Encyclopedia of Social Insects

Living Edition
| Editors: Christopher Starr

Social Aphids

  • Shigeyuki AokiEmail author
  • Utako Kurosu
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-90306-4_107-1

Aphids, sap-sucking insects of the family Aphididae (Hemiptera), are peculiar in adopting cyclical parthenogenesis. The life cycle begins with a sexually produced aphid called a “fundatrix,” followed by a number of asexually produced generations, leading to a single generation of sexual females and males that produce fertilized eggs. These eggs give rise to new fundatrices. Some “species” have lost the sexual phase. Because their parthenogenesis is apomictic, an aphid colony founded by a single parthenogenetic aphid is a pure clone. Hence, it is conceivable that social or altruistic behavior can readily evolve by kin selection in the parthenogenetic phase of the life cycle. In fact, when coming under attack, many aphids of various groups discharge droplets containing alarm pheromone from their cornicles (aphid-specific structures on the abdomen), thus helping colony-mates to escape.

However, more elaborated social behaviors, including organized colony defense, gall cleaning, and gall...
This is a preview of subscription content, log in to check access.

References

  1. 1.
    Abbot, P. (2015). The physiology and genomics of social transitions in aphids. In A. Zayed & C. F. Kent (Eds.), Advances in insect physiology: Genomics, physiology and behaviour of social insects (pp. 163–188). London: Academic Press.  https://doi.org/10.1016/bs.aiip.2014.12.005.CrossRefGoogle Scholar
  2. 2.
    Abbot, P., & Chapman, T. (2017). Sociality in aphids and thrips. In D. R. Rubenstein & P. Abbot (Eds.), Comparative social evolution (pp. 154–187). Cambridge: Cambridge University Press.  https://doi.org/10.1017/9781107338319.007.
  3. 3.
    Aoki, S. (2003). Soldiers, altruistic dispersal and its consequences for aphid societies. In T. Kikuchi, N. Azuma, & S. Higashi (Eds.), Genes, behavior and evolution of social insects (pp. 201–215). Sapporo: Hokkaido University Press.Google Scholar
  4. 4.
    Pike, N., & Foster, W. A. (2008). The ecology of altruism in a clonal insect. In J. Korb & J. Heinze (Eds.), Ecology of social evolution (pp. 37–56). Berlin: Springer.  https://doi.org/10.1007/978-3-540-75957-7_2.CrossRefGoogle Scholar
  5. 5.
    Aoki, S., & Kurosu, U. (2010). A review of the biology of Cerataphidini (Hemiptera, Aphididae, Hormaphidinae), focusing mainly on their life cycles, gall formation, and soldiers. Psyche, 2010. Article ID 380351.  https://doi.org/10.1155/2010/380351.CrossRefGoogle Scholar
  6. 6.
    Kurosu, U., et al. (2016). Defensive nymphs of the woolly aphid Thoracaphis kashifolia (Hemiptera) on the oak Quercus glauca. Psyche, 2016. Article ID 4036571.  https://doi.org/10.1155/2016/4036571.CrossRefGoogle Scholar
  7. 7.
    Braendle, C., et al. (2003). Developmental origin and evolution of bacteriocytes in the aphid–Buchnera symbiosis. PLoS Biology, 1, e21.  https://doi.org/10.1371/journal.pbio.0000021.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Shibao, H., et al. (2010). Mechanisms regulating caste differentiation in an aphid social system. Communicative and Integrative Biology, 3, 1–5.  https://doi.org/10.4161/cib.3.1.9694.CrossRefPubMedGoogle Scholar
  9. 9.
    Foster, W. A. (1990). Experimental evidence for effective and altruistic colony defence against natural predators by soldiers of the gall-forming aphid Pemphigus spyrothecae (Hemiptera: Pemphigidae). Behavioral Ecology and Sociobiology, 27, 421–430. http://www.jstor.org/stable/4600501.CrossRefGoogle Scholar
  10. 10.
    Uematsu, K., et al. (2010). Altruistic colony defense by menopausal female insects. Current Biology, 20, 1182–1186.  https://doi.org/10.1016/j.cub.2010.04.057.CrossRefPubMedGoogle Scholar
  11. 11.
    Kutsukake, M., et al. (2008). Evolution of soldier-specific venomous protease in social aphids. Molecular Biology and Evolution, 25, 2627–2641.  https://doi.org/10.1093/molbev/msn203.CrossRefPubMedGoogle Scholar
  12. 12.
    Kurosu, U., et al. (2006). Head-plug defense in a gall aphid. Insectes Sociaux, 53, 86–91.  https://doi.org/10.1007/s00040-005-0839-4.CrossRefGoogle Scholar
  13. 13.
    Kutsukake, M., et al. (2012). An insect-induced novel plant phenotype for sustaining social life in a closed system. Nature Communications, 3, 1187.  https://doi.org/10.1038/ncomms2187.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kutsukake, M., et al. (2009). Scab formation and wound healing of plant tissue by soldier aphid. Proceedings of the Royal Society B: Biological Sciences, 276, 1555–1563.  https://doi.org/10.1098/rspb.2008.1628.CrossRefPubMedGoogle Scholar
  15. 15.
    Aoki, S., et al. (2015). Nipponaphis species (Aphididae: Hormaphidinae) that form green galls on Distylium racemosum in Japan. Entomological Science, 18, 420–434.  https://doi.org/10.1111/ens.12144.CrossRefGoogle Scholar
  16. 16.
    Hattori, M., Yamamoto, T., & Itino, T. (2015). Clonal composition of colonies of a eusocial aphid, Ceratovacuna japonica. Sociobiology, 62, 116–119.  https://doi.org/10.13102/sociobiology.v62i1.116-119.CrossRefGoogle Scholar
  17. 17.
    Abbot, P., Withgott, J. H., & Moran, N. A. (2001). Genetic conflict and conditional altruism in social aphid colonies. Proceedings of the National Academy of Sciences of the United States of America, 98, 12068–12071.  https://doi.org/10.1073/pnas.201212698.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wang, C. C., et al. (2008). Social parasitism and behavioral interactions between two gall-forming social aphids. Insectes Sociaux, 55, 147–152.  https://doi.org/10.1007/s00040-008-0988-3.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of EconomicsRissho UniversityTokyoJapan
  2. 2.Faculty of EconomicsChuo UniversityHachiojiJapan