, C. Linsmeier, R. Neu, Tensile deformation behavior of tungsten fibre-reinforced tungstencomposite specimens in as-fabricated state. Fusion Eng. Des. (2017).  https://doi.org/10.1016/j.fusengdes.2017.02.054
  22. 22.
    W. Bingjie, Q. Wu, S. Hao, Z. Jing, R. Jing, L. Yongfeng, W. Min, P. Huisheng, An intercalated graphene/(molybdenum disulfide) hybrid fiber for capacitive energy storage. J. Mater. Chem. A 5, 925–930 (2017)CrossRefGoogle Scholar
  23. 23.
    R. Malkapuram, V. Kumar, Y.S. Negi, Recent development in natural fiber reinforced polypropylene composites. J. Reinf. Plast. Compos. 28, 1169–1189 (2008)CrossRefGoogle Scholar
  24. 24.
    K.M. Praveen, S. Thomas, Y. Grohens, M. Mozetic, I. Junkar, G. Primc, M. Gorjanc, Investigations of plasma induced effects on the surface properties of lignocellulosic natural coir fibers. Appl. Surf. Sci. 368, 146–156 (2016)CrossRefGoogle Scholar
  25. 25.
    M.J. John, S. Thomas, Biofibers and biocomposites. Carbohydr. Polym. 71, 343–364 (2008)CrossRefGoogle Scholar
  26. 26.
    J. Holbery, D. Houston, Natural-fiber-reinforced polymer composites in automotive applications. J. Miner. Met. Mater. Soc. 58, 80–86 (2006)CrossRefGoogle Scholar
  27. 27.
    R.F. Gibson, Principles of Composites Material Mechanics (McGraw-Hill, New-York, 1994)Google Scholar
  28. 28.
    E.K. Gamstedt, P. Nygard, M. Lindstrom, Transfer of knowledge from papermaking to manufacture of composite materials, in Proceedings of the 3rd Wood Fiber Polymer Composites International Symposium, Bordeaux, 2007Google Scholar
  29. 29.
    N.M. Stark, R.E. Rowlands, Effects of wood fiber characteristics on mechanical properties of wood/polypropylene composites. Wood Fiber Sci. 35, 167–174 (2003)Google Scholar
  30. 30.
    B. Sanschagrin, S.T. Sean, B.V. Kokta, Mechanical properties of cellulose fibers reinforced thermoplastics, in Proceedings of the 43rd Annual Conference, Composites Institute, February, The Society of the Plastics Industry, Cincinnati, 1998Google Scholar
  31. 31.
    S. Migneault, A. Koubaa, F. Erchiqui, A. Chaala, K. Englund, C. Krause, Effect of fiber length on processing and properties of extruded wood-fiber/HDPE composites. J. Appl. Polym. Sci. 110, 1085–1092 (2008)CrossRefGoogle Scholar
  32. 32.
    M. Le Baillif, K. Oksman, The influence of the extrusion process on bleached pulp fiber and its composites, in Proceedings of the Progress in Wood and Biofiberplastic Composites Conference, Toronto, 2006Google Scholar
  33. 33.
    K.L. Yam, B.K. Gogoi, C.C. Lai, S.E. Selke, Composites from compounding wood fibers with recycled high density polyethylene. Polym. Eng. Sci. 30, 693–699 (1990)CrossRefGoogle Scholar
  34. 34.
    F.-L. Zhou, R.-H. Gong, Manufacturing technologies of polymeric nanofibers and nanofiber yarns. Polym. Int. 57, 837–845 (2008)CrossRefGoogle Scholar
  35. 35.
    K. Jayaraman, M. Kotaki, Y. Zhang, X. Mo, S. Ramakrishna, Recent advances in polymer nanofibers. J. Nanosci. Nanotechnol. 4, 52–65 (2004)PubMedGoogle Scholar
  36. 36.
    E. Frank, F. Hermanutz, R.B. Michael, Carbon fibers: precursors, manufacturing and properties. Macromol. Mater. Eng. 297, 493–501 (2012)CrossRefGoogle Scholar
  37. 37.
    L. Feng, N. Xie, J. Zhong, Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials 7, 3919–3945 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    F.W.J. Van Hattum, P. Serp, J.L. Figueiredo, C.A. Bernardo, The effect of morphology on the properties of vapour-grown carbon fibers. Carbon 35, 860–863 (1997)CrossRefGoogle Scholar
  39. 39.
