Cardiovascular and Central Nervous System Toxicity by Anticancer Drugs in Breast Cancer Patients

  • Gianfranco Natale
  • Guido BocciEmail author
Living reference work entry


Breast cancer is one of the most malignant diseases, associated with high rate mortality. In this chapter a particular attention is paid on cardiovascular and central nervous system toxicity induced by chemotherapeutic agents used for both primary and metastatic treatment of this life-threatening pathology. With respect to traditional drugs, including anthracyclines, taxanes, fluoropyrimidines, and endocrine therapy, the more recent targeted therapies, such as human epidermal growth factor receptor 2 (HER2) and vascular endothelial growth factor (VEGF), aimed to ameliorate anticancer activity and to reduce toxic effects by affecting more specific molecular sites. However, despite the improvement in breast cancer treatment, these novel drugs were also found to be associated, even if at a lesser extent, with important side effects, such as cardiotoxicity, with consequent heart failure. For this reason, the cardiovascular and neuropsychiatric safety profiles of all anticancer drugs and protocols remain important items to be carefully evaluated in breast cancer patients.


Alkylating agents Anthracyclines Brain toxicity Cardioprotection Cardiotoxicity Endocrine therapy ERB2 inhibitors Fluoropyrimidines Taxanes VEGF inhibitors 


  1. 1.
    Melchor L, Benitez J. The complex genetic landscape of familial breast cancer. Hum Genet. 2013;132:845–63.PubMedCrossRefGoogle Scholar
  2. 2.
    Hackshaw AK, Paul EA. Breast self-examination and death from breast cancer: a meta-analysis. Br J Cancer. 2003;88:1047–53.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    American Institute of Ultrasound in Medicine. AIUM practice guideline for the performance of a breast ultrasound examination. J Ultrasound Med. 2009;28:105–9.CrossRefGoogle Scholar
  4. 4.
    Hellquist BN, Duffy SW, Abdsaleh S, Björneld L, Bordás P, Tabár L, Viták B, Zackrisson S, Nyström L, Jonsson H. Effectiveness of population-based service screening with mammography for women ages 40 to 49 years: evaluation of the Swedish Mammography Screening in Young Women (SCRY) cohort. Cancer. 2011;117(4):714–22.PubMedCrossRefGoogle Scholar
  5. 5.
    Caron J, Nohria A. Cardiac toxicity from breast cancer treatment: can we avoid this? Curr Oncol Rep. 2018;20(8):61.PubMedCrossRefGoogle Scholar
  6. 6.
    Dong J, Chen H. Cardiotoxicity of anticancer therapeutics. Front Cardiovasc Med. 2018;5:9.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Gavila J, Seguí MÁ, Calvo L, López T, Alonso JJ, Farto M, Sánchez-de la Rosa R. Evaluation and management of chemotherapy-induced cardiotoxicity in breast cancer: a Delphi study. Clin Transl Oncol. 2017;19(1):91–104.PubMedCrossRefGoogle Scholar
  8. 8.
    Zambelli A, Della Porta MG, Eleuteri E, De Giuli L, Catalano O, Tondini C, Riccardi A. Predicting and preventing cardiotoxicity in the era of breast cancer targeted therapies. Novel molecular tools for clinical issues. Breast. 2011;20(2):176–83.PubMedCrossRefGoogle Scholar
  9. 9.
    Gripp EA, Oliveira GE, Feijó LA, Garcia MI, Xavier SS, Sousa AS. Global longitudinal strain accuracy for cardiotoxicity prediction in a cohort of breast cancer patients during anthracycline and/or trastuzumab treatment. Arq Bras Cardiol. 2018;110(2):140–50.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Hawkes EA, Okines AF, Plummer C, Cunningham D. Cardiotoxicity in patients treated with bevacizumab is potentially reversible. J Clin Oncol. 2011;29(18):e560–2.PubMedCrossRefGoogle Scholar
  11. 11.
    Jain D, Russell RR, Schwartz RG, Panjrath GS, Aronow W. Cardiac complications of cancer therapy: pathophysiology, identification, prevention, treatment, and future directions. Curr Cardiol Rep. 2017;19:36.PubMedCrossRefGoogle Scholar
  12. 12.
    Mantarro S, Rossi M, Bonifazi M, D’Amico R, Blandizzi C, La Vecchia C, Negri E, Moja L. Risk of severe cardiotoxicity following treatment with trastuzumab: a meta-analysis of randomized and cohort studies of 29,000 women with breast cancer. Intern Emerg Med. 2016;11(1):123–40.PubMedCrossRefGoogle Scholar
  13. 13.
    Tocchetti CG, Cadeddu C, Di Lisi D, Femminò S, Madonna R, Mele D, Monte I, Novo G, Penna C, Pepe A, Spallarossa P, Varricchi G, Zito C, Pagliaro P, Mercuro G. From molecular mechanisms to clinical management of antineoplastic drug-induced cardiovascular toxicity: a translational overview. Antioxid Redox Signal. 2019;30(18):2110–53.CrossRefGoogle Scholar
  14. 14.
    Martel S, Maurer C, Lambertini M, Pondé N, De Azambuja E. Breast cancer treatment-induced cardiotoxicity. Expert Opin Drug Saf. 2017;16(9):1021–38.PubMedCrossRefGoogle Scholar
  15. 15.
    Jasra S, Anampa J. Anthracycline use for early stage breast cancer in the modern era: a review. Curr Treat Options in Oncol. 2018;19(6):30.CrossRefGoogle Scholar
  16. 16.
    Pokrzywinski KL, Biel TG, Rosen ET, Bonanno JL, Aryal B, Mascia F, Moshkelani D, Mog S, Rao VA. Doxorubicin-induced cardiotoxicity is suppressed by estrous-staged treatment and exogenous 17β-estradiol in female tumor-bearing spontaneously hypertensive rats. Biol Sex Differ. 2018;9(1):25.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol. 2012;52(6):1213–25.PubMedCrossRefGoogle Scholar
  18. 18.
