Biosocial theories

  • Chad PosickEmail author
Living reference work entry


Cybercrime is a far-reaching social phenomenon that impacts millions of people around the globe each year. Therefore, investigating the causes and consequences of cybercrime is paramount for developing prevention strategies and addressing the needs of cybercrime survivors. To date, most of the work in this area has been social or social-psychological in nature. A biosocial model has the potential to fill in knowledge gaps that remain in the study of cybercrime and provide a fruitful framework for approaches that reduce the occurrence of cybercrime and improve outcomes for victims. In this chapter I discuss the role of biosocial criminology in explaining cybercrime and the outcomes that victims of cybercrime face. I will also discuss what a biosocial research program would look like for the study of cybercrime and what it would entail. I finish with recommendations for cybercrime prevention policy and practice.


Cybercrime Hormones Neuroscience Physiology Prevention Trauma 


  1. Agnew, R. (2001). Building on the foundation of general strain theory: Specifying the types of strain most likely to lead to crime and delinquency. Journal of Research in Crime and Delinquency, 38(4), 319–361.CrossRefGoogle Scholar
  2. Akers, R. (2017). Social learning and social structure: A general theory of crime and deviance. New York: Routledge.CrossRefGoogle Scholar
  3. Anderson, R., Barton, C., Böhme, R., Clayton, R., Van Eeten, M. J., Levi, M., Moore, T., & Savage, S. (2013). Measuring the cost of cybercrime. In R. Böhme (Ed.), The economics of information security and privacy (pp. 265–300). Berlin: Springer.CrossRefGoogle Scholar
  4. Arseneault, L., Milne, B. J., Taylor, A., Adams, F., Delgado, K., Caspi, A., & Moffitt, T. E. (2008). Being bullied as an environmentally mediated contributing factor to children’s internalizing problems: A study of twins discordant for victimization. Archives of Pediatrics & Adolescent Medicine, 162(2), 145–150.CrossRefGoogle Scholar
  5. Barnes, J. C., & Boutwell, B. B. (2015). Biosocial criminology: The emergence of a new and diverse perspective. Criminal Justice Studies, 28, 1–5.CrossRefGoogle Scholar
  6. Beaver, K. M., Nedelec, J. L., da Silva Costa, C., & Vidal, M. M. (2015). The future of biosocial criminology. Criminal Justice Studies, 28(1), 6–17.CrossRefGoogle Scholar
  7. Bergstrøm, H., & Farrington, D. P. (2018). “The beat of my heart”: The relationship between resting heart rate and psychopathy in a prospective longitudinal study. Journal of Criminal Psychology, 8(4), 333–344.CrossRefGoogle Scholar
  8. Bossler, A. M., & Holt, T. J. (2010). The effect of self-control on victimization in the cyberworld. Journal of Criminal Justice, 38(3), 227–236.CrossRefGoogle Scholar
  9. Brussoni, M. J., Jang, K. L., Livesley, W. J., & MacBeth, T. M. (2000). Genetic and environmental influences on adult attachment styles. Personal Relationships, 7(3), 283–289.CrossRefGoogle Scholar
  10. Connolly, E. J., & Beaver, K. M. (2016). Considering the genetic and environmental overlap between bullying victimization, delinquency, and symptoms of depression/anxiety. Journal of Interpersonal Violence, 31(7), 1230–1256.CrossRefGoogle Scholar
  11. Donner, C. M., Marcum, C. D., Jennings, W. G., Higgins, G. E., & Banfield, J. (2014). Low self-control and cybercrime: Exploring the utility of the general theory of crime beyond digital piracy. Computers in Human Behavior, 34, 165–172.CrossRefGoogle Scholar
  12. Duncan, G. J., Ziol-Guest, K. M., & Kalil, A. (2010). Early-childhood poverty and adult attainment, behavior, and health. Child Development, 81(1), 306–325.CrossRefGoogle Scholar
  13. Ellis, B. J., Volk, A. A., Gonzalez, J. M., & Embry, D. D. (2016). The meaningful roles intervention: An evolutionary approach to reducing bullying and increasing prosocial behavior. Journal of Research on Adolescence, 26(4), 622–637.CrossRefGoogle Scholar
  14. Fahy, A. E., Stansfeld, S. A., Smuk, M., Smith, N. R., Cummins, S., & Clark, C. (2016). Longitudinal associations between cyberbullying involvement and adolescent mental health. Journal of Adolescent Health, 59(5), 502–509.CrossRefGoogle Scholar
