Encyclopedia of Social Insects

Living Edition
| Editors: Christopher Starr

Fungus-Farming Ants (Attini in Part)

  • Ted R. SchultzEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-90306-4_46-1
The fungus-farming or attine ants (subfamily Myrmicinae, tribe Attini, subtribe Attina) are a monophyletic group of 245 described species (including five fossil species) in 19 genera, as well as many additional species awaiting discovery and description. With the exception of a recent invasive record from Reunion Island in the Indian Ocean, fungus-farming ants are exclusively New World and primarily Neotropical in distribution. The fungus-farming ants and their closest non-fungus-farming relatives in the subtribe Dacetina, a clade of specialized predators, share a most-recent common ancestor that was likely a generalized hunter-gatherer that lived around 60–65 million years ago, shortly after the end-of-Cretaceous extinction event when conditions favored predaceous and detritivorous life-history strategies. Early in their evolution, fungus-farming ants diverged into two main lineages, the Paleoattina (77 species in 3 genera) and the Neoattina (168 species in 16 genera), the latter...
This is a preview of subscription content, log in to check access.


  1. 1.
    Adams, R., & Longino, J. T. (2007). Nesting biology of the arboreal fungus-growing ant Cyphomyrmex cornutus and behavioral interactions with the social-parasitic ant Megalomyrmex mondabora. Insectes Sociaux, 54, 136–143.CrossRefGoogle Scholar
  2. 2.
    Adams, R. M. M., Liberti, J., Illum, A. A., Jones, T. H., Nash, D. R., & Boomsma, J. J. (2013). Chemically armed mercenary ants protect fungus-farming societies. Proceedings of the National Academy of Sciences, 110, 15752.CrossRefGoogle Scholar
  3. 3.
    Autuori, M. (1942). Contribuição para o conhecimento da saúva (Atta spp.-Hymenoptera-Formicidae). III. Escavação de um sauveiro (Atta sexdens rubropilosa Forel, 1908). Arquivos do Instituto Biológico, 13, 137–148.Google Scholar
  4. 4.
    Aylward, F. O., Suen, G., Biedermann, P. H. W., Adams, A. S., Scott, J. J., Malfatti, S. A., Glavina del Rio, T., Tringe, S. G., Poulsen, M., Raffa, K. F., Klepzig, K. D., & Currie, C. R. (2014). Convergent bacterial microbiotas in the fungal agricultural systems of insects. MBio, 5, e02077.CrossRefGoogle Scholar
  5. 5.
    Branstetter, M. G., Ješovnik, A., Sosa-Calvo, J., Lloyd, M. W., Faircloth, B. C., Brady, S. G., & Schultz, T. R. (2017). Dry habitats were crucibles of domestication in the evolution of agriculture in ants. Proceedings of the Royal Society B: Biological Sciences, 284, 20170095.CrossRefGoogle Scholar
  6. 6.
    Cherrett, J. M., Powell, R. J., & Stradling, D. J. (1989). The mutualism between leaf-cutting ants and their fungus. In N. M. C. Wilding, P. M. Hammond, & J. F. Webber (Eds.), Insect-fungus interactions (pp. 93–120). London: Academic.CrossRefGoogle Scholar
  7. 7.
    Della Lucia, T. M. C. (Ed.). (2011). Formigas-Cortadeiras: da Bioecologia ao Manejo. Viçosa: Editoria Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil. 421 pp.Google Scholar
  8. 8.
    Fernandez-Marin, H., Zimmerman, J. K., & Wcislo, W. T. (2004). Ecological traits and evolutionary sequence of nest establishment in fungus-growing ants (Hymenoptera, Formicidae, Attini). Biological Journal of the Linnean Society, 81, 39–48.CrossRefGoogle Scholar