    Singal PK, Deally CM, Weinberg LE. Subcellular effects of adriamycin in the heart: a concise review. J Mol Cell Cardiol. 1987;19(8):817–28.PubMedCrossRefGoogle Scholar
  19. 19.
    de Vries Schultink AHM, Boekhout AH, Gietema JA, Burylo AM, Dorlo TPC, van Hasselt JGC, Schellens JHM, Huitema ADR. Pharmacodynamic modeling of cardiac biomarkers in breast cancer patients treated with anthracycline and trastuzumab regimens. J Pharmacokinet Pharmacodyn. 2018;45(3):431–42.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Ryberg M, Nielsen D, Cortese G, Nielsen G, Skovsgaard T, Andersen PK. New insight into epirubicin cardiac toxicity: competing risks analysis of 1097 breast cancer patients. J Natl Cancer Inst. 2008;100(15):1058–67.PubMedCrossRefGoogle Scholar
  21. 21.
    Geisberg CA, Sawyer DB. Mechanisms of anthracycline cardiotoxicity and strategies to decrease cardiac damage. Curr Hypertens Rep. 2010;12(6):404–10.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Pellegrini A, Soldani P, Breschi MC, Paparelli A. Effects of reserpine and calcium antagonists pre-treatment on doxorubucin storage in various organs of young and senescent rats. In Vivo. 1991;5(2):171–4.PubMedGoogle Scholar
  23. 23.
    Soldani P, Pellegrini A, Breschi MC, Natale G, Paparelli A. Doxorubicin storage in myocardial tissue of reserpine- and nicardipine-pretreated rats. Anticancer Res. 1991;11:2123–4.PubMedGoogle Scholar
  24. 24.
    Liu X, Zhu Y, Lin X, Fang L, Yan X. Mitral regurgitation after anthracycline-based chemotherapy in an adult patient with breast cancer: a case report. Medicine (Baltimore). 2017;96(49):e9004.CrossRefGoogle Scholar
  25. 25.
    Rowinsky EK, Eisenhauer EA, Chaudhry V, Arbuck SG, Donehower RC. Clinical toxicities encountered with paclitaxel (Taxol). Semin Oncol. 1993;20:1–15.PubMedGoogle Scholar
  26. 26.
    Yardley DA, Hart L, Waterhouse D, Whorf R, Drosick DR, Murphy P, Badarinath S, Daniel BR, Childs BH, Burris H. Addition of bevacizumab to three docetaxel regimens as adjuvant therapy for early stage breast cancer. Breast Cancer Res Treat. 2013;142(3):655–65.PubMedCrossRefGoogle Scholar
  27. 27.
    Hurvitz SA, Bosserman LD, Chan D, Hagenstad CT, Kass FC, Smith FP, Rodriguez GI, Childs BH, Slamon DJ. Cardiac safety results from a phase II, open-label, multicenter, pilot study of two docetaxel-based regimens plus bevacizumab for the adjuvant treatment of subjects with node-positive or high-risk node-negative breast cancer. Springerplus. 2014;3:244.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Natale G, Di Paolo A, Bocci G. Dermatological, cardiovascular and neurological morphohistopathological effects of fluoropyrimidine-based chemotherapy in humans. Clin Cancer Drugs. 2017;4:104–11.Google Scholar
  29. 29.
    Endo A, Yoshida Y, Nakashima R, Takahashi N, Tanabe K. Capecitabine induces both cardiomyopathy and multifocal cerebral leukoencephalopathy. Int Heart J. 2013;54(6):417–20.PubMedCrossRefGoogle Scholar
  30. 30.
    Karakulak UN, Aladağ E, Maharjan N, Övünç K. Capecitabine-induced coronary artery vasospasm in a patient who previously experienced a similar episode with fluorouracil therapy. Turk Kardiyol Dern Ars. 2016;44(1):71–4.PubMedGoogle Scholar
  31. 31.
    Molteni LP, Rampinelli I, Cergnul M, Scaglietti U, Paino AM, Noonan DM, Bucci EO, Gottardi O, Albini A. Capecitabine in breast cancer: the issue of cardiotoxicity during fluoropyrimidine treatment. Breast J. 2010;16(Suppl 1):S45–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Shah NR, Shah A, Rather A. Ventricular fibrillation as a likely consequence of capecitabine-induced coronary vasospasm. J Oncol Pharm Pract. 2011;18(1):132–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Polk A, Vistisen K, Vaage-Nilsen M, Nielsen DL. A systematic review of the pathophysiology of 5-fluorouracil-induced cardiotoxicity. BMC Pharmacol Toxicol. 2014;15:47.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Cwikiel M, Zhang B, Eskilsson J, Wieslander JB, Albertsson M. The influence of 5-fluorouracil on the endothelium in small arteries. An electron microscopic study in rabbits. Scanning Microsc. 1995;9(2):561–76.PubMedGoogle Scholar
  35. 35.
    Henry D, Rudzik F, Butts A, Mathew A. Capecitabine-induced coronary vasospasm. Case Rep Oncol. 2016;9(3):629–32.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Kosmas C, Kallistratos MS, Kopterides P, Syrios J, Skopelitis H, Mylonakis N, Karabelis A, Tsavaris N. Cardiotoxicity of fluoropyrimidines in different schedules of administration: a prospective study. J Cancer Res Clin Oncol. 2008;134(1):75–82.PubMedCrossRefGoogle Scholar
  37. 37.
    Layoun ME, Wickramasinghe CD, Peralta MV, Yang EH. Fluoropyrimidine-induced cardiotoxicity: manifestations, mechanisms, and management. Curr Oncol Rep. 2016;18(6):35.PubMedCrossRefGoogle Scholar
  38. 38.
    Kuropkat C, Griem K, Clark J, Rodriguez ER, Hutchinson J, Taylor SG. Severe cardiotoxicity during 5-fluorouracil chemotherapy: a case and literature report. Am J Clin Oncol. 1999;22(5):466–70.PubMedCrossRefGoogle Scholar
  39. 39.
    Focaccetti C, Bruno A, Magnani E, Bartolini D, Principi E, Dallaglio K, Bucci EO, Finzi G, Sessa F, Noonan DM, Albini A. Effects of 5-fluorouracil on morphology, cell cycle, proliferation, apoptosis, autophagy and ROS production in endothelial cells and cardiomyocytes. PLoS One. 2015;10(2):e0115686.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kounis NG, Tsigkas GG, Almpanis G, Mazarakis A. Kounis syndrome is likely culprit of coronary vasospasm induced by capecitabine. J Oncol Pharm Pract. 2012;18(2):316–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Constantinidou A, Smith I. Is there a case for anti-HER2 therapy without chemotherapy in early breast cancer? Breast. 2011;20(Suppl 3):S158–61.PubMedCrossRefGoogle Scholar
  42. 42.
    Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92.PubMedCrossRefGoogle Scholar
  43. 43.
    Martín M, Esteva FJ, Alba E, Khandheria B, Pérez-Isla L, García-Sáenz JA, Márquez A, Sengupta P, Zamorano J. Minimizing cardiotoxicity while optimizing treatment efficacy with trastuzumab: review and expert recommendations. Oncologist. 2009;14(1):1–11.PubMedCrossRefGoogle Scholar
  44. 44.
    Perez EA, Rodeheffer R. Clinical cardiac tolerability of trastuzumab. J Clin Oncol. 2004;22(2):322–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Jacquinot Q, Paget-Bailly S, Fumoleau P, Romieu G, Pierga JY, Espié M, Lortholary A, Nabholtz JM, Mercier CF, Pauporté I, Henriques J, Pivot X. Fluctuation of the left ventricular ejection fraction in patients with HER2-positive early breast cancer treated by 12 months of adjuvant trastuzumab. Breast. 2018;41:1–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Bonzano E, Guenzi M, Corvò R. Cardiotoxicity assessment after different adjuvant hypofractionated radiotherapy concurrently associated with trastuzumab in early breast cancer. In Vivo. 2018;32(4):879–82.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Minichillo S, Gallelli I, Barbieri E, Cubelli M, Rubino D, Quercia S, Dall’Olio M, Rapezzi C, Zamagni C. Trastuzumab resumption after extremely severe cardiotoxicity in metastatic breast cancer patient: a case report. BMC Cancer. 2017;17(1):722.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Moilanen T, Jokimäki A, Tenhunen O, Koivunen JP. Trastuzumab-induced cardiotoxicity and its risk factors in real-world setting of breast cancer patients. J Cancer Res Clin Oncol. 2018;144(8):1613–21.PubMedCrossRefGoogle Scholar
  49. 49.
    Telli ML, Hunt SA, Carlson RW, Guardino AE. Trastuzumab-related cardiotoxicity: calling into question the concept of reversibility. J Clin Oncol. 2007;25(23):3525–33.PubMedCrossRefGoogle Scholar
  50. 50.
    Tang GH, Acuna SA, Sevick L, Yan AT, Brezden-Masley C. Incidence and identification of risk factors for trastuzumab-induced cardiotoxicity in breast cancer patients: an audit of a single “real-world” setting. Med Oncol. 2017;34(9):154.PubMedCrossRefGoogle Scholar
  51. 51.
    Pinto AC, Ades F, de Azambuja E, Piccart-Gebhart M. Trastuzumab for patients with HER2 positive breast cancer: delivery, duration and combination therapies. Breast. 2013;22(Suppl 2):S152–5.PubMedCrossRefGoogle Scholar
  52. 52.
    An J, Sheikh MS. Toxicology of trastuzumab: an insight into mechanisms of cardiotoxicity. Curr Cancer Drug Targets. 2019;19(5):400–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Gianni L, Salvatorelli E, Minotti G. Anthracycline cardiotoxicity in breast cancer patients: synergism with trastuzumab and taxanes. Cardiovasc Toxicol. 2007;7(2):67–71.PubMedCrossRefGoogle Scholar
  54. 54.
    Fasching PA, Hartkopf AD, Gass P, Häberle L, Akpolat-Basci L, Hein A, Volz B, Taran FA, Nabieva N, Pott B, Overkamp F, Einarson H, Hadji P, Tesch H, Ettl J, Lüftner D, Wallwiener M, Müller V, Janni W, Fehm TN, Schneeweiss A, Untch M, Pott D, Lux MP, Geyer T, Liedtke C, Seeger H, Wetzig S, Hartmann A, Schulz-Wendtland R, Belleville E, Wallwiener D, Beckmann MW, Brucker SY, Kolberg HC. Efficacy of neoadjuvant pertuzumab in addition to chemotherapy and trastuzumab in routine clinical treatment of patients with primary breast cancer: a multicentric analysis. Breast Cancer Res Treat. 2018;173:319–28, in pressPubMedCrossRefGoogle Scholar
  55. 55.
    Spring L, Niemierko A, Haddad S, Yuen M, Comander A, Reynolds K, Shin J, Bahn A, Brachtel E, Specht M, Smith BL, Taghian A, Jimenez R, Peppercorn J, Isakoff SJ, Moy B, Bardia A. Effectiveness and tolerability of neoadjuvant pertuzumab-containing regimens for HER2-positive localized breast cancer. Breast Cancer Res Treat. 2018;172:733–40, in pressPubMedCrossRefGoogle Scholar
  56. 56.
    Senkus E, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rutgers E, Zackrisson S, Cardoso F, Committee EG. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Suppl 5):v8–30.PubMedCrossRefGoogle Scholar
  57. 57.
    Lumachi F, Luisetto G, Basso SM, Basso U, Brunello A, Camozzi V. Endocrine therapy of breast cancer. Curr Med Chem. 2011;18(4):513–22.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Shagufta, Ahmad I. Tamoxifen a pioneering drug: an update on the therapeutic potential of tamoxifen derivatives. Eur J Med Chem. 2018;143:515–31.PubMedCrossRefGoogle Scholar
  59. 59.
    Bird BR, Swain SM. Cardiac toxicity in breast cancer survivors: review of potential cardiac problems. Clin Cancer Res. 2008;14(1):14–24.PubMedCrossRefGoogle Scholar
  60. 60.
