Advertisement

Growth Architecture Diversity Among Permian Calamitaleans in Brazil

  • Rodrigo NeregatoEmail author
  • Ronny Rößler
  • Robert Noll
Living reference work entry
  • 14 Downloads

Abstract

Sizeable stems of exceptional three-dimensional anatomical preservation add an important aspect to the growth form diversity of calamitaleans found in the Permian fossil sites of the Parnaíba Basin, central-north Brazil. A thorough study of new material provided a novel account to arborescent horsetail relatives and made us aware of a much more diverse picture that these extinct giants deserve. As part of the riparian vegetation of rivers and lakes, calamitalean trees inhabited sandy substrates. Thus, they were found parautochthonously in well-sorted mature medium-grained sandstones of fluvial plain settings. After burial, the tree trunks were petrified by silica and staining constituents. Being among the youngest calamitaleans of the geological past, the finds paved the way for a more sophisticated view on this group of ancient spore-producing plants. The woody horsetail trees from Brazil suggest a considerable adaptive potential, which is revealed by diversity in both branching and anatomy. Accordingly, variable growth architectures resulted. They are reflected in several new reconstructions established to illustrate how these trees may have looked like. In addition, finds from the Parnaíba Basin provided the opportunity to study calamitalean root systems and challenge the traditional interpretation of exclusively rhizomatous growth. As a result, till they became extinct at the end of the Paleozoic, they survived in increasingly dynamic environments of Permian equatorial Pangaea, which were characterized by strong seasonality and multiple disturbances, which were meticulously recorded in the wood.

References

  1. Anderson BR (1954) A study of American petrified calamites. Ann MO Bot Gard 41:395–418CrossRefGoogle Scholar
  2. Andrews HN (1952) Some American petrified calamitean stems. Ann MO Bot Gard 39:189–206CrossRefGoogle Scholar
  3. Barbosa O, Gomes FA (1957) Carvão mineral na Bacia Tocantins-Araguaia. Boletim do Ministério da Agricultura, Departamento de Produção Mineral, Divisão de Geologia e Mineralogia, Rio de Janeiro, vol 174. p 39Google Scholar
  4. Barthel M (1980) Calamiten aus dem Oberkarbon und Rotliegenden des Thüringer Waldes. In: Vent W (ed) 100 Jahre Arboretum. Verlag, Berlin, pp 237–258Google Scholar
  5. Barthel M (2004) Die Rotliegendflora des Thüringer Waldes. Teil 2: Calamiten und Lepidophyten, vol 19. Veröffentlichungen des Naturhistorischen Museums, Schleusingen, pp 19–48Google Scholar
  6. Boureau E (1964) Traité de Paléobotanique, Tome iii Sphenophyta, Noeggerathiophyta. Masson et Cie, ParisGoogle Scholar
  7. Brongniart A (1872) Notice sur le Psaronius brasiliensis. Bull Soc Bot Fr Ser 5 19:3–10CrossRefGoogle Scholar
  8. Capretz RL, Rohn R (2013) Lower Permian stems as fluvial paleocurrent indicators of the Parnaíba Basin, northern Brazil. J S Am Earth Sci 45:69–82.  https://doi.org/10.1016/j.jsames.2012.12.007CrossRefGoogle Scholar
  9. Chahud A (2011) Geologia e paleontologia das formações Tatuí e Irati no centro leste do Estado de São Paulo. Ph.D. thesis. IGc-USP, São Paulo. 299 ppGoogle Scholar
  10. Chaloner WG, Lacey WS (1973) The distribution of Late Paleozoic Flora. In: Hughes NF (ed) Organisms and continents through time. Methods for assessing relationships between past and present biologic distribution and the position of continents, vol 12. The Geological Society Special Publications, London, pp 271–289Google Scholar