  15. Forbes, E. E., Brown, S. M., Kimak, M., Ferrell, R. E., Manuck, S. B., & Hariri, A. R. (2009). Genetic variation in components of dopamine neurotransmission impacts ventral striatal reactivity associated with impulsivity. Molecular Psychiatry, 14(1), 60–70.CrossRefGoogle Scholar
  16. Fuss, J., Auer, M. K., Biedermann, S. V., Briken, P., & Hacke, W. (2015). Deep brain stimulation to reduce sexual drive. Journal of Psychiatry & Neuroscience, 40(6), 429–431.CrossRefGoogle Scholar
  17. Gardner, M., & Steinberg, L. (2005). Peer influence on risk taking, risk preference, and risky decision making in adolescence and adulthood: An experimental study. Developmental Psychology, 41(4), 625–635.CrossRefGoogle Scholar
  18. Gervai, J., Nemoda, Z., Lakatos, K., Ronai, Z., Toth, I., Ney, K., & Sasvari-Szekely, M. (2005). Transmission disequilibrium tests confirm the link between DRD4 gene polymorphism and infant attachment. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 132(1), 126–130.CrossRefGoogle Scholar
  19. Gini, G., & Pozzoli, T. (2013). Bullied children and psychosomatic problems: A meta-analysis. Pediatrics, 132(4), 720–729.CrossRefGoogle Scholar
  20. Hirschi, T. (2004). Self-control and crime. In R. F. Baumeister & K. D. Vohs (Eds.), Handbook of self-regulation: Research, theory, and applications. New York: Guilford Press.Google Scholar
  21. Holt, T. J., & Bossler, A. M. (2014). An assessment of the current state of cybercrime scholarship. Deviant Behavior, 35(1), 20–40.CrossRefGoogle Scholar
  22. Holt, T. J., Burruss, G. W., & Bossler, A. M. (2010). Social learning and cyber-deviance: Examining the importance of a full social learning model in the virtual world. Journal of Crime and Justice, 33(2), 31–61.CrossRefGoogle Scholar
  23. Holt, T. J., Bossler, A. M., & May, D. C. (2012). Low self-control, deviant peer associations, and juvenile cyberdeviance. American Journal of Criminal Justice, 37(3), 378–395.CrossRefGoogle Scholar
  24. Holt, M. K., Vivolo-Kantor, A. M., Polanin, J. R., Holland, K. M., DeGue, S., Matjasko, J. L., Wolfe, M., & Reid, G. (2015). Bullying and suicidal ideation and behaviors: A meta-analysis. Pediatrics, 135(2), e496–e509.CrossRefGoogle Scholar
  25. Hölzel, B. K., Carmody, J., Vangel, M., Congleton, C., Yerramsetti, S. M., Gard, T., & Lazar, S. W. (2011). Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry Research: Neuroimaging, 191(1), 36–43.CrossRefGoogle Scholar
  26. Kavish, N., Connolly, E. J., & Boutwell, B. B. (2019). Genetic and environmental contributions to the association between violent victimization and major depressive disorder. Personality and Individual Differences, 140, 103–110.CrossRefGoogle Scholar
  27. Kim, S., Colwell, S. R., Kata, A., Boyle, M. H., & Georgiades, K. (2018). Cyberbullying victimization and adolescent mental health: Evidence of differential effects by sex and mental health problem type. Journal of Youth and Adolescence, 47(3), 661–672.CrossRefGoogle Scholar
  28. Kowalski, R. M., Giumetti, G. W., Schroeder, A. N., & Lattanner, M. R. (2014). Bullying in the digital age: A critical review and meta-analysis of cyberbullying research among youth. Psychological Bulletin, 140(4), 1073–1137.CrossRefGoogle Scholar
  29. Lee, K. S., & Vaillancourt, T. (2018). Longitudinal associations among bullying by peers, disordered eating behavior, and symptoms of depression during adolescence. JAMA Psychiatry, 75(6), 605–612.CrossRefGoogle Scholar
  30. Leukfeldt, E. R., & Yar, M. (2016). Applying routine activity theory to cybercrime: A theoretical and empirical analysis. Deviant Behavior, 37(3), 263–280.CrossRefGoogle Scholar
  31. Lianos, H., & McGrath, A. (2018). Can the general theory of crime and general strain theory explain cyberbullying perpetration?. Crime & Delinquency, 64(5), 674–700.Google Scholar
  32. Locher, M. C., Koechlin, M. H., Zion, M. S. R., Werner, M. C., Pine, D. S., Kirsch, I., Kessler, R. C., & Kossowsky, J. (2017). Efficacy and safety of SSRIs, SNRIs, and placebo in common psychiatric disorders: A comprehensive meta-analysis in children and adolescents. JAMA Psychiatry, 74(10), 1011.CrossRefGoogle Scholar