    Foglietta J, Inno A, de Iuliis F, Sini V, Duranti S, Turazza M, Tarantini L, Gori S. Cardiotoxicity of aromatase inhibitors in breast cancer patients. Clin Breast Cancer. 2017;17(1):11–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Khosrow-Khavar F, Filion KB, Al-Qurashi S, Torabi N, Bouganim N, Suissa S, Azoulay L. Cardiotoxicity of aromatase inhibitors and tamoxifen in postmenopausal women with breast cancer: a systematic review and meta-analysis of randomized controlled trials. Ann Oncol. 2017;28(3):487–96.PubMedGoogle Scholar
  62. 62.
    Early Breast Cancer Trialists’ Collaborative Group. Polychemotherapy for early breast cancer: an overview of the randomized trials. Lancet. 1998;352:930–42.CrossRefGoogle Scholar
  63. 63.
    Masuda N, Nakayama T, Yamamura J, Kamigaki S, Taguchi T, Hatta M, Sakamoto J. Phase I study of combination therapy with weekly paclitaxel and cyclophosphamide for advanced or recurrent breast cancer. Cancer Chemother Pharmacol. 2010;66(1):89–94.PubMedCrossRefGoogle Scholar
  64. 64.
    Yu AF, Manrique C, Pun S, Liu JE, Mara E, Fleisher M, Patil S, Jones LW, Steingart RM, Hudis CA, Dang CT. Cardiac safety of paclitaxel plus trastuzumab and pertuzumab in patients with HER2-positive metastatic breast cancer. Oncologist. 2016;21(4):418–24.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Swain SM, Ewer MS, Cortés J, Amadori D, Miles D, Knott A, Clark E, Benyunes MC, Ross G, Baselga J. Cardiac tolerability of pertuzumab plus trastuzumab plus docetaxel in patients with HER2-positive metastatic breast cancer in CLEOPATRA: a randomized, double-blind, placebo-controlled phase III study. Oncologist. 2013;18(3):257–64.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Cho E, Schwemm AK, Rubinstein LM, Stevenson PA, Gooley TA, Ellis GK, Specht JM, Livingston RB, Linden HM, Gadi VK. Adjuvant metronomic CMF in a contemporary breast cancer cohort: what’s old is new. Clin Breast Cancer. 2015;15(5):e277–85.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Park JH, Im SA, Byun JM, Kim KH, Kim JS, Choi IS, Kim HJ, Lee KH, Kim TY, Han SW, Oh DY, Kim TY. Cyclophosphamide, methotrexate, and 5-fluorouracil as palliative treatment for heavily pretreated patients with metastatic breast cancer: a multicenter retrospective analysis. J Breast Cancer. 2017;20(4):347–55.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Salek R, Bayatmokhtari N, Homaei Shandiz F, ShahidSales S. The results of chemotherapy with two variants of intravenous CMF in patients with early stage breast carcinoma; Does dose density matter? Breast J. 2016;22(6):623–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Ghanbari S, Ayatollahi SM, Zare N. Comparing role of two chemotherapy regimens, CMF and anthracycline-based, on Breast Cancer Survival in the Eastern Mediterranean Region and Asia by multivariate mixed effects models: a meta-analysis. Asian Pac J Cancer Prev. 2015;16(14):5655–61.PubMedCrossRefGoogle Scholar
  70. 70.
    Promberger R, Dubsky P, Mittlböck M, Ott J, Singer C, Seemann R, Exner R, Panhofer P, Steger G, Bergen E, Gnant M, Jakesz R, Bago-Horvath Z, Rudas M, Bartsch R. Postoperative CMF does not ameliorate poor outcomes in women with residual invasive breast cancer after neoadjuvant epirubicin/docetaxel chemotherapy. Clin Breast Cancer. 2015;15(6):505–11.PubMedCrossRefGoogle Scholar
  71. 71.
    Tryfonidis K, Marreaud S, Khaled H, De Valk B, Vermorken J, Welnicka-Jaskiewicz M, Aalders K, Bartlett JMS, Biganzoli L, Bogaerts J, Cameron D, EORTC- Breast Cancer Group. Cardiac safety, efficacy, and correlation of serial serum HER2-extracellular domain shed antigen measurement with the outcome of the combined trastuzumab plus CMF in women with HER2-positive metastatic breast cancer: results from the EORTC 10995 phase II study. Breast Cancer Res Treat. 2017;163(3):507–15.PubMedCrossRefGoogle Scholar
  72. 72.
    Guenancia C, Lefebvre A, Cardinale D, Yu AF, Ladoire S, Ghiringhelli F, Zeller M, Rochette L, Cottin Y, Vergely C. Obesity as a risk factor for anthracyclines and trastuzumab cardiotoxicity in breast cancer: a systematic review and meta-analysis. J Clin Oncol. 2016;34(26):3157–65.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, Habib G, Lenihan DJ, Lip GYH, Lyon AR, Lopez Fernandez T, Mohty D, Piepoli MF, Tamargo J, Torbicki A, Suter TM, ESC Scientific Document Group. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: the task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(36):2768–801.PubMedCrossRefGoogle Scholar
  74. 74.
    Garg V, Vorobiof G. Echocardiography and alternative cardiac imaging strategies for long-term cardiotoxicity surveillance of cancer survivors treated with chemotherapy and/or radiation exposure. Curr Oncol Rep. 2016;18(8):52.PubMedCrossRefGoogle Scholar
  75. 75.
    Gulati G, Zhang KW, Scherrer-Crosbie M, Ky B. Cancer and cardiovascular disease: the use of novel echocardiography measures to predict subsequent cardiotoxicity in breast cancer treated with anthracyclines and trastuzumab. Curr Heart Fail Rep. 2014;11(4):366–73.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Nicolazzi MA, Carnicelli A, Fuorlo M, Scaldaferri A, Masetti R, Landolfi R, Favuzzi AMR. Anthracycline and trastuzumab-induced cardiotoxicity in breast cancer. Eur Rev Med Pharmacol Sci. 2018;22(7):2175–85.PubMedGoogle Scholar
  77. 77.
