Multiple Sclerosis and the Heart

  • Camilla RocchiEmail author
  • Giorgia Mataluni
  • Doriana Landi
Living reference work entry


The ability of the central nervous system (CNS) to damage the heart depends on the physiological link between the brain and cardiovascular system. The latter is under control of interconnected areas of CNS belonging to the central autonomic network (CAN) and of two different pathways: the sympathetic and the parasympathetic nervous system. Neurological disorders that disrupt this complex system at various levels can lead to cardiovascular dysfunction. Multiple sclerosis (MS) is an inflammatory disorder of the central nervous system leading to focal and diffuse demyelination of neurons and ultimately to neurodegeneration and accumulation of disability. Recently, attention has been paid to the study of autonomic dysfunction and of cardiovascular complications of MS, as they may impact on MS prognosis and long-term disability. Acute cardiac events have been also reported in MS patients associated with inflammatory relapses. Nevertheless, treatments for MS, such as mitoxantrone or fingolimod, may impact on cardiovascular functioning via autonomic system-dependent or autonomic system-independent mechanism of action. Therefore, accurate and periodic monitoring of heart and cardiovascular system is required during disease-modifying treatments. This chapter will provide an overview of the available evidence on the role of the autonomic system in MS, to describe clinical and prognostic features of cardiac events in MS and to describe the main cardiovascular complications of disease-modifying treatments in MS.


Multiple sclerosis Cardiovascular reflexes Autonomic nervous system Heart rate variability Fingolimod Mitoxantrone 


  1. 1.
    Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung H-P, Hemmer B, et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376:221–34.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Li H, Hu F, Zhang Y, Li K. Comparative efficacy and acceptability of disease-modifying therapies in patients with relapsing–remitting multiple sclerosis: a systematic review and network meta-analysis. J Neurol [Internet]. 2019 [citato 9 giugno 2019]; Recuperato da:
  3. 3.
    Lublin FD, Reingold SC, National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis∗. Defining the clinical course of multiple sclerosis: results of an international survey. Neurology. 1996;46:907–11.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Lublin FD. New multiple sclerosis phenotypic classification. Eur Neurol. 2014;72(Suppl 1):1–5.CrossRefGoogle Scholar
  5. 5.
    Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162–73.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Racosta JM, Kimpinski K, Morrow SA, Kremenchutzky M. Autonomic dysfunction in multiple sclerosis. Auton Neurosci. 2015;193:1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Benarroch EE. The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc. 1993;68:988–1001.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Palma J-A, Benarroch EE. Neural control of the heart: recent concepts and clinical correlations. Neurology. 2014;83:261–71.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Benarroch EE. The arterial baroreflex: functional organization and involvement in neurologic disease. Neurology. 2008;71:1733–8.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Acevedo AR, Nava C, Arriada N, Violante A, Corona T. Cardiovascular dysfunction in multiple sclerosis. Acta Neurol Scand. 2000;101:85–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Low PA. Composite autonomic scoring scale for laboratory quantification of generalized autonomic failure. Mayo Clin Proc. 1993;68:748–52.PubMedCrossRefGoogle Scholar
  12. 12.
    Sletten DM, Suarez GA, Low PA, Mandrekar J, Singer W. COMPASS 31: a refined and abbreviated composite autonomic symptom score. Mayo Clin Proc. 2012;87:1196–201.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Mathias CJ. Autonomic diseases: clinical features and laboratory evaluation. J Neurol Neurosurg Psychiatry. 2003;74(3):iii31–41.Google Scholar
  14. 14.
    Electrophysiology TF of the ES. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation. 1996;93:1043–65.CrossRefGoogle Scholar
  15. 15.
    Sterman AB, Coyle PK, Panasci DJ, Grimson R. Disseminated abnormalities of cardiovascular autonomic functions in multiple sclerosis. Neurology. 1985;35:1665–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Vita G, Carolina Fazio M, Milone S, Blandino A, Salvi L, Messina C. Cardiovascular autonomic dysfunction in multiple sclerosis is likely related to brainstem lesions. J Neurol Sci. 1993;120:82–6.PubMedCrossRefGoogle Scholar
  17. 17.
    McLeod JG, Tuck RR. Disorders of the autonomic nervous system: Part 1. Pathophysiology and clinical features. Ann Neurol. 1987;21:419–30.PubMedCrossRefGoogle Scholar
  18. 18.
    Thomaides TN, Zoukos Y, Chaudhuri KR, Mathias CJ. Physiological assessment of aspects of autonomic function in patients with secondary progressive multiple sclerosis. J Neurol. 1993;240:139–43.PubMedCrossRefGoogle Scholar
  19. 19.
    Saari A, Tolonen U, Pääkkö E, Suominen K, Pyhtinen J, Sotaniemi K, et al. Cardiovascular autonomic dysfunction correlates with brain MRI lesion load in MS. Clin Neurophysiol. 2004;115:1473–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Racosta JM, Kimpinski K. Autonomic dysfunction, immune regulation, and multiple sclerosis. Clin Auton Res. 2016;26:23–31.PubMedCrossRefGoogle Scholar
  21. 21.
    Zoukos Y, Kidd D, Woodroofe MN, Kendall BE, Thompson AJ, