Surfaces and Interfaces

  • Manfred StammEmail author
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


Polymer surfaces and interfaces are present with all polymer materials. They determine many properties like optical appearance, wetting, and adhesion, but with blends and composites also for instance toughness, hardness, modulus, and elongation at break. A short outline of polymer surfaces at molecular scale is given with reference to special aspects of chain conformation and surface dynamics. The surface tension as a fundamental property of a surface is discussed and surface functionalization in particular by grafting of polymer brushes onto surfaces described. In this way, a very versatile surface functionalization and even responsive polymer brush surfaces can be obtained. They may be used to control wetting, adhesion, bio-functionality, catalytic activity, and sensing ability. The interface between polymers can be formulated on the basis of mean-field theory with introduction of an effective interaction parameter, which is related with interface width and fluctuations at the interface. Polymer blends, copolymers as compatibalizers, and composites are discussed as examples, where interfaces play an essential role. Several techniques for surface and interface characterization including scanning force and electron microscopy, photoelectron and IR/Raman spectroscopy, as well as x-ray and neutron reflectometry or scattering techniques are critically reviewed. Guidelines for resolution and typical information obtained are provided. The importance of surface and interface design for future high-tech devices and advanced materials is highlighted.


Surfaces Interfaces Wetting Blends Copolymers Composites Functionalization Brushes Analysis Characterization Surface tension Contact angle Electron microcopy X-ray scattering Neutron scattering Reflectometry Scanning force microscopy XPS SIMS Ion beam techniques 


  1. 1.
    I. C. Sanchez (ed.), Physics of Polymer Surfaces and Interfaces (Butterworth-Heinemann, Boston, 1992)Google Scholar
  2. 2.
    R.A.L. Jones, Polymers at Surfaces and Interfaces (Cambridge University Press, Cambridge, 2008)Google Scholar
  3. 3.
    M. Stamm (ed.), Polymer Surfaces and Interfaces: Characterization, Modification and Application (Springer, Berlin/Heidelberg, 2008)Google Scholar
  4. 4.
    G.J. Fleer, Polymers at Interfaces (Springer, Berlin, 2013)Google Scholar
  5. 5.
    A. Karim, S. Kumar, Polymer Surfaces Interfaces and Thin Films (World Scientific, Singapore, 1999)Google Scholar
  6. 6.
    A.N. Netravali, Interface/Interphase in Polymer Nanocomposites (Wiley Academic, New Jersey, 2017)Google Scholar
  7. 7.
    S. Fakirov (ed.), Nano-size Polymers (Springer International, Cham, 2016)Google Scholar
  8. 8.
    S. Wu, Polymer Interface and Adhesion (Marcel Dekker, New York, 1982)Google Scholar
  9. 9.
    J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 1991)Google Scholar
  10. 10.
    K. Binder, Theories and mechanism of phase transitions, heterophase polymerizations, homopolymerization, addition polymerization. Adv. Pol. Sci. 112, 181 (1994)CrossRefGoogle Scholar
  11. 11.
    F. Kremer, W. Richtering (eds.), Characterization of polymer surfaces and thin films. Progr. Colloid Polym. Sci. 132, 1–171 (2006)Google Scholar
  12. 12.
    J.-U. Sommer, M. Stamm, in Surface and Interface Science, ed. by K. Wandelt, vol. 1–8 (Wiley, 2019)Google Scholar
  13. 13.
    I.V. Gerasimchuk, J.-U. Sommer, Mean-field treatment of polymer chains trapped between surfaces and penetrable interfaces. Phys. Rev. E 76, 041803, 1–11 (2007)CrossRefGoogle Scholar
  14. 14.
    M. Stamm, J.-U. Sommer, Polymer–nanoparticle films: Entropy and enthalpy at play. Nat. Mater. 6, 260–261 (2007)CrossRefGoogle Scholar
  15. 15.
    P.G. de Gennes, Polymer solutions near interfaces. 1. Adsorption and depletion layers. Macromolecules 14, 1637 (1981)CrossRefGoogle Scholar
  16. 16.
    R. Descas, J.-U. Sommer, A. Blumen, Static and dynamic properties of tethered chains at adsorbing surfaces: A Monte Carlo study. J. Chem. Phys. 120(18), 8831–8840 (2004)CrossRefGoogle Scholar
  17. 17.
    G.-L. He, R. Messina, H. Löwen, A. Kiriy, V. Bocharova, M. Stamm, Shear-induced stretching of adsorbed polymer chains. Soft Matter 5, 3014–3017 (2009)CrossRefGoogle Scholar
  18. 18.