    Veronese P, Hachul DT, Scanavacca MI, Hajjar LA, Wu TC, Sacilotto L, Veronese C, Darrieux FCDC. Effects of anthracycline, cyclophosphamide and taxane chemotherapy on QTc measurements in patients with breast cancer. PLoS One. 2018;13(5):e0196763.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Cardinale D, Ciceri F, Latini R, Franzosi MG, Sandri MT, Civelli M, Cucchi G, Menatti E, Mangiavacchi M, Cavina R, Barbieri E, Gori S, Colombo A, Curigliano G, Salvatici M, Rizzo A, Ghisoni F, Bianchi A, Falci C, Aquilina M, Rocca A, Monopoli A, Milandri C, Rossetti G, Bregni M, Sicuro M, Malossi A, Nassiacos D, Verusio C, Giordano M, Staszewsky L, Barlera S, Nicolis EB, Magnoli M, Masson S, Cipolla CM, ICOS-ONE Study Investigators. Anthracycline-induced cardiotoxicity: a multicenter randomised trial comparing two strategies for guiding prevention with enalapril: the International CardioOncology Society-one trial. Eur J Cancer. 2018;94:126–37.PubMedCrossRefGoogle Scholar
  79. 79.
    Frères P, Bouznad N, Servais L, Josse C, Wenric S, Poncin A, Thiry J, Moonen M, Oury C, Lancellotti P, Bours V, Jerusalem G. Variations of circulating cardiac biomarkers during and after anthracycline-containing chemotherapy in breast cancer patients. BMC Cancer. 2018;18(1):102.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Sun D, Simon GJ, Skube S, Blaes AH, Melton GB, Zhang R. Causal phenotyping for susceptibility to cardiotoxicity from antineoplastic breast cancer medications. AMIA Ann Symp Proc. 2018;2017:1655–64.Google Scholar
  81. 81.
    Lalisang RI, Erdkamp FL, Rodenburg CJ, Knibbeler-van Rossum CT, Nortier JW, van Bochove A, Slee PH, Voest EE, Wils JA, Wals J, Loosveld OJ, Smals AE, Blijham GH, Tjan-Heijnen VC, Schouten HC. Epirubicin and paclitaxel with G-CSF support in first line metastatic breast cancer: a randomized phase II study of dose-dense and dose-escalated chemotherapy. Breast Cancer Res Treat. 2011;128(2):437–45.PubMedCrossRefGoogle Scholar
  82. 82.
    Gil-Gil MJ, Bellet M, Morales S, Ojeda B, Manso L, Mesia C, Garcia-Martínez E, Martinez-Jáñez N, Melé M, Llombart A, Pernas S, Villagrasa P, Blasco C, Baselga J. Pegylated liposomal doxorubicin plus cyclophosphamide followed by paclitaxel as primary chemotherapy in elderly or cardiotoxicity-prone patients with high-risk breast cancer: results of the phase II CAPRICE study. Breast Cancer Res Treat. 2015;151(3):597–606.PubMedCrossRefGoogle Scholar
  83. 83.
    Leonardi V, Palmisano V, Pepe A, Usset A, Manuguerra G, Savio G, DE Bella MT, Laudani A, Alù M, Cusimano MP, Scianna C, Giresi A, Agostara B. Weekly pegylated liposomal doxorubicin and paclitaxel in patients with metastatic breast carcinoma: a phase II study. Oncol Lett. 2010;1(4):749–53.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Venturini M, Michelotti A, Del Mastro L, Gallo L, Carnino F, Garrone O, Tibaldi C, Molea N, Bellina RC, Pronzato P, et al. Multicenter randomized controlled clinical trial to evaluate cardioprotection of dexrazoxane versus no cardioprotection in women receiving epirubicin chemotherapy for advanced breast cancer. J Clin Oncol. 1996;14(12):3112–20.PubMedCrossRefGoogle Scholar
  85. 85.
    Cochera F, Dinca D, Bordejevic DA, Citu IM, Mavrea AM, Andor M, Trofenciuc M, Tomescu MC. Nebivolol effect on doxorubicin-induced cardiotoxicity in breast cancer. Cancer Manag Res. 2018;10:2071–81.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Taillibert S. Is systemic anti-cancer therapy neurotoxic? Does chemo brain exist? And should we rename it? Adv Exp Med Biol. 2010;678:86–95.PubMedCrossRefGoogle Scholar
  87. 87.
    Lange M, Rigal O, Clarisse B, Giffard B, Sevin E, Barillet M, Eustache F, Joly F. Cognitive dysfunctions in elderly cancer patients: a new challenge for oncologists. Cancer Treat Rev. 2014;40(6):810–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Lange M, Joly F. How to identify and manage cognitive dysfunction after breast cancer treatment. J Oncol Pract. 2017;13(12):784–90.PubMedCrossRefGoogle Scholar
  89. 89.
    Park HS, Kim CJ, Kwak HB, No MH, Heo JW, Kim TW. Physical exercise prevents cognitive impairment by enhancing hippocampal neuroplasticity and mitochondrial function in doxorubicin-induced chemobrain. Neuropharmacology. 2018;133:451–61.PubMedCrossRefGoogle Scholar
  90. 90.
    Briones TL, Woods J. Chemotherapy-induced cognitive impairment is associated with decreases in cell proliferation and histone modifications. BMC Neurosci. 2011;12:124.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wang XM, Walitt B, Saligan L, Tiwari AF, Cheung CW, Zhang ZJ. Chemobrain: a critical review and causal hypothesis of link between cytokines and epigenetic reprogramming associated with chemotherapy. Cytokine. 2015;72(1):86–96.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Henneghan AM, Palesh O, Harrison M, Kesler SR. Identifying cytokine predictors of cognitive functioning in breast cancer survivors up to 10years post chemotherapy using machine learning. J Neuroimmunol. 2018;320:38–47.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Bruno J, Hosseini SM, Kesler S. Altered resting state functional brain network topology in chemotherapy-treated breast cancer survivors. Neurobiol Dis. 2012;48(3):329–38.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Kesler SR. Default mode network as a potential biomarker of chemotherapy-related brain injury. Neurobiol Aging. 2014;35(Suppl 2):S11–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Ahles TA, Saykin AJ. Breast cancer chemotherapy-related cognitive dysfunction. Clin Breast Cancer. 2002;3(Suppl 3):S84–90.PubMedCrossRefGoogle Scholar
  96. 96.
