Advertisement

Synthetic Biopolymers

  • Mahbuba Rahman
  • Mohammad Rubayet Hasan
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

Synthetic biopolymers are polymers that are modified from natural polymers or chemically synthesized from synthetic monomers in such a way that they can undergo natural degradation, without leaving any residues that are harmful to the living and natural environments. Over the last few years, synthetic biopolymers have attracted much attention, because of their distinct advantages over natural polymers in terms of stability and flexibility to suit a variety of applications. On the other hand, synthetic biopolymers are favored over synthetic polymers because of their biodegradable properties and their innocence to the environment. Thanks to the advancements made in new molecular designing tools and polymer chemistry, the synthesis of synthetic biopolymers can now be tailored to fit their specific applications. Synthetic biopolymers have found one of its most important applications in the medical field because of some of their unique properties such as stability, controlled release, nonimmunogenicity, and clearance from the body, which suits their application in human bodies. The current chapter reviews the synthesis, biodegradation, application, and commercial production of synthetic biopolymers, based on most recent literature, with a special focus on biomedical applications.

References

  1. 1.
    C. Chassenieux, D. Durand, P. Jyotishkumar, S. Thomas, Biopolymers: State of the Art, new challenges, and opportunities, in Handbook of Biopolymer-Based Materials: From Blends and Composites to Gels and Complex Networks, ed. by S. Thomas, D. Durand, C. Chassenieux, P. Jyotishkumar (Wiley-VCH Verlag GmbH & Co., Berlin, 2013)Google Scholar
  2. 2.
    I. Vroman, L. Tighzert, Biodegradable Polymers. Materials 2, 307–344 (2009)PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    A. Tiwari, R.B. Srivastava, R.K. Saini, A.K. Bajpai, L.H. Mei, S.B. Mishra, A. Tiwari, A. Kumar, M. Shahinpoor, G.B. Nando, S.C. Kundu, A. Chadha, Biopolymers: An indispensable tool for biotechnology, in Biotechnology in Biopolymers Developments, Applications & Challenging Areas, ed. by A. Tiwari, R. B. Srivastava (Smithers Rapra Technology, Cambridge, UK, 2012), pp. 1–16Google Scholar
  4. 4.
    H. Endres, A. Siebart-Raths, Engineering Biopolymers: Markets, Manufacturing, Properties and Applications (Hanser, Munich, 2011)CrossRefGoogle Scholar
  5. 5.
    L. Suggs, S. Moore, A. Mikos, Synthetic biodegradable polymers for medical applications, in Physical Properties of Polymers Handbook, ed. by E. James (Springer, Berlin, 2007)Google Scholar
  6. 6.
    R. Thomson, M. Wake, M. Yaszemski, A. Mikos, Biodegradable polymer scaffolds to regenerate organs, in Biopolymers II, ed. by N. Peppas, R. Langer (Springer, Berlin/Heidelberg, 2005), pp. 245–274Google Scholar
  7. 7.
    I. Engelberg, J. Kohn, Physico-mechanical prorerties of degradable polymers used in medical applications: A comparative study. Biomaterials 12, 292–304 (1991)PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    R.J. Young, Introduction to polymers (Chapman & Hall, Boca Raton, 1987)Google Scholar
  9. 9.
    M. Kariduraganavar, A. Kittur, R. Kamble, Polymer synthesis and processing, in Natural and Synthetic Biomedical Polymers, ed. by S. Kumbar, C. Laurencin, M. Deng (Elsevier, Burlington, 2014)Google Scholar
  10. 10.
    Q. Liu, L. Zhang, R. Shi, Degradable bioelastomers: synthesis and biodegradation, in A Handbook of Applied Biopolymer Technology: Synthesis, Degradation and Applications, ed. by S. Sharma, A. Mudhoo (Royal Society of Chemistry, Cambridge, MA, 2011)Google Scholar
  11. 11.