    S. Minko, A. Kiriy, G. Gorodyska, M. Stamm, Single flexible hydrophobic polyelectrolyte molecules adsorbed on solid substrate: Transition between streched chain, necklace-like conformation and globule. J. Am. Chem. Soc. 124, 3218–3219 (2002)CrossRefGoogle Scholar
  19. 19.
    J. Kraus, P. Müller-Buschbaum, T. Kuhlmann, D.W. Schubert, M. Stamm, Confinement effects on the chain conformation in thin polymer films. Europhys. Lett. 49, 210 (2000). J. Kraus, PhD thesis, Mainz (1999)CrossRefGoogle Scholar
  20. 20.
    S.T. Wu, G.H. Fredrickson, J.-P. Carton, A. Ajdari, L. Leibler, Distribution of chain ends at the surface of a polymer melt: Compensation effects and surface tension. J. Polym. Sci. B 33, 2373–2389 (1995)CrossRefGoogle Scholar
  21. 21.
    J. Baschnagel, K. Binder, On the influence of hard walls on structural properties in polymer glass simulation. Macromolecules 28, 6808–6818 (1995)CrossRefGoogle Scholar
  22. 22.
    A. Galuschko, M. Lang, T. Kreer, J.-U. Sommer, Monte Carlo simulation of thin film polymer melts. Soft Mater. 12, 49–55 (2014)CrossRefGoogle Scholar
  23. 23.
    L. Si, M.V. Massa, K. Dalnoki-Veress, H.R. Brown, R.A.L. Jones, Chain entanglement in thin freestanding polymer films. PRL 94, 127801 (2005)CrossRefGoogle Scholar
  24. 24.
    R.S. PaiPanandiker, J.R. Dorgan, T. Pakula, Static properties of homopolymer melts in confined geometries determined by Monte Carlo simulation. Macromolecules 30, 6348–6352 (1997)CrossRefGoogle Scholar
  25. 25.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986)Google Scholar
  26. 26.
    P. Müller-Buschbaum, M. Stamm, Correlated roughness, long-range correlations and dewetting of thin polymer films. Macromolecules 31, 3686–3692 (1998)CrossRefGoogle Scholar
  27. 27.
    N. Rehse, C. Wang, M. Hund, M. Geoghegan, R. Magerle, G. Krausch, Stability of thin polymer films on a corrugated substrate. Europ. Phys. E 4, 69–76 (2001)CrossRefGoogle Scholar
  28. 28.
    M. Vlatkov, J.-L. Barrat, Local dynamics and primitive path analysis for a model polymer melt near a surface. Macromolecules 40, 3797–3804 (2007)CrossRefGoogle Scholar
  29. 29.
    J.A. Forrest, K. Dalnoki-Veress, J.R. Stevens, J.R. Dutcher, Effect of free surfaces on the glass transition temperature of thin polymer films. PRL 77, 2002 (1996)CrossRefGoogle Scholar
  30. 30.
    M. Erber, M. Tress, E.U. Mapesa, A. Serghei, K.-J. Eichhorn, B. Voit, F. Kremer, Glassy dynamics and glass transition in thin polymer layers of PMMA deposited on different substrates. Macromolecules 43, 7729–7733 (2010)CrossRefGoogle Scholar
  31. 31.
    T. Kuhlmann, J. Kraus, P. Müller-Buschbaum, D.W. Schubert, M. Stamm, Effects of confined geometry and substrate interaction on the initial stages of interdiffusion in thin polymer films. J. Non-Cryst. Solids 235–237, 457 (1998)CrossRefGoogle Scholar
  32. 32.
    A.W. Adamson, A.P. Gast, Physical Chemistry of Surfaces (Wiley, New York, 1997)Google Scholar
  33. 33.
    M. Daoud, C.E. Williams, Soft Matter Physics (Springer, Berlin, 1999)CrossRefGoogle Scholar
  34. 34.
    S. Minko, M. Müller, M. Motornov, M. Nitschke, K. Grundke, M. Stamm, Two-level structured self-adaptive surfaces with reversibly tunable properties. J. Am. Chem. Soc. 125, 3896–3900 (2003)CrossRefGoogle Scholar
  35. 35.
    M.A. Cohen Stuart, W.T.S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G.B. Sukhorukov, I. Szleifer, V.V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010)CrossRefGoogle Scholar
  36. 36.
    M. Krishnamoorthy, S. Hakobyan, M. Ramstedt, J.E. Gautrot, Surface-initiated polymer brushes in the biomedical field: Applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings. Chem. Rev. 114, 10976–11026 (2014)CrossRefGoogle Scholar
  37. 37.