    Seigers R, Schagen SB, Beerling W, Boogerd W, van Tellingen O, van Dam FS, Koolhaas JM, Buwalda B. Long-lasting suppression of hippocampal cell proliferation and impaired cognitive performance by methotrexate in the rat. Behav Brain Res. 2008;186(2):168–75.PubMedCrossRefGoogle Scholar
  97. 97.
    Seigers R, Schagen SB, Coppens CM, van der Most PJ, van Dam FS, Koolhaas JM, Buwalda B. Methotrexate decreases hippocampal cell proliferation and induces memory deficits in rats. Behav Brain Res. 2009;201(2):279–84.PubMedCrossRefGoogle Scholar
  98. 98.
    Pomykala KL, de Ruiter MB, Deprez S, McDonald BC, Silverman DH. Integrating imaging findings in evaluating the post-chemotherapy brain. Brain Imaging Behav. 2013;7(4):436–52.PubMedCrossRefGoogle Scholar
  99. 99.
    Fan HG, Houede-Tchen N, Yi QL, Chemerynsky I, Downie FP, Sabate K, Tannock IF. Fatigue, menopausal symptoms, and cognitive function in women after adjuvant chemotherapy for breast cancer: 1- and 2-year follow-up of a prospective controlled study. J Clin Oncol. 2005;23(31):8025–32.PubMedCrossRefGoogle Scholar
  100. 100.
    Koppelmans V, Breteler MM, Boogerd W, Seynaeve C, Schagen SB. Late effects of adjuvant chemotherapy for adult onset non-CNS cancer; cognitive impairment, brain structure and risk of dementia. Crit Rev Oncol Hematol. 2013;88(1):87–101.PubMedCrossRefGoogle Scholar
  101. 101.
    Edelstein K, Bernstein LJ. Cognitive dysfunction after chemotherapy for breast cancer. J Int Neuropsychol Soc. 2014;20(4):351–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Bernstein LJ, McCreath GA, Komeylian Z, Rich JB. Cognitive impairment in breast cancer survivors treated with chemotherapy depends on control group type and cognitive domains assessed: a multilevel meta-analysis. Neurosci Biobehav Rev. 2017;83:417–28.PubMedCrossRefGoogle Scholar
  103. 103.
    Yao C, Bernstein LJ, Rich JB. Executive functioning impairment in women treated with chemotherapy for breast cancer: a systematic review. Breast Cancer Res Treat. 2017;166(1):15–28.PubMedCrossRefGoogle Scholar
  104. 104.
    Yao C, Rich JB, Tannock IF, Seruga B, Tirona K, Bernstein LJ. Pretreatment differences in intraindividual variability in reaction time between women diagnosed with breast cancer and healthy controls. J Int Neuropsychol Soc. 2016;22(5):530–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Klemp JR, Myers JS, Fabian CJ, Kimler BF, Khan QJ, Sereika SM, Stanton AL. Cognitive functioning and quality of life following chemotherapy in pre- and peri-menopausal women with breast cancer. Support Care Cancer. 2018;26(2):575–83.PubMedCrossRefGoogle Scholar
  106. 106.
    Vega JN, Dumas J, Newhouse PA. Self-reported chemotherapy-related cognitive impairment compared with cognitive complaints following menopause. Psychooncology. 2018;27(9):2198–205.PubMedCrossRefGoogle Scholar
  107. 107.
    Lange M, Heutte N, Noal S, Rigal O, Kurtz JE, Levy C, Allouache D, Rieux C, Lefel J, Clarisse B, Leconte A, Veyret C, Barthelemy P, Longato N, Tron L, Castel H, Eustache F, Giffard B, Joly F. Cognitive changes after adjuvant treatment in older adults with early-stage breast cancer. Oncologist. 2018;24:62–8, in pressPubMedCrossRefGoogle Scholar
  108. 108.
    Joly F, Giffard B, Rigal O, De Ruiter MB, Small BJ, Dubois M, LeFel J, Schagen SB, Ahles TA, Wefel JS, Vardy JL, Pancre V, Lange M, Castel H. Impact of cancer and its treatments on cognitive function: advances in Research From the Paris International Cognition and Cancer Task Force Symposium and Update since 2012. J Pain Symptom Manag. 2015;50(6):830–41.CrossRefGoogle Scholar
  109. 109.
    Hurria A, Lachs M. Is cognitive dysfunction a complication of adjuvant chemotherapy in the older patient with breast cancer? Breast Cancer Res Treat. 2007;103(3):259–68.PubMedCrossRefGoogle Scholar
  110. 110.
    Dean L. Capecitabine therapy and DPYD genotype. In: Pratt V, McLeod H, Rubinstein W, Dean L, Malheiro A, editors. Medical genetics summaries. Bethesda: National Center for Biotechnology Information; 2012.Google Scholar
  111. 111.
    Shehata N, Pater A, Tang SC. Prolonged severe 5-fluorouracil-associated neurotoxicity in a patient with dihydropyrimidine dehydrogenase deficiency. Cancer Investig. 1999;17(3):201–5.CrossRefGoogle Scholar
  112. 112.
    Formica V, Leary A, Cunningham D, Chua YJ. 5-fluorouracil can cross brain-blood barrier and cause encephalopathy: should we expect the same from capecitabine? A case report on capecitabine-induced central neurotoxicity progressing to coma. Cancer Chemother Pharmacol. 2006;58(2):276–8.PubMedCrossRefGoogle Scholar
  113. 113.
    Videnovic A, Semenov I, Chua-Adajar R, Baddi L, Blumenthal DT, Beck AC, Simuni T, Futterer S, Gradishar W, Tellez C, Raizer JJ. Capecitabine-induced multifocal leukoencephalopathy: a report of five cases. Neurology. 2005;65(11):1792–4; discussion 1685PubMedCrossRefGoogle Scholar
  114. 114.
    Han R, Yang YM, Dietrich J, Luebke A, Mayer-Proschel M, Noble M. Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system. J Biol. 2008;7(4):12.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Mukesh M, Murray P. Cerebellar toxicity with capecitabine in a patient with metastatic breast cancer. Clin Oncol (R Coll Radiol). 2008;20(5):382–3.CrossRefGoogle Scholar
  116. 116.