    High Performance Synthetic Fibers for Composites, Commission on Engineering and Technical Systems, National Research Council, High-Performance Synthetic Fibers for Composites, vol 23 (National Academy Press, Washington, 1992), pp. 56–64Google Scholar
  40. 40.
    L. Zhang, A. Aboagye, A. Kelkar, C. Lai, H. Fong, A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J. Mater. Sci. 49, 463–480 (2014)CrossRefGoogle Scholar
  41. 41.
    K. Lozano, J. Bonilla-Rios, E.V. Barrera, A study on nanofiber-reinforced thermoplastic composites (II): investigation of the mixing rheology and conduction properties. J. Appl. Polym. Sci. 80, 1162–1172 (2001)CrossRefGoogle Scholar
  42. 42.
    J. Li, M.J. Vergne, E.D. Mowles, W.H. Zhong, D.M. Hercules, C.M. Lukehart, Surface functionalization and characterization of graphitic carbon nanofibers. Carbon 43, 2883–2893 (2005)CrossRefGoogle Scholar
  43. 43.
    S. Jan, P. Werner, S.P.S. Milo, D. Vitaly, A. Volker, H.W. Alan, Carbon-nanofiber-reinforced poly(ether ether ketone) composites. Compos. Part A 33, 1033–1039 (2002)CrossRefGoogle Scholar
  44. 44.
    J.R. Alejandro, M.E. Guzman, L. Chee-Sern, M. Bob, Mechanical properties of carbon nanofiber/fiber-reinforced hierarchical polymer composites manufactured with multiscale-reinforcement fabrics. Carbon 49, 937–948 (2011)CrossRefGoogle Scholar
  45. 45.
    X.-F. Wu, R. Arifur, Z. Zhengping, D.P. David, S. Sinha-Ray, C. Bin, P. Scott, A.L. Yarin, Electrospinning core-shell nanofibers for interfacial toughening and self-healing of carbon-fiber/epoxy composites. J. Appl. Polym. Sci. 129, 1383–1393 (2013)CrossRefGoogle Scholar
  46. 46.
    Y. Shi, X. Feng, H. Wang, X. Lu, J. Shen, Tribological and mechanical properties of carbon-nanofiber-filled polytetrafluoroethylene composites. J. Appl. Polym. Sci. 104, 2430–2437 (2007)CrossRefGoogle Scholar
  47. 47.
    W. Philipp, A. Volker, J. Romy, J. Olaf, J.K.W. Sandler, M.S.P. Shaffere, A.H. Windle, Tribological behaviour of carbon-nanofiber-reinforced poly(ether ether ketone). Wear 257, 1006–1014 (2004)CrossRefGoogle Scholar
  48. 48.
    S. Kumara, T. Rath, R.N. Mahaling, C.S. Reddya, C.K. Das, K.N. Pandey, R.B. Srivastava, S.B. Yadaw, Study on mechanical, morphological and electrical properties of carbon nanofiber/polyetherimide composites. Mater. Sci. Eng. B 141, 61–70 (2007)CrossRefGoogle Scholar
  49. 49.
    Y. Shi, X. Feng, H. Wang, X. Lu, The effect of surface modification on the friction and wear behavior of carbon nanofiber-filled PTFE composites. Wear 264, 934–939 (2008)CrossRefGoogle Scholar
  50. 50.
    P. Cortés, K. Lozano, E.V. Barrera, J. Bonilla-Rios, Effects of nanofiber treatments on the properties of vapor-grown carbon fiber reinforced polymer composites. J. Appl. Polym. Sci. 89, 2527–2534 (2003)CrossRefGoogle Scholar
  51. 51.
    L. Karen, Y. Shuying, Z. Qiang, Rheological analysis of vapor-grown carbon nanofiber-reinforced polyethylene composites. J. Appl. Polym. Sci. 93, 155–162 (2004)CrossRefGoogle Scholar
  52. 52.
    R.N. Maria, R. Marialuigia, L. Khalid, F. Annalisa, R. Salvatore, G. Liberata, Relationships between nanofiller morphology and viscoelastic properties in CNF/epoxy resins. Polym. Compos. 36, 1152–1160 (2015)CrossRefGoogle Scholar
  53. 53.