    L. Wu, J. Baghdachi, Functional Polymer Coatings: Principles, Methods, and Applications (Wiley, New York, 2015)CrossRefGoogle Scholar
  38. 38.
    J. Rühe, M. Ballauff, M. Biesalski, P. Dziiezok, F. Gröhn, D. Johannsmann, N. Houbenov, N. Hugenberg, R. Konradi, S. Minko, M. Motornov, R.R. Netz, M. Schmidt, C. Seidel, M. Stamm, T. Stephan, D. Usov, H. Zhang, Polyelectrolyte brushes. Adv. Polym. Sci.: Chem. Mater. Sci. 165, 79–150 (2004)CrossRefGoogle Scholar
  39. 39.
    P. Mocny, H.A. Klok, Tribology of surface-grafted polymer brushes. Mol. Syst. Design Eng. 1, 141–154 (2016)CrossRefGoogle Scholar
  40. 40.
    A. Bousquet, H. Awada, R.C. Hiorns, Conjugated-polymer grafting on inorganic and organic substrates: A new trend in organic electronic material. Prog. Polym. Sci. 39, 1847–1877 (2014)CrossRefGoogle Scholar
  41. 41.
    E. Psarra, E. Foster, U. König, J. You, Y. Ueda, K.-J. Eichhorn, M. Müller, M. Stamm, A. Revzin, P. Uhlmann, Growth factor-bearing polymer brushes-versatile bioactive substrates influencing cell response. Biomacromolecules 11, 3530–3542 (2015)CrossRefGoogle Scholar
  42. 42.
    R.C. Advincula, W.J. Britain, K.C. Caster, in Polymer Brushes, ed. by J. Rühe (Wiley-VCH, Weinheim, 2004)Google Scholar
  43. 43.
    P. Uhlmann, H. Merlitz, J.-U. Sommer, M. Stamm, Polymer brushes for surface tuning. Macromol. Rapid Commun. 30, 732–740 (2009)CrossRefGoogle Scholar
  44. 44.
    S. Alexander, Polymer adsorption on small spheres: A scaling approach. J. Phys. (Paris) 38, 977–982 (1977).; P.G. de Gennes, Conformation of polymers attached to an interface. Macromolecules, 13, 1069–1075 (1980)CrossRefGoogle Scholar
  45. 45.
    A. Halperin, M. Tirrell, T.P. Lodge, Tethered chains in polymer microstructures. Adv. Polym. Sci. 100, 31–71 (1992)CrossRefGoogle Scholar
  46. 46.
    W.J. Brittain, S. Minko, A structural definition of polymer brushes. J. Polym. Sci., Part A: Polym. Chem. 45, 3505–3512 (2007)CrossRefGoogle Scholar
  47. 47.
    L. Ionov, N. Houbenov, A. Sidorenko, M. Stamm, Inverse and reversible switching gradient surfaces from mixed polyelectrolyte brushes. Langmuir 20, 9916–9919 (2004)CrossRefGoogle Scholar
  48. 48.
    P. Uhlmann, L. Ionov, N. Houbenov, M. Nitschke, K. Grundke, M. Motornov, S. Minko, M. Stamm, Surface functionalization by smart coatings: Stimuli-responsive binary polymer brushes. Prog. Org. Coat. 55, 168–174 (2006)CrossRefGoogle Scholar
  49. 49.
    L. Ionov, S. Sapra, A. Synytska, A.L. Rogaci, M. Stamm, S. Diez, Fast and spatially resolved environmental probing using stimuli-responsive polymer layers and fluorescent nanocrystals. Adv. Mater. 18, 1453–1457 (2006)CrossRefGoogle Scholar
  50. 50.
    M. König, D. Magerl, M. Philipp, K.-J. Eichhorn, M. Müller, P. Müller-Buschbaum, M. Stamm, P. Uhlmann, Nanocomposit coatings with stimuli-responsive catalytic activity. RSC Adv. 4, 17579–17586 (2014)CrossRefGoogle Scholar
  51. 51.
    M. Stamm, D.W. Schubert, Interfaces between incompatible polymers. Annu. Rev. Mater. Sci. 25, 325 (1995)CrossRefGoogle Scholar
  52. 52.
    M. Stamm, Polymer surfaces, interfaces and thin films studied by x-ray and neutron reflectometry, in Scattering in Polymeric and Colloidal Systems, ed. by W. Brown, K. Mortensen (Gordon and Breach, Amsterdam, 2000), p. 495Google Scholar
  53. 53.
    L. Leibler, Theory of phase equilibria in mixtures of copolymers and homopolymers. Macromolecules 15, 1283–1290 (1982)CrossRefGoogle Scholar
  54. 54.