    Obadia M, Leclercq D, Wasserman J, Galanaud D, Dormont D, Sahli-Amor M, Psimaras D, Pyatigorskaya N, Law-Ye B. Capecitabine-induced acute toxic leukoencephalopathy. Neurotoxicology. 2017;62:1–5.PubMedCrossRefGoogle Scholar
  117. 117.
    Verstappen CC, Heimans JJ, Hoekman K, Postma TJ. Neurotoxic complications of chemotherapy in patients with cancer: clinical signs and optimal management. Drugs. 2003;63(15):1549–63.PubMedCrossRefGoogle Scholar
  118. 118.
    Winocur G, Berman H, Nguyen M, Binns MA, Henkelman M, van Eede M, Piquette-Miller M, Sekeres MJ, Wojtowicz JM, Yu J, Zhang H, Tannock IF. Neurobiological mechanisms of chemotherapy-induced cognitive impairment in a transgenic model of breast cancer. Neuroscience. 2018;369:51–65.PubMedCrossRefGoogle Scholar
  119. 119.
    Hershman DL, Unger JM, Crew KD, Till C, Greenlee H, Minasian LM, Moinpour CM, Lew DL, Fehrenbacher L, Wade JL 3rd, Wong SF, Fisch MJ, Lynn Henry N, Albain KS. Two-year trends of taxane-induced neuropathy in women enrolled in a randomized trial of Acetyl-L-Carnitine (SWOG S0715). J Natl Cancer Inst. 2018;110(6):669–76.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Zirpoli GR, McCann SE, Sucheston-Campbell LE, Hershman DL, Ciupak G, Davis W, Unger JM, Moore HCF, Stewart JA, Isaacs C, Hobday TJ, Salim M, Hortobagyi GN, Gralow JR, Budd GT, Albain KS, Ambrosone CB. Supplement use and chemotherapy-induced peripheral neuropathy in a cooperative group trial (S0221): the DELCaP study. J Natl Cancer Inst. 2017;109(12):djx098.Google Scholar
  121. 121.
    Capri G, Munzone E, Tarenzi E, Fulfaro F, Gianni L, Caraceni A, Martini C, Scaioli V. Optic nerve disturbances: a new form of paclitaxel neurotoxicity. J Natl Cancer Inst. 1994;86(14):1099–101.PubMedCrossRefGoogle Scholar
  122. 122.
    Ziske CG, Schottker B, Gorschluter M, Mey U, Kleinschmidt R, Schlegel U, Sauerbruch T, Schmidt-Wolf IG. Acute transient encephalopathy after paclitaxel infusion: report of three cases. Ann Oncol. 2002;13(4):629–31.PubMedCrossRefGoogle Scholar
  123. 123.
    Muallaoglu S, Kocer M, Guler N. Acute transient encephalopathy after weekly paclitaxel infusion. Med Oncol. 2012;29(2):1297–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Perry JR, Warner E. Transient encephalopathy after paclitaxel (Taxol) infusion. Neurology. 1996;46(6):1596–9.PubMedCrossRefGoogle Scholar
  125. 125.
    Soffietti R, Trevisan E, Ruda R. Neurologic complications of chemotherapy and other newer and experimental approaches. Handb Clin Neurol. 2014;121:1199–218.PubMedCrossRefGoogle Scholar
  126. 126.
    Doolittle ND, Peereboom DM, Christoforidis GA, Hall WA, Palmieri D, Brock PR, Campbell KC, Dickey DT, Muldoon LL, O’Neill BP, Peterson DR, Pollock B, Soussain C, Smith Q, Tyson RM, Neuwelt EA. Delivery of chemotherapy and antibodies across the blood-brain barrier and the role of chemoprotection, in primary and metastatic brain tumors: report of the Eleventh Annual Blood-Brain Barrier Consortium meeting. J Neuro-Oncol. 2007;81(1):81–91.CrossRefGoogle Scholar
  127. 127.
    Mortensen ME, Cecalupo AJ, Lo WD, Egorin MJ, Batley R. Inadvertent intrathecal injection of daunorubicin with fatal outcome. Med Pediatr Oncol. 1992;20(3):249–53.PubMedCrossRefGoogle Scholar
  128. 128.
    Kesler SR, Blayney DW. Neurotoxic effects of anthracycline- vs nonanthracycline-based chemotherapy on cognition in breast cancer survivors. JAMA Oncol. 2016;2(2):185–92.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Christie LA, Acharya MM, Parihar VK, Nguyen A, Martirosian V, Limoli CL. Impaired cognitive function and hippocampal neurogenesis following cancer chemotherapy. Clin Cancer Res. 2012;18(7):1954–65.PubMedCrossRefGoogle Scholar
  130. 130.
    Salas-Ramirez KY, Bagnall C, Frias L, Abdali SA, Ahles TA, Hubbard K. Doxorubicin and cyclophosphamide induce cognitive dysfunction and activate the ERK and AKT signaling pathways. Behav Brain Res. 2015;292:133–41.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Antkiewicz-Michaluk L, Krzemieniecki K, Romanska I, Michaluk J, Krygowska-Wajs A. Acute treatment with doxorubicin induced neurochemical impairment of the function of dopamine system in rat brain structures. Pharmacol Rep. 2016;68(3):627–30.PubMedCrossRefGoogle Scholar
  132. 132.
    Liao D, Guo Y, Xiang D, Dang R, Xu P, Cai H, Cao L, Jiang P. Dysregulation of Neuregulin-1/ErbB signaling in the hippocampus of rats after administration of doxorubicin. Drug Des Devel Ther. 2018;12:231–9.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Cheruku SP, Ramalingayya GV, Chamallamudi MR, Biswas S, Nandakumar K, Nampoothiri M, Gourishetti K, Kumar N. Catechin ameliorates doxorubicin-induced neuronal cytotoxicity in in vitro and episodic memory deficit in in vivo in Wistar rats. Cytotechnology. 2018;70(1):245–59.PubMedCrossRefGoogle Scholar
  134. 134.
    Ejlertsen B. Adjuvant chemotherapy in early breast cancer. Dan Med J. 2016;63(5):pii:B5222.Google Scholar
  135. 135.