  9. 9.
    Hölldobler, B., & Wilson, E. O. (1990). The ants (p. 732). Cambridge, MA: Belknap Press.CrossRefGoogle Scholar
  10. 10.
    Hölldobler, B., & Wilson, E. O. (2010). The leafcutter ants: Civilization by instinct. New York: W. W. Norton & Company. 160 pp.Google Scholar
  11. 11.
    Hughes, W. O. H., Sumner, S., Van Borm, S., & Boomsma, J. J. (2003). Worker caste polymorphism has a genetic basis in Acromyrmex leaf-cutting ants. Proceedings of the National Academy of Sciences, 100, 9394.CrossRefGoogle Scholar
  12. 12.
    Ješovnik, A., González, V. L., & Schultz, T. R. (2016). Phylogenomics and divergence dating of fungus-farming ants (Hymenoptera: Formicidae) of the genera Sericomyrmex and Apterostigma. PLoS One, 11, e0151059.CrossRefGoogle Scholar
  13. 13.
    Kooij, P. W., Aanen, D. K., Schiøtt, M., & Boomsma, J. J. (2015). Evolutionarily advanced ant farmers rear polyploid fungal crops. Journal of Evolutionary Biology, 28, 1911–1924.CrossRefGoogle Scholar
  14. 14.
    Li, H., Sosa-Calvo, J., Horn, H. A., Pupo, M. T., Clardy, J., Rabeling, C., Schultz, T. R., & Currie, C. R. (2018). Convergent evolution of complex structures for ant–bacterial defensive symbiosis in fungus-farming ants. Proceedings of the National Academy of Sciences, 115, 10720.CrossRefGoogle Scholar
  15. 15.
    Lofgren, C. S., & Vander Meer, R. K. (1986). Fire ants and leaf-cutting ants: Biology and management (p. 435). Boulder: Westview Press.Google Scholar
  16. 16.
    Martin, M. (1987). Invertebrate-microbial interactions: Ingested fungal enzymes in arthropod biology (p. 148). Ithaca/New York: Cornell University Press.Google Scholar
  17. 17.
    Mehdiabadi, N. J., & Schultz, T. R. (2009). Natural history and phylogeny of the fungus-farming ants (Hymenoptera: Formicidae: Myrmicinae: Attini). Myrmecological News, 13, 37–55.Google Scholar
  18. 18.
    Möller, A. (1893). Die Pilzgärten einiger Südamerikansicher Ameisen. Botanische Mitheilungen aus den Tropen, 6, 1–127.Google Scholar
  19. 19.
    Mueller, U. (2002). Ant versus fungus versus mutualism: Ant-cultivar conflict and the deconstruction of the attine ant-fungus symbiosis. American Naturalist, 160, S67–S98.CrossRefGoogle Scholar
  20. 20.
    Mueller, U. G., Gerardo, N. M., Aanen, D. K., Six, D. L., & Schultz, T. R. (2005). The evolution of agriculture in insects. Annual Review of Ecology, Evolution, and Systematics, 36, 563–595.CrossRefGoogle Scholar
  21. 21.
    Mueller, U. G., Kardish, M. R., Ishak, H. D., Wright, A. M., Solomon, S. E., Bruschi, S. M., Carlson, A. L., & Bacci, M. (2018). Phylogenetic patterns of ant–fungus associations indicate that farming strategies, not only a superior fungal cultivar, explain the ecological success of leafcutter ants. Molecular Ecology, 27, 2414–2434.CrossRefGoogle Scholar
  22. 22.
    Navarette-Heredia, J. L. (2001). Beetles associated with Atta and Acromyrmex ants (Hymenoptera: Formicidae: Attini). Transactions of the American Entomological Society, 127, 381–429.Google Scholar
  23. 23.