    J.P. Antonio, J. Silva, F.W.J. Van Hattum, S. Lanceros-Mendez, A.I. Ares, Rheological and electrical analysis in carbon nanofiber reinforced polypropylene composites. J. Polym. Sci. B Polym. Phys. 51, 207–213 (2013)CrossRefGoogle Scholar
  54. 54.
    M.H. Al-Saleh, S. Uttandaraman, A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47, 2–22 (2009)CrossRefGoogle Scholar
  55. 55.
    B.O. Lee, W.J. Woo, M.S. Kim, EMI shielding effectiveness of carbon nanofiber filled poly(vinyl alcohol) coating materials. Macromol. Mater. Eng. 286, 114–118 (2001)CrossRefGoogle Scholar
  56. 56.
    J.H. Wu, D.D.L. Chung, Increasing the electromagnetic interference shielding effectiveness of carbon fiber polymer–matrix composite by using activated carbon fibers. Carbon 40, 445–447 (2002)CrossRefGoogle Scholar
  57. 57.
    B. De Vivo, P. Lamberti, G. Spinelli, V. Tucci, L. Guadagno, M. Raimondo, The effect of filler aspect ratio on the electromagnetic properties of carbon-nanofibers reinforced composites. J. Appl. Phys. 118 (2015).  https://doi.org/10.1063/1.4928317
  58. 58.
    F. Nanni, P. Travaglia, M. Valentini, Effect of carbon nanofibers dispersion on the microwave absorbing properties of CNF/epoxy composites. Compos. Sci. Technol. 69, 485–490 (2009)CrossRefGoogle Scholar
  59. 59.
    K. Lozano, E.V. Barrera, Nanofiber-reinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses. J. Appl. Polym. Sci. 79, 125–133 (2001)CrossRefGoogle Scholar
  60. 60.
    A.S. Muhammad, H.E.N. Anwer, Study on the morphological, dynamic mechanical and thermal properties of PLA carbon nanofiber composites. Compos. Part B Eng. 91 (2016).  https://doi.org/10.1016/j.compositesb.2016.01.039
  61. 61.
    A.J. Paleoa, X. Garciaa, L. Arboleda-Clementea, F.W. Van Hattumb, M.J. Abada, A. Aresa, Enhanced thermal conductivity of rheologically percolated carbon nanofiber reinforced polypropylene composites. Polym. Adv. Technol. 26, 369–375 (2015)CrossRefGoogle Scholar
  62. 62.
    M.A. Raza, A.V.K. Westwood, C. Stirling, R. Ahmad, Effect of boron nitride addition on properties of vapour grown carbon nanofiber/rubbery epoxy composites for thermal interface applications. Compos. Sci. Technol. 120, 9–16 (2015)CrossRefGoogle Scholar
  63. 63.
    H. Lu, F. Liang, Y. Yao, J. Gou, D. Hui, Self-assembled multi-layered carbon nanofiber nanopaper for significantly improving electrical actuation of shape memory polymer nanocomposite. Compos. Part B 59, 191–195 (2014)CrossRefGoogle Scholar
  64. 64.
    Z. Tang, D. Sun, D. Yang, B. Guo, L. Zhang, D. Jia, Vapor grown carbon nanofiber reinforced bio-based polyester for electroactive shape memory performance. Compos. Sci. Technol. 75, 15–21 (2013)CrossRefGoogle Scholar
  65. 65.
    K. Vikas, R.B. Bhavik, Carbon nanofiber polymer composites: evaluation of life cycle energy use. Environ. Sci. Technol. 43, 2078–2084 (2009)CrossRefGoogle Scholar
  66. 66.
    X.F. Zhang, Q.W. Li, T.G. Holesinger, P.N. Arendt, J.Y. Huang, P.D. Kirven, T.G. Clapp, R.F. DePaula, X.Z. Liao, Y.H. Zhao, L.X. Zheng, D.E. Peterson, Y.T. Zhu, Ultrastrong, stiff, and lightweight carbon-nanotube fibers. Adv. Mater. 19, 4198–4201 (2007)CrossRefGoogle Scholar
  67. 67.
    W. Lu, M. Zu, J.-H. Byun, B.-S. Kim, T.-W. Chou, State of the art of carbon nanotube fibers: opportunities and challenges. Adv. Mater. 24, 1805–1833 (2012)CrossRefPubMedGoogle Scholar
  68. 68.