    Ramalho M, Fontes F, Ruano L, Pereira S, Lunet N. Cognitive impairment in the first year after breast cancer diagnosis: a prospective cohort study. Breast. 2017;32:173–8.PubMedCrossRefGoogle Scholar
  136. 136.
    Cerulla N, Arcusa A, Navarro JB, Garolera M, Enero C, Chico G, Fernandez-Morales L. Role of taxanes in chemotherapy-related cognitive impairment: a prospective longitudinal study. Breast Cancer Res Treat. 2017;164(1):179–87.PubMedCrossRefGoogle Scholar
  137. 137.
    Janelsins MC, Heckler CE, Thompson BD, Gross RA, Opanashuk LA, Cory-Slechta DA. A clinically relevant dose of cyclophosphamide chemotherapy impairs memory performance on the delayed spatial alternation task that is sustained over time as mice age. Neurotoxicology. 2016;56:287–93.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Kreukels BP, Schagen SB, Ridderinkhof KR, Boogerd W, Hamburger HL, van Dam FS. Electrophysiological correlates of information processing in breast-cancer patients treated with adjuvant chemotherapy. Breast Cancer Res Treat. 2005;94(1):53–61.PubMedCrossRefGoogle Scholar
  139. 139.
    Schagen SB, van Dam FS, Muller MJ, Boogerd W, Lindeboom J, Bruning PF. Cognitive deficits after postoperative adjuvant chemotherapy for breast carcinoma. Cancer. 1999;85(3):640–50.PubMedCrossRefGoogle Scholar
  140. 140.
    Dechant KL, Brogden RN, Pilkington T, Faulds D. Ifosfamide/mesna. A review of its antineoplastic activity, pharmacokinetic properties and therapeutic efficacy in cancer. Drugs. 1991;42(3):428–67.PubMedCrossRefGoogle Scholar
  141. 141.
    Underwood EA, Rochon PA, Moineddin R, Lee PE, Wu W, Pritchard KI, Tierney MC. Cognitive sequelae of endocrine therapy in women treated for breast cancer: a meta-analysis. Breast Cancer Res Treat. 2018;168(2):299–310.PubMedCrossRefGoogle Scholar
  142. 142.
    Chen X, Li J, Zhang J, He X, Zhu C, Zhang L, Hu X, Wang K. Impairment of the executive attention network in premenopausal women with hormone receptor-positive breast cancer treated with tamoxifen. Psychoneuroendocrinology. 2017;75:116–23.PubMedCrossRefGoogle Scholar
  143. 143.
    Boele FW, Schilder CM, de Roode ML, Deijen JB, Schagen SB. Cognitive functioning during long-term tamoxifen treatment in postmenopausal women with breast cancer. Menopause. 2015;22(1):17–25.PubMedCrossRefGoogle Scholar
  144. 144.
    Palmer JL, Trotter T, Joy AA, Carlson LE. Cognitive effects of Tamoxifen in pre-menopausal women with breast cancer compared to healthy controls. J Cancer Surviv Res Pract. 2008;2(4):275–82.CrossRefGoogle Scholar
  145. 145.
    Lejbak L, Vrbancic M, Crossley M. Endocrine therapy is associated with low performance on some estrogen-sensitive cognitive tasks in postmenopausal women with breast cancer. J Clin Exp Neuropsychol. 2010;32(8):836–46.PubMedCrossRefGoogle Scholar
  146. 146.
    Eberling JL, Wu C, Tong-Turnbeaugh R, Jagust WJ. Estrogen- and tamoxifen-associated effects on brain structure and function. NeuroImage. 2004;21(1):364–71.PubMedCrossRefGoogle Scholar
  147. 147.
    Collins B, Mackenzie J, Stewart A, Bielajew C, Verma S. Cognitive effects of hormonal therapy in early stage breast cancer patients: a prospective study. Psycho-Oncology. 2009;18(8):811–21.PubMedCrossRefGoogle Scholar
  148. 148.
    Sun LM, Chen HJ, Liang JA, Kao CH. Long-term use of tamoxifen reduces the risk of dementia: a nationwide population-based cohort study. QJM. 2016;109(2):103–9.PubMedCrossRefGoogle Scholar
  149. 149.
    Ording AG, Jensen AB, Cronin-Fenton D, Pedersen L, Sorensen HT, Lash TL. Null association between tamoxifen use and dementia in Danish breast cancer patients. Cancer Epidemiol Biomark Prev. 2013;22(5):993–6.CrossRefGoogle Scholar
  150. 150.
    Jenkins VA, Ambroisine LM, Atkins L, Cuzick J, Howell A, Fallowfield LJ. Effects of anastrozole on cognitive performance in postmenopausal women: a randomised, double-blind chemoprevention trial (IBIS II). Lancet Oncol. 2008;9(10):953–61.PubMedCrossRefGoogle Scholar
  151. 151.
    Moreira PI, Custodio JB, Oliveira CR, Santos MS. Brain mitochondrial injury induced by oxidative stress-related events is prevented by tamoxifen. Neuropharmacology. 2005;48(3):435–47.PubMedCrossRefGoogle Scholar
  152. 152.
    Pandey D, Banerjee S, Basu M, Mishra N. Memory enhancement by Tamoxifen on amyloidosis mouse model. Horm Behav. 2016;79:70–3.PubMedCrossRefGoogle Scholar
  153. 153.
    Wakade C, Khan MM, De Sevilla LM, Zhang QG, Mahesh VB, Brann DW. Tamoxifen neuroprotection in cerebral ischemia involves attenuation of kinase activation and superoxide production and potentiation of mitochondrial superoxide dismutase. Endocrinology. 2008;149(1):367–79.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, and Museo di Anatomia Umana “Filippo Civinini”Università di PisaPisaItaly
  2. 2.Dipartimento di Medicina Clinica e SperimentaleUniversità di PisaPisaItaly

Section editors and affiliations

  • Raffaele Coppini
    • 1
  1. 1.Department of Neurosciences, Psychology, Drug Research and Child HealthUniversity of FlorenceFlorenceItaly

Personalised recommendations