Encyclopedia of Social Insects

Living Edition
| Editors: Christopher K. Starr

Colony Defense, Survival and Reproduction

Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-3-319-90306-4_25-2

Social insect species concentrate resources into a dense colony, including nest structures, stored food, brood, and adult members. In doing so they create a “jackpot” for other animals (including other social insects), that would not otherwise be interested in a single individual or nest. Hence, colony defense is a key factor in the survival and reproduction of social insects. This article discusses both colony-level defense and individual defense as the mechanisms involved in these contexts are largely overlapping.

Defense can be understood on four interacting levels. First is the boundary to be defended, which we call the fortress. Defended areas can be expansive territories that encompass feeding areas in a large radius around the nest, the nest itself, or substructures within the nest that protect particularly valuable resources, such as the queen. Consideration of the fortress involves the evolution of both territorial strategies and nest architecture. Second are the armaments...

This is a preview of subscription content, log in to check access.


  1. 1.
    Adams, E. S. (2016). Territoriality in ants (Hymenoptera: Formicidae): A review. Myrmecological News, 23, 101–118.Google Scholar
  2. 2.
    Ayasse, M., & Paxton, R. J. (2003). Brood protection in social insects. In Chemoecology of insect eggs and egg deposition, Blackwell Verlag GmbH, Berlin-Vienna (pp. 117–148).Google Scholar
  3. 3.
    Blum, M. S. (1969). Alarm pheromones. Annual Review of Entomology, 14, 57–80.CrossRefGoogle Scholar
  4. 4.
    Breed, M. D. (2014). Kin and nestmate recognition: The influence of W. D. Hamilton on 50 years of research. Animal Behaviour, 92, 271–279.CrossRefGoogle Scholar
  5. 5.
    Breed, M. D., Cook, C., & Krasnec, M. O. (2012). Cleptobiosis in social insects. Psyche: A Journal of Entomology, 2012, 1–7.CrossRefGoogle Scholar
  6. 6.
    Buschinger, A. (2009). Social parasitism among ants: A review (Hymenoptera: Formicidae). Myrmecological News, 12, 219–235.Google Scholar
  7. 7.
    Deligne, J., Quennedey, A., & Blum, M. S. (1981). The enemies and defense mechanisms of termites. In H. R. Hermann (Ed.), Social insects (Vol. II). Academic Press Inc, New York.Google Scholar
  8. 8.
    Dettner, K., & Liepert, C. (1994). Chemical mimicry and camouflage. Annual Review of Entomology, 39, 129–154.CrossRefGoogle Scholar
  9. 9.
    Dos Santos-Pinto, J. R. A., Perez-Riverol, A., Lasa, A. M., & Palma, M. S. (2018). Diversity of peptidic and proteinaceous toxins from social Hymenoptera venoms. Toxicon, 148, 172–196.CrossRefGoogle Scholar
  10. 10.
    Duangphakdee, O., Koeniger, N., Deowanish, S., Hepburn, H. R., & Wongsiri, S. (2009). Ant repellent resins of honeybees and stingless bees. Insectes Sociaux, 56, 333–339.CrossRefGoogle Scholar
  11. 11.
    Gordon, D. M. (1996). The organization of work in social insect colonies. Nature, 380, 121–124.CrossRefGoogle Scholar
  12. 12.
    Hepburn, H. R. (2011). Absconding, migration and swarming. In H. R. Hepburn & S. E. Radloff (Eds.), Honeybees of Asia (pp. 133–158). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  13. 13.
    Hermann, H. R., & Blum, M. S. (1981). Defensive mechanisms in the social Hymenoptera. In H. R. Hermann (Ed.), Social insects (Vol. II, pp. 78–198). Academic Press Inc, New York.Google Scholar
  14. 14.
    Jeanne, R. L. (1975). The adaptiveness of social wasp nest architecture. The Quarterly Review of Biology, 50, 267–287.CrossRefGoogle Scholar
  15. 15.
    Lenoir, A., D'Ettorre, P., Errard, C., & Hefetz, A. (2001). Chemical ecology and social parasitism in ants. Annual Review of Entomology, 46, 573–599.CrossRefGoogle Scholar
  16. 16.
    Leonhardt, S. D. (2017). Chemical ecology of stingless bees. Journal of Chemical Ecology, 43, 385–402.CrossRefGoogle Scholar
  17. 17.
    McGlynn, T. P. (2012). The ecology of nest movement in social insects. Annual Review of Entomology, 57, 291–308.CrossRefGoogle Scholar
  18. 18.
    Nieh, J. C. (2010). A negative feedback signal that is triggered by peril curbs honey bee recruitment. Current Biology, 20, 310–315.CrossRefGoogle Scholar
  19. 19.
    Noirot, C., & Darlington, J. P. E. C. (2000). Termite nests: Architecture, regulation and defence. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology. Dordrecht: Springer.Google Scholar
  20. 20.
    Nouvian, M., Reinhard, J., & Giurfa, M. (2016). The defensive response of the honeybee Apis mellifera. Journal of Experimental Biology, 219, 3505–3517.CrossRefGoogle Scholar
  21. 21.
    Nouvian, M., Mandal, S., Jamme, C., Claudianos, C., d’Ettorre, P., Reinhard, J., Barron, A. B., & Giurfa, M. (2018). Cooperative defence operates by social modulation of biogenic amine levels in the honey bee brain. Proc. R. Soc B 285: 20172653Google Scholar
  22. 22.
    Prestwich, G. D. (1984). Defense mechanisms of termites. Annual Review of Entomology, 29, 201–232.CrossRefGoogle Scholar
  23. 23.
    Rivera-Marchand, B., Giray, T., & Guzmán-Novoa, E. (2008). The cost of defense in social insects: Insights from the honey bee. Entomologia Experimentalis et Applicata, 129, 1–10.CrossRefGoogle Scholar
  24. 24.
    Roubik, D. W. (2006). Stingless bee nesting biology. Apidologie, 37, 124–143.CrossRefGoogle Scholar
  25. 25.
    Shorter, J. R., & Rueppell, O. (2012). A review on self-destructive defense behaviors in social insects. Insectes Sociaux, 59, 1–10.CrossRefGoogle Scholar
  26. 26.
    Tian, L., & Zhou, X. (2014). The soldiers in societies: Defense, regulation, and evolution. International Journal of Biological Sciences, 10, 296–308.CrossRefGoogle Scholar
  27. 27.
    Vander Meer, R. K. (1998). Pheromone communication in social insects: Ants, wasps, bees, and termites. Westview Press.Google Scholar

Authors and Affiliations

  1. 1.Department of BiologyUniversity of KonstanzKonstanzGermany
  2. 2.Ecology and Evolutionary BiologyThe University of Colorado, BoulderBoulderUSA