    R. Schnell, M. Stamm, The self-organisation of diblock copolymers at polymer blend interfaces. Phys. B 234, 247 (1997).; R. Schnell, M. Stamm, F. Rauch, Segregation of diblock copolymers to the interface between weakly incompatible polymers. Macromol. Chem. Phys. 200, 1806–1812 (1999)CrossRefGoogle Scholar
  55. 55.
    I.W. Hamley, The Physics of Bock Copolymers (Oxford University Press, Oxford, 1998)Google Scholar
  56. 56.
    E.B. Gowd, M.S. Rama, M. Stamm, Nanostructures based on self-assembly of block copolymers, in Nanofabrication: Techniques and Principles, ed. by M. Stepanova, S. Dew (Springer, Berlin, 2012), pp. 191–216Google Scholar
  57. 57.
    B. Nandan, M. Stamm, Self-assembled polymer supramolecules as templates for nanomaterials, in Supramolecular Chemistry: From Molecules to Nanomaterials, ed. by J. W. Steed, P. A. Gale, vol. 7 (Wiley, Chichester, 2012), pp. 3563–3586Google Scholar
  58. 58.
    A. Horechyy, B. Nandan, N.E. Zafeiropoulos, P. Formanek, U. Oertel, N.C. Bigall, A. Eychmüller, M. Stamm, A step-wise approach for dual nanoparticle patterning via block copolymer self-assembly. Adv. Funct. Mater. 23, 483–490 (2013)CrossRefGoogle Scholar
  59. 59.
    A. Sidorenko, I. Tokarev, S. Minko, M. Stamm, Ordered reactive nanomembranes/nanotemplates from thin films of block copolymer thin films supramolecular assembly. J. Am. Chem. Soc. 125, 12211–12216 (2003)CrossRefGoogle Scholar
  60. 60.
    B. Nandan, E.B. Gowd, N.C. Bigall, A. Eychmüller, P. Formanek, P. Simon, M. Stamm, Arrays of inorganic nanodots and nanowires using nanotemplates based on switchable block copolymer supramolecular assemblies. Adv. Funct. Mater. 19, 2805–2811 (2009)CrossRefGoogle Scholar
  61. 61.
    S. Sanwaria, A. Horechyy, D. Wolf, C.-Y. Chu, H.-L. Chen, P. Formanek, M. Stamm, R. Srivastava, B. Nandan, Helical packing of nanoparticles confined in cylindrical domains of a self-assembled block copolymer structure. Angew. Chem. Int. Ed. 53(1–5), 9090 (2014)CrossRefGoogle Scholar
  62. 62.
    G.J. Vancso, H. Schönherr, Scanning Force Microscopy of Polymers (Springer, Berlin, 2016)Google Scholar
  63. 63.
    L. Sabbatini (ed.), Polymer Surface Characterization (de Gruyter, Berlin, 2014)Google Scholar
  64. 64.
    G.H. Michler, Electron Microscopy of Polymers (Springer, Berlin, 2010)Google Scholar
  65. 65.
    D. Briggs, Surface Analysis of Polymers by XPS and Static SIMS (Cambridge University Press, Cambridge, 2009)Google Scholar
  66. 66.
    K. Hinrichs, D. Aulich, L. Ionov, N. Esser, K.-J. Eichhorn, M. Motornov, M. Stamm, S. Minko, Chemical and structural changes in a pH-responsive mixed polyelectrolyte brush studied by infrared Ellipsometry. Langmuir 25, 10987–10991 (2009)CrossRefGoogle Scholar
  67. 67.
    D.S. Fryer, P.F. Nealey, J.J. Pablo, Thermal probe measurements of the glass transition temperature for ultrathin polymer films as a function of thickness. Macromolecules 33, 6439–6447 (2000)CrossRefGoogle Scholar
  68. 68.
    P. Truman, P. Uhlmann, M. Stamm, Monitoring liquid transport and chemical composition in lab on a chip systems using ion sensitive FET devices. Lab Chip 6, 1220–1228 (2006)CrossRefGoogle Scholar
  69. 69.
    S. Gupta, M. Agrawal, M. Conrad, N.A. Hutter, P. Olk, F. Simon, L.M. Eng, M. Stamm, R. Jordan, Poly(2-(dimethylamino)ethyl methacrylate) brushes with incorporated nanoparticles as a SERS active sensing layer. Adv. Funct. Mater. 20, 1756–1761 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Physical Chemistry and Physics of PolymersLeibniz-Institut für Polymerforschung Dresden e. V.DresdenGermany

Personalised recommendations