    Y.N. Liu, M. Li, Y. Gu, X. Zhang, J. Zhao, Q. Li, Z. Zhang, The interfacial strength and fracture characteristics of ethanol and polymer modified carbon nanotube fibers in their epoxy composites. Carbon 52, 550–558 (2013)CrossRefGoogle Scholar
  69. 69.
    V.P. Veedu, A.Y. Cao, X.S. Li, K.G. Ma, C. Soldano, S. Kar, Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nat. Mater. 5, 457–462 (2006)CrossRefPubMedGoogle Scholar
  70. 70.
    E.J. Garcia, B.L. Wardle, A.J. Hart, Joining prepreg composite interfaces with aligned carbon nanotubes. Compos. A: Appl. Sci. Manuf. 39, 1065–1070 (2008)CrossRefGoogle Scholar
  71. 71.
    M. Zu, Q. Li, G. Wang, J.-H. Byun, T.-W. Chou, Carbon nanotube fiber based stretchable conductor. Adv. Funct. Mater. 23, 789–793 (2013)CrossRefGoogle Scholar
  72. 72.
    L. Ren, K. Pashayi, R.F. Hafez, P.K. Shiva, T. Borca-Tasciuc, R. Ozisik, Engineering the coefficient of thermal expansion and thermal conductivity of polymers filled with high aspect ratio silica nanofibers. Compos. Part B Eng. 58, 228–234 (2014)CrossRefGoogle Scholar
  73. 73.
    W.,.P.F. Neto, A.S. Hudson, O.D. Noelio, P. Daniel, Extraction and characterization of cellulose nanocrystals from agro-industrial residue–Soy hulls. Ind. Crop. Prod. 42, 480–488 (2013)CrossRefGoogle Scholar
  74. 74.
    J. Kim, Y. Sungryul, O. Zoubeida, Discovery of cellulose as a smart material. Macromolecules 39, 4202–4206 (2006)CrossRefGoogle Scholar
  75. 75.
    M.A.,.S. Azizi Samir, A. Fannie, D. Alain, Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6, 612–626 (2005)CrossRefGoogle Scholar
  76. 76.
    T. Nishino, I. Matsuda, K. Hirao, All-cellulose composite. Macromolecules 37, 7683–7687 (2004)CrossRefGoogle Scholar
  77. 77.
    M. Li, L.-j. Wang, D. Li, Y.-L. Cheng, B. Adhikari, Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp. Carbohydr. Polym. 102, 136–143 (2014)CrossRefPubMedGoogle Scholar
  78. 78.
    A.H.P.S. Khalil, A.H. Bhat, A.F.I. Yusra, Green composites from sustainable cellulose nanofibrils: A review. Carbohydr. Polym. 87, 963–979 (2012)CrossRefGoogle Scholar
  79. 79.
    A.W. Carpenter, C.F. de Lannoy, M.R. Wiesner, Cellulose nanomaterials in water treatment technologies. Environ. Sci. Technol. 49, 5277–5287 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    E. Fortunati, F. Luzi, A. Jimenez, D.A. Gopakumar, D. Puglia, S. Thomas, J.M. Kenny, A. Chiralt, L. Torre, Revalorization of sunflower stalks as novel sources of cellulose nanofibrils and nanocrystals and their effect on wheat gluten bionanocomposite properties. Carbohydr. Polym. 149, 357–368 (2016)CrossRefPubMedGoogle Scholar
  81. 81.
    J.C. Cintil, J. Jithin, M. Lovely, M. Miran, K. Joachim, T. Sabu, Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Ind. Crop. Prod. 59, 27–34 (2014)CrossRefGoogle Scholar
  82. 82.
    B. Wang, S. Mohini, Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos. Sci. Technol. 67, 2521–2527 (2007)CrossRefGoogle Scholar
  83. 83.
    K. Abe, I. Shinichiro, Y. Hiroyuki, Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8, 3276–3278 (2007)CrossRefPubMedGoogle Scholar
  84. 84.
    W.H. Danial, A.M. Zaiton, N.M.M. Mohd, T. Sugeng, B.B. Mohd, R. Zainab, The reuse of wastepaper for the extraction of cellulose nanocrystals. Carbohydr. Polym. 118, 165–169 (2015)CrossRefPubMedGoogle Scholar
  85. 85.