    Nygaard, S., Hu, H., Li, C., Schiøtt, M., Chen, Z., Yang, Z., Xie, Q., Ma, C., Deng, Y., Dikow, R. B., Rabeling, C., Nash, D. R., Wcislo, W. T., Brady, S. G., Schultz, T. R., Zhang, G., & Boomsma, J. J. (2016). Reciprocal genomic evolution in the ant–fungus agricultural symbiosis. Nature Communications, 7, 12233.CrossRefGoogle Scholar
  24. 24.
    Pinto-Tomas, A., Anderson, M., Suen, G., Stevenson, D., Chu, F., Cleland, W., Weimer, P., & Currie, C. (2009). Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science, 326, 1120–1123.CrossRefGoogle Scholar
  25. 25.
    Rabeling, C., Schultz Ted, R., Pierce Naomi, E., & Bacci, M. (2014). A social parasite evolved reproductive isolation from Its fungus-growing ant host in sympatry. Current Biology, 24, 2047–2052.CrossRefGoogle Scholar
  26. 26.
    Schultz, T. R., Mueller, U. G., Currie, C. R., & Rehner, S. A. (2005). Reciprocal illumination. A comparison of agriculture in humans and in fungus–growing ants. In F. E. Vega & M. Blackwell (Eds.), Insect–fungal associations: Ecology and evolution (pp. 149–190). New York: Oxford University Press.Google Scholar
  27. 27.
    Schultz, T. R., Sosa-Calvo, J., Brady, S. G., Lopes, C. T., Mueller, U. G., Bacci, M., Jr., & Vasconcelos, H. (2015). The most relictual fungus-farming ant species cultivates the most recently evolved and highly domesticated fungal symbiont species. American Naturalist, 185, 693–703.CrossRefGoogle Scholar
  28. 28.
    Suen, G., Teiling, C., Li, L., Holt, C., Abouheif, E., Bornberg-Bauer, E., Bouffard, P., Caldera, E. J., Cash, E., Cavanaugh, A., Denas, O., Elhaik, E., Fave, M. J., Gadau, J., Gibson, J. D., Graur, D., Grubbs, K. J., Hagen, D. E., Harkins, T. T., Helmkampf, M., Hu, H., Johnson, B. R., Kim, J., Marsh, S. E., Moeller, J. A., Munoz-Torres, M. C., Murphy, M. C., Naughton, M. C., Nigam, S., Overson, R., Rajakumar, R., Reese, J. T., Scott, J. J., Smith, C. R., Tao, S., Tsutsui, N. D., Viljakainen, L., Wissler, L., Yandell, M. D., Zimmer, F., Taylor, J., Slater, S. C., Clifton, S. W., Warren, W. C., Elsik, C. G., Smith, C. D., Weinstock, G. M., Gerardo, N. M., & Currie, C. R. (2011). The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into its obligate symbiotic lifestyle. PLoS Genetics, 7, e1002007.CrossRefGoogle Scholar
  29. 29.
    Waller, D. A., & Moser, J. C. (1990). Invertebrate enemies and nest associates of the leaf-cutting ant Atta texana (Buckley) (Formicidae, Attini). In R. K. Vander Meer, K. Jaffe, & A. Cedeno (Eds.), Applied myrmecology: A world perspective (pp. 255–273). Boulder: Westview Press.Google Scholar
  30. 30.
    Weber, N. (1972). Gardening ants: The attines (p. 146). Philadelphia: The American Philosophical Society.Google Scholar
  31. 31.
    Wirth, R., Herz, H., Ryel, R. J., Beyschlag, W., & Hölldobler, B. (2003). Herbivory of leaf-cutting ants: A case study on Atta colombica in the tropical rainforest of panama (p. 230). New York: Springer.CrossRefGoogle Scholar
  32. 32.
    Worsley, S. F., Innocent, T. M., Heine, D., Murrell, J. C., Yu, D. W., Wilkinson, B., Hutchings, M. I., Boomsma, J. J., & Holmes, N. A. (2018). Symbiotic partnerships and their chemical interactions in the leafcutter ants (Hymenoptera: Formicidae). Myrmecological News, 27, 59–74.Google Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020

Authors and Affiliations

  1. 1.Smithsonian InstitutionWashingtonUSA