    A. Gopferich, Mechanisms of polymer degradation and erosion. Biomaterials 17, 103–114 (1996)PubMedCrossRefGoogle Scholar
  12. 12.
    M. Okada, Chemical syntheses of biodegradable polymers. Prog. Polym. Sci., 27, 87–133 (2002)Google Scholar
  13. 13.
    R. Singh, J.W. Lillard Jr., Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 86, 215–223 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    G.V. Betageri, V.G. Kadajji, Water soluble polymers for pharmaceutical applications. Polymers (Basel) 3, 1972–2009 (2011)CrossRefGoogle Scholar
  15. 15.
    H. Tian, Z. Tang, X. Zhuang, X. Chen, X. Jing, Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog. Polym. Sci. 37, 237–280 (2012)CrossRefGoogle Scholar
  16. 16.
    R. Yoda, Elastomers for biomedical applications. J. Biomater. Sci. Polym. Ed. 9, 561–626 (1998)PubMedCrossRefGoogle Scholar
  17. 17.
    J. Rydz, W. Sikorska, M. Kyulavska, D. Christova, Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development. Int. J. Mol. Sci. 16, 564–596 (2015)CrossRefGoogle Scholar
  18. 18.
    T. Volova, E. Shishatskaya, A. Sinskey, Degradable Polymers : Production, Properties, Applications (Nova Science, New York, 2013)Google Scholar
  19. 19.
    L. Nair, C. Laurencin, Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32, 762–798 (2007)CrossRefGoogle Scholar
  20. 20.
    A.W. Lloyd, Interfacial bioengineering to enhance surface biocompatibility. Med. Device Technol. 13, 18–21 (2002)PubMedGoogle Scholar
  21. 21.
    S. Li, M. Vert, Biodegradation of aliphatic polyesters, in Degradable Polymers: Principles and Application, ed. by G. Scott (Kluwer Academic Publishers, Berlin, 2002), p. 71Google Scholar
  22. 22.
    N. Lucas, C. Bienaime, C. Belloy, M. Queneudec, F. Silvestre, J.E. Nava-Saucedo, Polymer biodegradation: Mechanisms and estimation techniques. Chemosphere 73, 429–442 (2008)PubMedCrossRefGoogle Scholar
  23. 23.
    A.A. Shah, F. Hasan, A. Hameed, S. Ahmed, Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 26, 246–265 (2008)PubMedCrossRefGoogle Scholar
  24. 24.
    J. Djonlagic, M. Nikolic, Biodegradable polyesters: Synthesis and physical properties, in A Handbook of Applied Biopolymer Technology: Synthesis, Degradation and Applications, ed. by S. Sharma, A. Mudhoo (Royal Society of Chemistry, Cambridge, MA, 2011)Google Scholar
  25. 25.
    B. Guo, P. Ma, Synthetic biodegradable functional polymers for tissue engineering: A brief review. Sci China Chem 57, 490–500 (2014)CrossRefGoogle Scholar
  26. 26.
    S. Philip, T. Keshavarz, I. Roy, Polyhydroxyalkanoates: Biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 82, 233–247 (2007)CrossRefGoogle Scholar
  27. 27.
    U. Edlund, A.C. Albertsson, Polyesters based on diacid monomers. Adv. Drug Deliv. Rev. 55, 585–609 (2003)PubMedCrossRefGoogle Scholar
  28. 28.
    P. Gunatillake, R. Mayadunne, R. Adhikari, Recent developments in biodegradable synthetic polymers. Biotechnol. Annu. Rev. 12, 301–347 (2006)PubMedCrossRefGoogle Scholar
  29. 29.
    S. Dutta, W. Hung, B. Huang, C. Lin, Recent developments in metal-catalyzed ring-opening polymerization of Lactides and Glycolides: Preparation of Polylactides, Polyglycolide, and poly(lactide-co-glycolide). Adv. Polym. Sci. 245, 219–284 (2012)CrossRefGoogle Scholar
  30. 30.
    P. Gunatillake, R. Adhikari, Biodegradable synthetic polymers for tissues engineering. Eur. Cell. Mater. 5, 1–16 (2003)PubMedCrossRefGoogle Scholar
  31. 31.
    A. Sodergard, M. Stolt, Properties of lactic acid based polymers and their correlation with composition. Prog. Polym. Sci. 27, 1123–1163 (2002)CrossRefGoogle Scholar
  32. 32.
    M. Goldberg, R. Langer, X. Jia, Nanostructured materials for applications in drug delivery and tissue engineering. J. Biomater. Sci. Polym. Ed. 18, 241–268 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    P. Maurus, C. Kaeding, Bioabsorbable implant material review. Oper Tech Sport Med 12, 158–160 (2004)CrossRefGoogle Scholar
  34. 34.
    T. Prior, D. Grace, J. MacLean, P. Allen, P. Chapman, A. Day, Correction of hallux abductus valgus by Mitchell’s metatarsal osteotomy: Comparing standard fixation methods with absorbable polydioxanone pins. Foot 7, 121–125 (1997)CrossRefGoogle Scholar
  35. 35.
    L. Nair, C. Laurencin, Polymers as biomaterials for tissue engineering and controlled drug delivery, in Tissue engineering I. Advances in biochemical engineering/biotechnology, ed. by K. Lee, D. Kaplan (Springer, Berlin, 2006), pp. 47–90Google Scholar
  36. 36.
    C. Chiari, U. Koller, R. Dorotka, C. Eder, R. Plasenzotti, S. Lang, L. Ambrosio, E. Tognana, E. Kon, D. Salter, S. Nehrer, A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthr. Cartil. 14, 1056–1065 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    R. Smith, Biodegradable Polymers for Industrial Applications (Woodhead Publishing Limited, Cambridge, UK, 2005)CrossRefGoogle Scholar
  38. 38.
    X. Zhan, X. Shen, Z. Li, X. Li, F. Cao, Preparation of high molecular weight poly(L-lactide-co-caprolactone)(85-15). Journal of Wuhan University of Technology-Mater. Sci. Ed. 28, 139–143 (2013)CrossRefGoogle Scholar
  39. 39.
    Z. Zhang, R. Kuijer, S.K. Bulstra, D.W. Grijpma, J. Feijen, The in vivo and in vitro degradation behavior of poly(trimethylene carbonate). Biomaterials 27, 1741–1748 (2006)PubMedCrossRefGoogle Scholar
  40. 40.
    M. Niaounakis, Biopolymers: Applications and Trends (Elsevier, New York, 2015)Google Scholar
  41. 41.
    T. Fujimaki, Processability and properties of aliphatic polyesters, “Bionolle”, synthesized by polycondensation reaction. Polym. Degrad. Stab. 59, 209–214 (1998)CrossRefGoogle Scholar
  42. 42.
    Y. Ichikawa, T. Mizukoshi, Bionolle (Polybutylenesuccinate). Adv. Polym. Sci. 245, 285–314 (2012)CrossRefGoogle Scholar
  43. 43.
    R.J. Muller, U. Witt, E. Rantze, W. Deckwer, Architecture of biodegradable copolyesters containing aromatic constituents. Polym. Degrad. Stab. 59, 203–208 (1998)CrossRefGoogle Scholar
  44. 44.
    X. Wang, J. Zhou, L. Li, Multiple melting behavior of poly(butylene succinate). during heating scan by DSC, J. Polym. Sci. Polym. Phys. 43, 3163–3170 (2007)Google Scholar
  45. 45.
    G. Papageorgiou, G. Achilias, D. Bikiaris, Crystallization kinetics of biodegradable poly(butylenes succinate) under isothermal and non-isothermal conditions. Macromol. Chem. Phys. 208, 1250–1264 (2007)CrossRefGoogle Scholar
  46. 46.
    J.S. Temenoff, A.G. Mikos, Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials 21, 2405–2412 (2000)PubMedCrossRefGoogle Scholar
  47. 47.
    S. Peter, M. Miller, M. Yaszemski, A. Mikos, Poly(propylene fumarate), in Handbook of biodegradable polymers, ed. by A. Domb, J. Kost, D. Wiseman (Harwood Academic, Amsterdam, 1997)Google Scholar
  48. 48.
    J.S. Temenoff, K.A. Athanasiou, R.G. LeBaron, A.G. Mikos, Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo(poly(ethylene glycol) fumarate) hydrogels for cartilage tissue engineering. J. Biomed. Mater. Res. 59, 429–437 (2002)PubMedCrossRefGoogle Scholar
  49. 49.
    J.S. Temenoff, H. Park, E. Jabbari, T.L. Sheffield, R.G. LeBaron, C.G. Ambrose, A.G. Mikos, In vitro osteogenic differentiation of marrow stromal cells encapsulated in biodegradable hydrogels. J. Biomed. Mater. Res. A 70, 235–244 (2004)PubMedCrossRefGoogle Scholar
  50. 50.
    C.S. Reddy, R. Ghai, Rashmi, V.C. Kalia, Polyhydroxyalkanoates: An overview. Bioresour. Technol. 87, 137–146 (2003)PubMedCrossRefGoogle Scholar
  51. 51.
    L. Savenkova, Z. Gercberga, V. Nikolaeva, A. Dzene, I. Bibers, M. Kahlnin, Mechanical properties and biodegradation characteristics of PHB bases films. Process Biochem. 35, 573 (2000)CrossRefGoogle Scholar
  52. 52.
    K. Sudesh, H. Abe, Y. Doi, Synthesis, structure and properties of polyhydroxyalkanoates : Biological polyesters. Prog. Polym. Sci. 25, 1503–1555 (2000)CrossRefGoogle Scholar
  53. 53.
    W.C. Hsieh, Y. Wada, C.P. Chang, Fermentation, biodegradation and tensile strength of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) synthesized by Delfia acidovorans. J. Tw. Inst. Chem. 40, 143–147 (2009)CrossRefGoogle Scholar
  54. 54.
    E.A. Dawes, Polyhydroxybutyrate: An intriguing biopolymer. Biosci. Rep. 8, 537–547 (1988)PubMedCrossRefGoogle Scholar
  55. 55.
    M. Avella, B. Immirzi, M. Malinconico, E. Martuscelli, M.G. Volpe, Reactive blending methodologies for biopol. Polym. Int. 39, 191–204 (1996)CrossRefGoogle Scholar
  56. 56.
    D.S. Sheu, W.M. Chen, J.Y. Yang, R.C. Chang, Thermophilic bacterium caldimonas taiwanensis produces poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from starch and valerate as carbon sources. Enz. Microbial. Technol. 44, 289–294 (2009)CrossRefGoogle Scholar
  57. 57.
    M. Zinn, B. Witholt, T. Egli, Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv. Drug Deliv. Rev. 53, 5–21 (2001)PubMedCrossRefGoogle Scholar
  58. 58.
    S. Philips, T. Keshavarz, I. Roy, Polyhydroxyalkanoates: Biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 82, 233–247 (2007)CrossRefGoogle Scholar
  59. 59.
    R. Muller, Aliphatic-aromatic polyesters, in Handbook of Biodegradable Polymers, ed. by A. Domb, J. Kost, D. Wiseman (CRC Press, Baco Raton, 1998)Google Scholar
  60. 60.
    U. Witt, R.J. Muller, W.D. Deckwer, Biodegradation behavior and material properties of aliphatic/aromatic polyesters of commercial importance. J. Envir. Polym. Degrad. 5, 81–89 (1997)CrossRefGoogle Scholar
  61. 61.
    N. Paredes, A. Rodriguez-Galan, J. Puiggali, Synthesis and characterization of a family of biodegradable poly(ester amide)s derived from glycine. J. Polym. Sci. A-Polym. Chem. 36, 1271–1282 (1998)CrossRefGoogle Scholar
  62. 62.
    A.K. Mohanty, M. Misra, G. Hinrichsen, Biofibres, biodegradable polymers and biocomposites: An overview. Macromol. Mater. Eng. 276, 1–24 (2000)CrossRefGoogle Scholar
  63. 63.
    E. Grigat, R. Koch, R. Timmermann, Thermoplastic and biodegradable polymers of cellulose. Polym. Degrad. Stab. 59, 223 (1998)CrossRefGoogle Scholar
  64. 64.
    B.K. Kim, J.W. Seo, H.M. Jeong, Morphology and properties of waterborne polyurethane/clay nanocomposites. Eur. Polym. J. 39, 85–91 (2003)CrossRefGoogle Scholar
  65. 65.
    T. Nakajima-Kambe, Y. Shigeno-Akutsu, N. Nomura, F. Onuma, T. Nakarahara, Microbial degradation of polyurethane, polester polyurethanes and polyether polyurethanes. Appl. Microbiol.Biotechnol. 51, 134–140 (1999)PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    S.A. Guelcher, K.M. Gallagher, J.E. Didier, D.B. Klinedinst, J.S. Doctor, A.S. Goldstein, Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders. Acta Biomater. 1, 471–484 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    M.K. Hassan, K.A. Mauritz, R.F. Storey, J.S. Wiggins, Biodegradable aliphatic thermoplastic polyurethane based on poly(ε-caprolactone) and L-lysine diisocyanate. J. Polym. Sci. A-Polym. Chem. 44, 2990–3000 (2006)CrossRefGoogle Scholar
  68. 68.
    R.F. Storey, J.S. Wiggins, A.D. Puckett, Hydrolysable poly(ester urethane) networks from Llysine diisocyanate and D,L- lactide/e-caprolactone homo and copolyester triols. J. Polym. Sci. APolym. Chem. 32, 2342–2345 (1994)Google Scholar
  69. 69.
    J.Y. Zhang, E.J. Beckman, N.P. Piesco, S. Agarwal, A new peptide-based urethane polymer: Synthesis, biodegradation, and potential to support cell growth in vitro. Biomaterials 21, 1247–1258 (2000)PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    J.B. Zeng, Y.D. Li, Q.Y. Zhu, K.K. Yang, X.L. Wang, Y.Z. Wang, A novel biodegrable multiblock poly(ester urethane) containing poly(L-lactic acid) and poly(butylene succinate) blocks. Polymer 50, 1178–1186 (2009)CrossRefGoogle Scholar
  71. 71.
    K.M. Zia, M. Zuber, I.A. Bhatti, M. Barikani, M.A. Sheikh, Evaluation of biocompatibility and mechanical behaviour of polyurethane elastomers based on chitin/1,4-butane diol blends. Int. J. Biol. Macromol. 44, 18–22 (2009)PubMedCrossRefGoogle Scholar
  72. 72.
    K.M. Zia, M. Barikani, M. Zuber, I.A. Bhatti, M.A. Sheikh, Molecular engineering of chitin based polyurethane elastomers. Carbohydr. Polym. 74, 149–158 (2008)CrossRefGoogle Scholar
  73. 73.
    K.L. Nobel, Waterborne polyurethanes. Prog. Org. Coating 32, 131–136 (1997)CrossRefGoogle Scholar
  74. 74.
    Z.W. Wicks, D.A. Wicks, J.W. Rosthauser, Two package waterborne urethane systems. Prog. Org. Coatings. 44, 161–183 (2002)CrossRefGoogle Scholar
  75. 75.
    M.C. Delpecha, F.M.B. Coutinho, Waterborne anionic polyurethanes and poly(urethane-urea)s: Influence of the chain extender on mechanical and adhesive properties. Polym. Test. 19, 939–952 (2000)CrossRefGoogle Scholar
  76. 76.
    Y. Lu, L. Tighzert, F. Berzin, S. Rondot, Innovative plasticized starch films modified with waterborne polyurethane from renewable resources. Carbohydr. Polym. 61, 174–182 (2005)CrossRefGoogle Scholar
  77. 77.
    Y. Lu, L. Tighzert, P. Dole, D. Erre, Preparation and properties of starch thermoplastics modified with waterborne polyurethane from renewable resources. Polymer 46, 9863–9870 (2005)CrossRefGoogle Scholar
  78. 78.
    J. Heller, J. Barr, S.Y. Ng, K.S. Abdellauoi, R. Gurny, Poly(ortho esters): Synthesis, characterization, properties and uses. Adv. Drug Deliv. Rev. 54, 1015–1039 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    J. Heller, J. Barr, Poly(ortho esters)-from concept to reality. Biomacromolecules 5, 1625–1632 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    J. Heller, Ocular delivery using poly(ortho esters). Adv. Drug Deliv. Rev. 57, 2053–2062 (2005)PubMedCrossRefGoogle Scholar
  81. 81.
    J. Tamada, R.J. Langer, The development of polyanhydrides for drug delivery applications. Biomater. Sci. Polym. Ed. 3, 315–353 (1992)CrossRefGoogle Scholar
  82. 82.
    K.W. Leong, B.C. Brott, R. Langer, Biodegradable polyanhydrides as drug carrier matrices: Characterization, degradation and release characteristics. J. Biomed. Mater. Res. 19, 941–955 (1985)PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    S.E. Ibim, K.E. Uhrich, M. Attawia, V.R. Shastri, S.F. El-Amin, E. Bronson, Preliminary in vivo report on the osteocompatibility of poly(anhydride-co-imides) evaluated in a tibial model. J. Biomed. Mater. Res. 43, 374–379 (1998)PubMedCrossRefGoogle Scholar
  84. 84.
    K.S. Anseth, D.C. Svaldi, C.T. Laurencin, R. Langer, Photopolymerisation of novel degradable networks for orthopaedic applications, in Photopolymerization. ACS Symposium series, vol. 673, ed. by A. Scranton, C. Bowman, R. Peiffer (American Chemical Society, Washington, DC, 1997), pp. 189–202Google Scholar
  85. 85.
    D.S. Katti, S. Lakshmi, R. Langer, C.T. Laurencin, Toxicity, biodegradation and elimination of polyanhydrides. Adv. Drug Deliv. Rev. 54, 933–961 (2002)PubMedCrossRefGoogle Scholar
  86. 86.
    C.T. Laurencin, T. Gerhart, P. Witschger, R. Satcher, A. Domb, A.E. Rosenberg, P. Hanff, L. Edsberg, W. Hayes, R. Langer, Bioerodible polyanhydrides for antibiotic drug delivery: In vivo osteomyelitis treatment in a rat model system. J. Orthop. Res. 11, 256–262 (1993)PubMedCrossRefGoogle Scholar
  87. 87.
    L.C. Li, J. Deng, D. Stephens, Polyanhydride implant for antibiotic delivery-from the bench to the clinic. Adv. Drug Deliv. Rev. 54, 963–986 (2002)PubMedCrossRefGoogle Scholar
  88. 88.
    S.I. Ertel, J. Kohn, Evaluation of a series of tyrosine-derived polypolycarbonates for biomaterial applications. J. Biomed. Mater. Res. 28, 919–930 (1994)PubMedCrossRefGoogle Scholar
  89. 89.
    C. Vauthier, C. Dubernet, C. Chauvierre, I. Brigger, P. Couvreur, Drug delivery to resistant tumors: The potential of poly(alkyl cyanoacrylate) nanoparticles. J. Control. Release 93, 151–160 (2003)PubMedCrossRefGoogle Scholar
  90. 90.
    H.R. Allcock, Chemistry and applications of polyphosphazenes (Wiley, New York, 2003)Google Scholar
  91. 91.
    S. Penczek, J. Pretula, K. Kaluzynski, Poly(alkylene phosphates): From synthetic models of biomacromolecules and biomembranes toward polymer-inorganic hybrids (mimicking biomineralization). Biomacromolecules 6, 547–551 (2005)PubMedCrossRefGoogle Scholar
  92. 92.
    Z. Zhao, J. Wang, H.Q. Mao, K.W. Leong, Polyphosphoesters in drug and gene delivery. Adv. Drug Deliv. Rev. 55, 483–499 (2003)PubMedCrossRefGoogle Scholar
  93. 93.
    S.X. Liu, Z.S. Xia, Y.Q. Zhong, Gene therapy in pancreatic cancer. World J. Gastroenterol. 20, 13343–13368 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    P. Suriyamongkol, R. Weselake, S. Narine, M. Moloney, S. Shah, Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants – A review. Biotechnol. Adv. 25, 148–175 (2007)PubMedCrossRefGoogle Scholar
  95. 95.
    J. Ruiz, A. Manteco, V. Cadiz, Synthesis and properties of hydrogels from poly (vinyl alcohol) and ethylenediaminetetraacetic dianhydride. Polymer 42, 6347–6354 (2001)CrossRefGoogle Scholar
  96. 96.
    S. Guilbert, B. Cuq, Material formed from proteins, in Handbook of Biodegradable Polymers, ed. by A.J. Domb, J. Kost, D. Wiseman (CRC Press, Boca Raton, 1998)Google Scholar
  97. 97.
    J.C. Haarer, K.C. Dee, Proteins and amino acid-derived polymers, in An introduction to biomaterials, ed. by S. A. Guelcher, J. O. Hollinger (CRC Taylor and Francis, Boca Raton, 2006), pp. 121–138Google Scholar
  98. 98.
    G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J. Chen, H. Lu, J. Richmond, D.L. Kaplan, Silk-based biomaterials. Biomaterials 24, 401–416 (2003)PubMedCrossRefGoogle Scholar
  99. 99.
    K. Gelse, E. Poschl, T. Aigner, Collagens-structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55, 1531–1546 (2003)PubMedCrossRefGoogle Scholar
  100. 100.
    J.F. Thornton, R.J. Rohrich, Dermal substitute (Integra) for open nasal wounds. Plast. Reconstr. Surg. 116, 677 (2005)PubMedCrossRefGoogle Scholar
  101. 101.
    S.K. Purna, M. Babu, Collagen based dressings-a review. Burns 26, 54–62 (2000)PubMedCrossRefGoogle Scholar
  102. 102.
    P.K. Narotam, S. Jose, N. Nathoo, C. Taylon, Y. Vora, Collagen matrix (DuraGen) in dural repair: Analysis of a new modified technique. Spine 29, 2861–2867 (2004)PubMedCrossRefGoogle Scholar
  103. 103.
    X. Duan, C. McLaughlin, M. Griffith, H. Sheardown, Biofunctionalization of collagen for improved biological response: Scaffolds for corneal tissue engineering. Biomaterials 28, 78–88 (2007)PubMedCrossRefGoogle Scholar
  104. 104.
    R. Chandra, R. Rustgi, Biodegradable polymers. Progr. Polym. Sci. 23, 1273–1335 (1998)CrossRefGoogle Scholar
  105. 105.
    S.M. Mithieux, J.E. Rasko, A.S. Weiss, Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers. Biomaterials 25, 4921–4927 (2004)PubMedCrossRefGoogle Scholar
  106. 106.
    A. Chilkoti, T. Christensen, J.A. MacKay, Stimulus responsive elastin biopolymers: Applications in medicine and biotechnology. Curr. Opin. Chem. Biol. 10, 652–657 (2006)PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    V.T. Chuang, U. Kragh-Hansen, M. Otagiri, Pharmaceutical strategies utilizing recombinant human serum albumin. Pharm. Res. 19, 569–577 (2002)PubMedCrossRefGoogle Scholar
  108. 108.