  11. Chaloner WG, Meyen SV (1973) Carboniferous and Permian floras of the northern continents. In: Hallan A (ed) Atlas of paleobiogeography. Elsevier, Amsterdam, pp 169–186Google Scholar
  12. Chen F, Shi X, Yu J et al (2017) Permineralized calamitean axes from the Upper Permian of Xinjiang, Northwest China and its palaeoecological implication. J Earth Sci.  https://doi.org/10.1007/s12583-017-0941-3CrossRefGoogle Scholar
  13. Chumakov NM, Zharkov MA (2002) Climate during Permian-Triassic biosphere reorganizations, article 1: climate of the early Permian. Stratigr Geol Correl 10:586–602Google Scholar
  14. Cichan MA, Taylor TN (1983) A systematic and developmental analysis of Arthropitys deltoides sp. nov. Bot Gaz 144:285–294CrossRefGoogle Scholar
  15. Cleal CJ, Thomas BA (1991) Carboniferous and Permian palaeogeography. In: Cleal CJ (ed) Plant fossils in geological investigation: the Paleozoic. Ellis Horwood, London, pp 155–181Google Scholar
  16. Coimbra AM, Mussa D (1984) Associação lignitafoflorística na Formação Pedra-de-Fogo (Arenito Cacunda), Bacia do Maranhão–Piauí, Brasil. In: Abstracts of the 33rd Congresso Brasileiro de Geologia, Rio do Janeiro, 1984Google Scholar
  17. Cotta B (1832) Die Dendrolithen in Bezug auf ihren inneren Bau. Arnoldische Buchhandlung, Leipzig. (89 pp)Google Scholar
  18. Dias-Brito D, Rohn R, Castro JC et al (2007) Floresta Petrificada do Tocantins Setentrional – O mais exuberante e importante registro florístico tropical-subtropical permiano no Hemisfério Sul. In: Winge M, Schobbenhaus C, Berbert-Born M et al (ed) Sítios Geológicos e Paleontológicos do Brasil. DNPM/CPRM-SIGEP, Brasília. http://www.unb.br/ig/sigep/sitio104/sitio104english.pdf. Accessed 23 Jan 2007
  19. DiMichele WA, Falcon-Lang HJ (2012) Calamitalean pith casts reconsidered. Rev Palaeobot Palynol 173:1–14.  https://doi.org/10.1016/j.revpalbo.2012.01.011CrossRefGoogle Scholar
  20. Eggert DA (1962) The ontogeny of carboniferous arborescent sphenopsida. Palaeontogr Abt B 110:99–127Google Scholar
  21. Elgorriaga A, Escapa IH, Rothwell GW et al (2018) Origin of Equisetum: Evolution of horsetails (Equisetales) within the major euphyllophyte clade Sphenopsida. Am J Bot 105:1–18.  https://doi.org/10.1002/ajb2.1125CrossRefGoogle Scholar
  22. Falcon-Lang HJ (2015) A calamitalean forest preserved in growth position in the Pennsylvanian coal measures of South Wales: implications for palaeoecology, ontogeny and taphonomy. Rev Palaeobot Palynol 214:51–67.  https://doi.org/10.1016/j.revpalbo.2014.10.001CrossRefGoogle Scholar
  23. Feng Z, Zierold T, Rößler R (2012) When horsetails became giants. Chin Sci Bull 57:2285–2288.  https://doi.org/10.1007/s11434-012-5086-2CrossRefGoogle Scholar
  24. Gastaldo RA (1992) Regenerative growth in fossil horsetails (Calamites) following burial by alluvium. Hist Biol 6:203–220CrossRefGoogle Scholar
  25. Goeppert HR (1864) Die fossile Flora der Permischen Formation. Palaeontographica 12:1–124Google Scholar
  26. Góes AMO, Feijó FJ (1994) Bacia do Parnaíba. Bol Geociências Petrobrás 8:57–67Google Scholar
  27. Gothan W (1905) Zur Anatomie lebender und fossiler Gymnospermen-Hölzer. Abh Königl Preuß Geol Landesanst NF 44:1–108Google Scholar
  28. Grand’Eury CF (1877) Mémoire sur la flore Carbonifère du département de La Loire et du centre de la France. Mém Acad Sci Inst Nat France 24. 624 ppGoogle Scholar
  29. Grand’Eury C (1887) Formation des couches de houiller et du terrain houiller. Mém Soc Géol France 3(Sér(4)):1–196Google Scholar
  30. Hick T (1894) On the primary structure of the stem of Calamites. Mem Proc Manchester Lit Phil Soc IV(8):158–173Google Scholar
  31. Hirmer M (1927) Handbuch der Paläobotanik. Druck and Verlag von R. Oldenbourg, München/BerlinGoogle Scholar
  32. Iannuzzi R, Neregato R, Cisneiros J et al (2018) Re-evaluation of the Permian macrofossils from the Parnaíba Basin: biostratigraphic, palaeoenvironmental and palaeogeographical implications. In: Daly MC, Fuck RA, Julià J et al (eds) Cratonic basin formation: a case study of the Parnaíba Basin of Brazil, vol 472. The Geological Society Special Publications, London.  https://doi.org/10.1144/SP472.14CrossRefGoogle Scholar
  33. IAWA Committee (2004) IAWA list of microscopic features for softwood identification. IAWA J 25:1–70CrossRefGoogle Scholar
  34. Knoell H (1935) Zur Kenntnis der strukturbietenden Pflanzenreste des jüngeren Paläozoikums: 4. Zur Systematik der strukturbietenden Calamiten der Gattung Arthropitys aus dem mittleren Oberkarbon Westdeutschlands und Englands. Palaeontogr Abt B 80:1–51Google Scholar
  35. Leistikow KU (1962) Die Wurzeln der Calamitaceae. PhD thesis, Botanical Institute, University of Tübingen. 99 ppGoogle Scholar
  36. Maslen AJ (1905) The relation of root to stem in Calamites. Ann Bot 19:61–73CrossRefGoogle Scholar
  37. Meyen SV (1987) Fundamentals of palaeobotany. Chapman & Hall, LondonCrossRefGoogle Scholar
  38. Montañez IP, Poulsen CJ (2013) The Late Paleozoic ice age: an evolving paradigm. Annu Rev Earth Planet Sci 41:629–656.  https://doi.org/10.1146/annurev.earth.031208.100118CrossRefGoogle Scholar
  39. Neregato R, Rößler R, Rohn et al (2015) New petrified calamitaleans from the Permian of the Parnaíba Basin, central-north Brazil. part I. Rev Palaeobot Palynol 215:23–45.  https://doi.org/10.1016/j.revpalbo.2014.12.006CrossRefGoogle Scholar
  40. Neregato R, Rößler R, Iannuzzi R et al (2017) New petrified calamitaleans from the Permian of the Parnaíba Basin, central-north Brazil, part II, and phytogeographic implications for Late Paleozoic floras. Rev Palaeobot Palynol 237:37–61.  https://doi.org/10.1016/j.revpalbo.2016.11.001CrossRefGoogle Scholar
  41. Parrish JT (1995) Geologic evidence of Permian climate. In: Scholle PA, Peryt TM, Ulmer-Scholle DS (eds) The Permian of the Northern Pangea. Paleogeography, paleoclimates, stratigraphy, vol 1. Springer, Berlin, pp 53–61CrossRefGoogle Scholar
  42. Pelourde F (1914) A propos dês Psaroniées du Brésil. Association Française pour l’avancement des Sciences. Compte-rendu de la 43 session Le Havre. pp 442–445. http://gallica.bnf.fr/ark:/12148/bpt6k201218n/f441.image
  43. Petzholdt A (1841) Ueber Calamiten und Steinkohlenbildung. Arnoldische Buchhandlung, Dresden/Leipzig. (68 pp)CrossRefGoogle Scholar
  44. Pfefferkorn HW, Archer AW, Zodrow EL (2001) Modern tropical analogs for standing carboniferous forests: comparison of extinct Mesocalamites with extant Montrichardia. Hist Biol 15:235–250.  https://doi.org/10.1080/10292380109380595CrossRefGoogle Scholar
  45. Pinto CP, Sad JHG (1986) Revisão da estratigrafia da Formação Pedra de Fogo, borda sudoeste da Bacia do Parnaíba. In: Abstracts of the 34th Congresso Brasileiro de Geologia, Goiânia, pp 346–358Google Scholar