  33. Madigan, S., Ly, A., Rash, C. L., Van Ouytsel, J., & Temple, J. R. (2018). Prevalence of multiple forms of sexting behavior among youth: A systematic review and meta-analysis. JAMA Pediatrics, 172(4), 327–335.CrossRefGoogle Scholar
  34. Marcum, C. D., Higgins, G. E., Freiburger, T. L., & Ricketts, M. L. (2014). Exploration of the cyberbullying victim/offender overlap by sex. American Journal of Criminal Justice, 39(3), 538–548.CrossRefGoogle Scholar
  35. Mazurek, M. O., & Engelhardt, C. R. (2013). Video game use in boys with autism spectrum disorder, ADHD, or typical development. Pediatrics, 132(2), 260–266.CrossRefGoogle Scholar
  36. Najman, J. M., Hayatbakhsh, M. R., McGee, T. R., Bor, W., O’Callaghan, M. J., & Williams, G. M. (2009). The impact of puberty on aggression/delinquency: Adolescence to young adulthood. Australian & New Zealand Journal of Criminology, 42(3), 369–386.CrossRefGoogle Scholar
  37. Nickerson, A. B., & Nagle, R. J. (2005). Parent and peer attachment in late childhood and early adolescence. The Journal of Early Adolescence, 25(2), 223–249.CrossRefGoogle Scholar
  38. Nielsen, M. B., Tangen, T., Idsoe, T., Matthiesen, S. B., & Magerøy, N. (2015). Post-traumatic stress disorder as a consequence of bullying at work and at school. A literature review and meta-analysis. Aggression and Violent Behavior, 21, 17–24.CrossRefGoogle Scholar
  39. Ouellet-Morin, I., Wong, C. C. Y., Danese, A., Pariante, C. M., Papadopoulos, A. S., Mill, J., & Arseneault, L. (2013). Increased serotonin transporter gene (SERT) DNA methylation is associated with bullying victimization and blunted cortisol response to stress in childhood: A longitudinal study of discordant monozygotic twins. Psychological Medicine, 43(9), 1813–1823.CrossRefGoogle Scholar
  40. Owen, T. (2017). Crime, genes, neuroscience and cyberspace. New York: Palgrave Macmillan.CrossRefGoogle Scholar
  41. Owen, T., Noble, W., & Speed, F. C. (2017). Biology and cybercrime: Towards a genetic-social, predictive model of cyber violence. In New perspectives on cybercrime (pp. 27–44). New York: Palgrave Macmillan.CrossRefGoogle Scholar
  42. Ozkan, T., Rocque, M., & Posick, C. (2018). Reconsidering the link between depression and crime: A longitudinal assessment. Criminal Justice and Behavior. Scholar
  43. Pew. (2015). Teens, social media and technology overview 2015. Pew Research Center.
  44. Polderman, T. J., Benyamin, B., De Leeuw, C. A., Sullivan, P. F., Van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47(7), 702–709.CrossRefGoogle Scholar
  45. Posick, C., & Gruenfelder, K. (2019). The health consequences of victimization. In M. G. Vaughn, C. Salas-Wright, & D. B. Jackson (Eds.), International handbook of delinquency and health. New York: Routledge.Google Scholar
  46. Posick, C., Farrell, A., & Swatt, M. L. (2013). Do boys fight and girls cut? A general strain theory approach to gender and deviance. Deviant Behavior, 34(9), 685–705.CrossRefGoogle Scholar
  47. Pratt, T. C., & Cullen, F. T. (2000). The empirical status of Gottfredson and Hirschi’s general theory of crime: A meta-analysis. Criminology, 38(3), 931–964.CrossRefGoogle Scholar
  48. Pratt, T. C., Cullen, F. T., Sellers, C. S., Thomas Winfree, L., Jr., Madensen, T. D., Daigle, L. E., Fearn, N. E., & Gau, J. M. (2010). The empirical status of social learning theory: A meta-analysis. Justice Quarterly, 27(6), 765–802.CrossRefGoogle Scholar
  49. Rafter, N., Posick, C., & Rocque, M. (2016). The criminal brain: Understanding biological theories of crime. New York: New York University Press.Google Scholar
  50. Raine, A. (2013). The anatomy of violence: The biological roots of crime. New York: Vintage.Google Scholar
  51. Reuter, M. (2010). Population and molecular genetics of anger and aggression: Current state of the art. In M. Potegal, G. Stemmler, & C. Spielberger (Eds.), International handbook of anger. New York: Springer.Google Scholar
  52. Rocque, M., & Posick, C. (2017). Paradigm shift or normal science? The future of (biosocial) criminology. Theoretical Criminology, 21(3), 288–303.CrossRefGoogle Scholar
