Encyclopedia of Social Insects

Living Edition
| Editors: Christopher K. Starr

Megalopta

  • Adam SmithEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-90306-4_165-1
  • 6 Downloads

Megalopta is a neotropical genus of 26 named species. It is of special interest to students of social biology because it contains many facultatively social species, nesting both solitarily and socially in the same population. This social polymorphism provides an opportunity to directly compare the dynamics and fitness outcomes of social and solitary nesting. The best known species, M. genalis, has been studied intensively on Barro Colorado Island (BCI), Panama. What little is known about other Megalopta species suggests they have broadly similar biology.

General Biology and Phylogenetic Placement

Megalopta is part of the tribe Augochlorini (Halictidae) which contains social, solitary, and socially polymorphic species [1]. Megalopta is closely related to the genus Xenochlora, which I treat here as a separate lineage. However further phylogenetic study may show that it belongs in Megalopta. Like (the rest of) Megalopta, Xenochloranests in dead sticks and is socially flexible, but in...

This is a preview of subscription content, log in to check access.

References

  1. 1.
    Danforth, B. N., & Eickwort, G. C. (1997). The evolution of social behavior in the augochlorine sweat bees (Hymenoptera: Halictidae) based on a phylogenetic analysis of the genera. In J. C. Choe & B. J. Crespi (Eds.), Social behavior in insects and arachnids (pp. 270–292). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  2. 2.
    Smith, A. R., Lopez Quintero, I. J., Moreno Patino, J. E., Roubik, D. W., & Wcislo, W. T. (2012). Pollen use by Megalopta sweat bees in relation to resource availability in a tropical forest. Ecological Entomology, 37, 309–317.CrossRefGoogle Scholar
  3. 3.
    Kapheim, K. M., Smith, A. R., Nonacs, P., Wcislo, W. T., & Wayne, R. K. (2013). Foundress polyphenism and the origins of eusociality in a facultatively eusocial sweat bee, Megaloptagenalis (halictidae). Behavioral Ecology and Sociobiology, 67, 331–340.CrossRefGoogle Scholar
  4. 4.
    Wcislo, W. T., Arneson, L., Roesch, K., Gonzalez, V., Smith, A., & Fernández, H. (2004). The evolution of nocturnal behaviour in sweat bees, Megaloptagenalis and M. ecuadoria (Hymenoptera: Halictidae): An escape from competitors and enemies? Biological Journal of the Linnaean Society, 83, 377–387.CrossRefGoogle Scholar
  5. 5.
    Schwarz, M. P., Richards, M. H., & Danforth, B. N. (2007). Changing paradigms in insect social evolution: Insights from halictine and allodapine bees. Annual Review of Entomology, 52, 127–150.CrossRefGoogle Scholar
  6. 6.
    Kapheim, K. M., Smith, A. R., Ihle, K. E., Amdam, G. V., Nonacs, P., & Wcislo, W. T. (2012). Physiological variation as a mechanism for developmental caste-biasing in a facultatively eusocial sweat bee. Proceedings of the Royal Society B: Biological Sciences, 279, 1437–1446.CrossRefGoogle Scholar
  7. 7.
    Smith, A. R., Kapheim, K. M., O’Donnell, S., & Wcislo, W. T. (2009). Social competition but not subfertility leads to a division of labour in the facultatively social sweat bee Megaloptagenalis (Hymenoptera: Halictidae). Animal Behaviour, 78, 1043–1050.CrossRefGoogle Scholar
  8. 8.
    Smith, A. R., Kapheim, K. M., Pérez-Ortega, B., Brent, C. S., & Wcislo, W. T. (2013). Juvenile hormone levels reflect social opportunities in the facultatively eusocial sweat bee Megaloptagenalis (Hymenoptera: Halictidae). Hormones and Behavior, 63, 1–4.CrossRefGoogle Scholar
  9. 9.
    Smith, A. R., Wcislo, W. T., & O’Donnell, S. (2003). Assured fitness returns favor sociality in a mass-provisioning sweat bee, Megaloptagenalis (Hymenoptera: Halictidae). Behavioral Ecology and Sociobiology, 54, 14–21.CrossRefGoogle Scholar
  10. 10.
    Kapheim, K. M., Nonacs, P., Smith, A. R., Wayne, R. K., & Wcislo, W. T. (2015). Kinship, parental manipulation and evolutionary origins of eusociality. Proceedings of the Royal Society B: Biological Sciences, 282, 20142886.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Biological SciencesGeorge Washington UniversityWashingtonUSA