  46. Reed FD (1952) Arthroxylon, a redefined genus of calamite. An MO Bot Garden 39:173–187.  https://doi.org/10.2307/2394522CrossRefGoogle Scholar
  47. Renault B (1885a) Recherches sur les végétaux fossiles du Genre Astromyelon. Ann Sci Géol Paris 17:1–34Google Scholar
  48. Renault B (1885b) Nouvelles Recherches sur le Genre Astromyelon. Bull. Soc. Hist. Nat. Saône-et-Loire 14 P. http://www.bourgogne-nature.fr/fichiers/pages-060a074-de-bn23-cahiers-ld_1518098545.pdf
  49. Renault B (1893) Bassin houiller et Permien d’Autun et d’Epinac. Études des gîtes minéraux de la France. Fascicule IV, Flore Fossile, 2. Partie. Paris, Atlas, 89 planchesGoogle Scholar
  50. Renault B (1895) Notice sur les Calamariées. Soc Hist Nat Autun Bull 8:1–54Google Scholar
  51. Renault B (1896a) Bassin houiller et Permien d’Autun et d’Epinac. Études des gîtes minéraux de la France. Fascicule IV, Flore Fossile, 2. Partie. Paris, Texte. (578 pp)Google Scholar
  52. Renault B (1896b) Notice sur les Calamariées, II. Soc Hist Nat Autun Bull 9:305–354Google Scholar
  53. Ricardi-Branco F (2008) Venezuelan paleoflora of the Pennsylvanian–Early Permian: paleobiogeographical relationships to Central and Western Equatorial Pangea. Gondwana Res 14:297–305.  https://doi.org/10.1016/j.gr.2008.02.007CrossRefGoogle Scholar
  54. Ricardi-Branco F, Rosler O, Odreman O (2005) La Flora Euramericana de Carache (Carbonífero Tardío-Pérmico Temprano), Municipio de Carache, Noroeste de Venezuela. Plântula 3:153–167Google Scholar
  55. Roscher M, Schneider JW (2006) Permo-Carboniferous climate: Early Pennsylvanian to Late Permian climate of central Europe in a regional and global context. In: Lucas SG, Cassins G, Schneider JW (ed) Non-marine Permian biostratigraphy and biochronology, vol 265. The Geological Society Special Publication, London. pp 95–136.  https://doi.org/10.1144/GSL.SP.2006.265.01.05CrossRefGoogle Scholar
  56. Ross CA, Ross JRP (1985) Carboniferous and early Permian biogeography. Geology 13:27–30.  https://doi.org/10.1130/0091–7613(1985)13<27:CAEPB>2.0.CO;2CrossRefGoogle Scholar
  57. Rößler R (2014) Die Bewurzelung permischer Calamiten – Aussage eines Schlüsselfundes zur Existenz freistehender baumförmiger Schachtelhalmgewäche innerhalb der Paläofloren des äquatornahen Gondwana. Freiberger Forschungshefte C 548. Paläontologie, Stratigraphie, Fazies 22:9–37Google Scholar
  58. Rößler R, Galtier J (2003) The first evidence of the fern Botryopteris from the Permian of the Southern Hemisphere reflecting growth form diversity. Rev Palaeobot Palynol 127:99–124.  https://doi.org/10.1016/S0034-6667(03)00096-4CrossRefGoogle Scholar
  59. Rößler R, Noll R (2002) Der permische versteinerte Wald von Araguaina/Brasilien–Geologie, Taphonomie und Fossilführung. Veröffentlichungen des Naturhistorischen Museums Schleusingen 25:5–44Google Scholar
  60. Rößler R, Noll R (2006) Sphenopsids of the Permian (I): the largest known anatomically preserved calamite, an exceptional find from the petrified forest of Chemnitz, Germany. Rev Palaeobot Palynol 140:145–162.  https://doi.org/10.1016/j.revpalbo.2006.03.008CrossRefGoogle Scholar
  61. Rößler R, Noll R (2007) Calamitea Cotta, the correct name for calamitean sphenopsids currently classified as Calamodendron Brongniart. Rev Palaeobot Palynol 144:157–180.  https://doi.org/10.1016/j.revpalbo.2006.08.001CrossRefGoogle Scholar
  62. Rößler R, Noll R (2010) Anatomy and branching of Arthopitys bistriata (Cotta) – new observations from the Permian petrified forest of Chemnitz, Germany. Int J Coal Geol 83:103–124.  https://doi.org/10.1016/j.coal.2009.07.011CrossRefGoogle Scholar