  53. Rocque, M., Posick, C., & Hoyle, J. (2015). Age and crime. In W. G. Jennings, G. E. Higgins, D. N. Khey, & M. M. Maldonado-Molina (Eds.), Encyclopedia of crime and punishment. Hoboken: Wiley.Google Scholar
  54. Schuster, S. C. (2007). Next-generation sequencing transforms today’s biology. Nature Methods, 5(1), 16–18.CrossRefGoogle Scholar
  55. Silberg, J. L., Copeland, W., Linker, J., Moore, A. A., Roberson-Nay, R., & York, T. P. (2016). Psychiatric outcomes of bullying victimization: A study of discordant monozygotic twins. Psychological Medicine, 46(9), 1875–1883.CrossRefGoogle Scholar
  56. Smoller, J. W. (2016). The genetics of stress-related disorders: PTSD, depression, and anxiety disorders. Neuropsychopharmacology, 41(1), 297–319.CrossRefGoogle Scholar
  57. Soler, H., Vinayak, P., & Quadagno, D. (2000). Biosocial aspects of domestic violence. Psychoneuroendocrinology, 25(7), 721–739.CrossRefGoogle Scholar
  58. Steinberg, L. (2004). Risk-taking in adolescence: What changes, and why? Annals of the New York Academy of Sciences, 1021, 51–58.CrossRefGoogle Scholar
  59. Steinberg, L. (2014). Age of opportunity: Lessons from the new science of adolescence. New York: Houghton Mifflin Harcourt.Google Scholar
  60. Ttofi, M. M., Farrington, D. P., Lösel, F., Crago, R. V., & Theodorakis, N. (2016). School bullying and drug use later in life: A meta-analytic investigation. School Psychology Quarterly, 31(1), 8–27.CrossRefGoogle Scholar
  61. Vaillancourt, T., Hymel, S., & McDougall, P. (2013). The biological underpinnings of peer victimization: Understanding why and how the effects of bullying can last a lifetime. Theory Into Practice, 52(4), 241–248.CrossRefGoogle Scholar
  62. Vaske, J., Galyean, K., & Cullen, F. T. (2011). Toward a biosocial theory of offender rehabiltiation: Why does cognitive-behavioral therapy work? Journal of Criminal Justice, 39(1), 90–102.CrossRefGoogle Scholar
  63. Vaughn, M. G. (2016). Policy implications of biosocial criminology: Toward a renewed commitment to prevention science. Criminology & Public Policy, 15, 703–710.CrossRefGoogle Scholar
  64. Vaughn, M. G., Beaver, K. M., DeLisi, M., Perron, B. E., & Schelbe, L. (2009). Gene-environment interplay and the importance of self-control in predicting polydrug use and substance-related problems. Addictive Behaviors, 34(1), 112–116.CrossRefGoogle Scholar
  65. Waasdorp, T. E., & Bradshaw, C. P. (2015). The overlap between cyberbullying and traditional bullying. Journal of Adolescent Health, 56(5), 483–488.CrossRefGoogle Scholar
  66. Watts, S. J., Tetzlaff-Bemiller, M. J., & McCutcheon, J. C. (2017). MAOA, drug selling, and violent victimization: Evidence of a gene × environment interaction. Criminal Justice Review, 42(4), 368–383.CrossRefGoogle Scholar
  67. Wheeler, M. D. (1991). Physical changes of puberty. Endocrinology and Metabolism Clinics, 20(1), 1–14.CrossRefGoogle Scholar
  68. Wright, J. P., & Boisvert, D. (2009). What biosocial criminology offers criminology. Criminal Justice and Behavior, 36(11), 1228–1240.CrossRefGoogle Scholar
  69. Yoshikawa, H., Aber, J. L., & Beardslee, W. R. (2012). The effects of poverty on the mental, emotional, and behavioral health of children and youth: Implications for prevention. American Psychologist, 67(4), 272.CrossRefGoogle Scholar
  70. Zelazo, P. D., Carlson, S. M., & Kesek, A. (2008). The development of executive function in childhood. In C. A. Nelson & M. Luciana (Eds.), Developmental cognitive neuroscience. Handbook of developmental cognitive neuroscience (pp. 553–574). Cambridge, MA: MIT Press.Google Scholar
  71. Zenner, C., Herrnleben-Kurz, S., & Walach, H. (2014). Mindfulness-based interventions in schools – A systematic review and meta-analysis. Frontiers in Psychology, 5, 603.CrossRefGoogle Scholar
  72. Zych, I., Baldry, A. C., & Farrington, D. P. (2017). School bullying and cyberbullying: Prevalence, characteristics, outcomes, and prevention. In V. Van Hasselt & M. L. Bourke (Eds.), Handbook of behavioral criminology (pp. 113–138). New York: Springer.CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Criminal Justice and CriminologyGeorgia Southern UniversityStatesboroUSA

Personalised recommendations