    E. Grassl, R.T. Tranquillo, Fibrillar fibrin gels, in Scaffolds in tissue engineering, ed. by X.P. Ma, J. Elisseeff (CRC, Taylor and Francis, Boca Raton, 2006), pp. 61–70Google Scholar
  109. 109.
    S. Domenek, P. Feuilloley, J. Gratraud, M.H. Morel, S. Guilbert, Biodegradability of wheat gluten based bioplastics. Chemosphere 54, 551–559 (2004)PubMedCrossRefGoogle Scholar
  110. 110.
    S. Tansaz, A.R. Boccaccini, Biomedical applications of soy protein: A brief overview. J. Biomed. Mater. Res. A 104, 553–569 (2016)PubMedCrossRefGoogle Scholar
  111. 111.
    M. Obst, A. Steinbuchel, Microbial degradation of poly(amino acid)s. Biomacromolecules 5, 1166–1176 (2004)PubMedCrossRefGoogle Scholar
  112. 112.
    T. Shimokuri, T. Kaneko, M. Akashi, Specific thermosensitive volume change of biopolymer gels derived from propylated poly(g-glutamate)s. J. Polym. Sci. A Polym. Chem. 42, 4492–4501 (2004)CrossRefGoogle Scholar
  113. 113.
    T. Yoshida, J. Hiraki, T. Nagasawa, e-Poly-L-lysine, in Biopolymers, ed. by S.R. Fahnestock, A. Steinbuchel (Wiley-VCH, Weinheim, 2003), pp. 107–121Google Scholar
  114. 114.
    C. Li, Poly(L-glutamic acid)-anticancer drug conjugates. Adv. Drug Deliv. Rev. 54, 695–713 (2002)PubMedCrossRefGoogle Scholar
  115. 115.
    Y. Otani, Y. Tabata, Y. Ikada, Hemostatic capability of rapidly curable glues from gelatin, poly(L-glutamic acid), and carbodiimide. Biomaterials 19, 2091–2098 (1998)PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    G. Pitarresi, F. Saiano, G. Cavallaro, D. Mandracchia, F.S. Palumbo, A new biodegradable and biocompatible hydrogel with polyaminoacid structure. Int. J. Pharm. 335, 130–137 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    N. Volpi, Therapeutic applications of glycosaminoglycans. Curr. Med. Chem. 13, 1799–1810 (2006)PubMedCrossRefGoogle Scholar
  118. 118.
    Y. Kato, S. Nakamura, M. Nishimura, Beneficial actions of hyaluronan (HA) on arthritic joints: Effects of molecular weight of HA on elasticity of cartilage matrix. Biorheology 43, 347–354 (2006)PubMedGoogle Scholar
  119. 119.
    J.K. Suh, H.W. Matthew, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review. Biomaterials 21, 2589–2598 (2000)PubMedCrossRefGoogle Scholar
  120. 120.
    M. Dash, F. Chiellini, R.M. Ottenbrite, E. Chiellini, Chitosan-a versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 36, 981–1014 (2011)CrossRefGoogle Scholar
  121. 121.
    V.K. Mourya, N.N. Inamdar, Chitosan-modifications and applications: Opportunities galore. React. Funct. Polym. 68, 1013–1051 (2008)CrossRefGoogle Scholar
  122. 122.
    C.J. Weber, Biobased Packaging Materials Biobased Packaging Materials for the Food Industry (KVL, Frederiksberg, 2000)Google Scholar
  123. 123.
    C. Bastioloi, Starch-Based Technology, in Handbook of Biodegradable Polymers, ed. by C. Bastioloi (Rapra Technology Limited, Shropshire, 2003)Google Scholar
  124. 124.
    A. Rodriguez-Galan, L. Franco, J. Puiggali, Degradable poly(ester amide)s for biomedical applications. Polymers 3, 65–99 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Experimental BiologySidra MedicineDohaQatar
  2. 2.Department of PathologySidra MedicineDohaQatar

Personalised recommendations