  63. Rößler R, Feng Z, Noll R (2012) The largest calamite and its growth architecture – Arthropitys bistriata from the early Permian Petrified Forest of Chemnitz. Rev Palaeobot Palynol 185:64–78.  https://doi.org/10.1016/j.coal.2009.07.011CrossRefGoogle Scholar
  64. Rößler R, Merbitz M, Annacker V et al (2014) The root systems of Permian arborescent sphenopsids: evidence from both the northern and southern hemispheres. Palaeontogr Abt B 290:65–107Google Scholar
  65. Schopf JM (1975) Modes of fossil preservation. Rev Palaeobot Palynol 20:27–53.  https://doi.org/10.1016/0034-6667(75)90005-6CrossRefGoogle Scholar
  66. Scotese CS (1999) Paleomap project. http://www.scotese.com. Accessed 10 Nov 2009
  67. Scott DH (1920) Studies in fossil botany, vol 1, 3rd edn. A. and C. Black, LondonGoogle Scholar
  68. Tabor NJ, Poulsen CJ (2008) Palaeoclimate across the Late Pennsylvanian–Early Permian tropical palaeolatitudes: a review of climate indicators, their distribution, and relation to palaeophysiographic climate factors. Palaeogeogr Palaeoclimatol Palaeoecol 268:293–310.  https://doi.org/10.1016/j.palaeo.2008.03.052CrossRefGoogle Scholar
  69. Tavares TMV, Rohn R, Merlotti S (2011) Caules permineralizados de Tietea e Psaronius na Bacia do Paraná (Formação Corumbataí, Permiano). Pesquisas Geociências 38:114–131CrossRefGoogle Scholar
  70. Tavares TMV, Rohn R, Rößler R et al (2014) Petrified Marattiales pinnae from the Lower Permian of North–Western Gondwana (Parnaíba Basin, Brazil). Rev Palaeobot Palynol 201:12–28.  https://doi.org/10.1016/j.revpalbo.2013.09.002CrossRefGoogle Scholar
  71. Thomas BA (2014) In situ stems: preservation states and growth habits of the Pennsylvanian (Carboniferous) calamitaleans based upon new studies of Calamites Sternberg, 1820 in the Duckmantian at Brymbo, North Wales, UK. Palaeontology 57:21–36.  https://doi.org/10.1111/pala.12045CrossRefGoogle Scholar
  72. Vaz PT, Rezende NGAM, Wanderley Filho JR et al (2007) Bacia do Parnaíba. Bol Geociências Petrobrás 15:253–263Google Scholar
  73. Wang SJ, Li SS, Hilton J et al (2003) A new species of sphenopsid stem Arthropitys from Late Permian volcaniclastic sediments of China. Rev Palaeobot Palynol 126:65–81.  https://doi.org/10.1016/S0034–6667(03)00059–9CrossRefGoogle Scholar
  74. Wang SJ, Hilton J, Galtier J et al (2006) A large anatomically preserved calamitean stem from the Upper Permian of southwest China and its implications for calamitean development and functional anatomy. Plant Syst Evol 261:229–244.  https://doi.org/10.1007/s00606–006–0434–9CrossRefGoogle Scholar
  75. Williamson WC, Scott DH (1894) Further observations on the organization of the fossil plants of the coal measures. I. Calamites, Calamostachys, and Sphenophyllum. Philos Trans R Soc Lond B 185:863–959CrossRefGoogle Scholar
  76. Williamson WC, Scott DH (1895) Further observations of the fossil plants of the coal measures. II. The roots of Calamites. Philos Trans R Soc Lond B 186:683–701Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rodrigo Neregato
    • 1
    Email author
  • Ronny Rößler
    • 2
    • 3
  • Robert Noll
    • 4
  1. 1.Universidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Museum für NaturkundeChemnitzGermany
  3. 3.Geological InstituteTU Bergakademie FreibergFreibergGermany
  4. 4.TiefenthalGermany

Personalised recommendations