    H. Kargarzadeh, A. Ishak, A. Ibrahim, D. Alain, Y.Z. Siti, M.S. Rasha, Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19, 855–866 (2012)CrossRefGoogle Scholar
  86. 86.
    M. Paillet, D. Alain, Chitin whisker reinforced thermoplastic nanocomposites. Macromolecules 34, 6527–6530 (2001)CrossRefGoogle Scholar
  87. 87.
    K. Gopalan Nair, D. Alain, Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules 4, 657–665 (2003)CrossRefPubMedGoogle Scholar
  88. 88.
    M. Paris, H. Bizot, J. Emery, J.Y. Buzare, A. Buleon, Crystallinity and structuring role of water in native and recrystallized starches by 13 C CP-MAS NMR spectroscopy: 1: Spectral decomposition. Carbohydr. Polym. 39, 327–339 (1999)CrossRefGoogle Scholar
  89. 89.
    G. Chen, M. Wei, J. Chen, J. Huang, D. Alain, P.R. Chang, Simultaneous reinforcing and toughening: new nanocomposites of waterborne polyurethane filled with low loading level of starch nanocrystals. Polymer 49, 1860–1870 (2008)CrossRefGoogle Scholar
  90. 90.
    L. Ning, H. Jin, R.C. Peter, P.A. Debbie, Y. Jiahui, Preparation modification and application of starch nanocrystals in nanomaterials: a review. J. Nanomater. 2011, 573687, 13 (2011).  https://doi.org/10.1155/2011/573687CrossRefGoogle Scholar
  91. 91.
    A. Boldizar, C. Klason, J. Kubat, P. Näslund, P. Saha, Prehydrolyzed cellulose as reinforcing filler for thermoplastics. Int. J. Polym. Mater. 11, 229–262 (1987)CrossRefGoogle Scholar
  92. 92.
    V. Favier, H. Chanzy, J.Y. Cavaille, Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28, 6365–6367 (1995)CrossRefGoogle Scholar
  93. 93.
    V. Favier, G.R. Canova, J.Y. Cavaille, H. Chanzy, A. Dufresne, C. Gauthier, Nanocomposite materials from latex and cellulose whiskers. Polym. Adv. Technol. 6, 351–355 (1995)CrossRefGoogle Scholar
  94. 94.
    M. Jonoobi, H. Jalaluddin, P.M. Aji, O. Kristiina, Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos. Sci. Technol. 70, 1742–1747 (2010)CrossRefGoogle Scholar
  95. 95.
    S. Shankar, P.R. Jeevan, R. Jong-Whan, K. Hee-Yun, Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films. Carbohydr. Polym. 117, 468–475 (2015)CrossRefPubMedGoogle Scholar
  96. 96.
    J.-i. Kadokawa, T. Akihiko, M. Shozaburo, P. Kamalesh, Preparation of chitin nanowhiskers using an ionic liquid and their composite materials with poly (vinyl alcohol). Carbohydr. Polym. 84, 1408–1412 (2011)CrossRefGoogle Scholar
  97. 97.
    P.,.R. Chang, R. Jian, J. Yu, X. Ma, Starch-based composites reinforced with novel chitin nanoparticles. Carbohydr. Polym. 80, 420–425 (2010)CrossRefGoogle Scholar
  98. 98.
    L. Ma, M. Liu, Q. Peng, Y. Liu, B. Luo, C. Zhou, Crosslinked carboxylated SBR composites reinforced with chitin nanocrystals. J. Polym. Res. 23(7), 1–11 (2016)CrossRefGoogle Scholar
  99. 99.
    E. Kristo, G.B. Costas, Physical properties of starch nanocrystal-reinforced pullulan films. Carbohydr. Polym. 68(1), 146–158 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ajithkumar Manayan Parambil
    • 1
  • Jiji Abraham
    • 1
  • Praveen Kosappallyillom Muraleedharan
    • 1
    • 2
  • Deepu Gopakumar
    • 1
  • Sabu Thomas
    • 1
  1. 1.International and Inter University Centre for Nanoscience and NanotechnologyMahatma Gandhi UniversityKottayamIndia
  2. 2.Department of Mechanical EngineeringSaintgits College of EngineeringKottayamIndia

Personalised recommendations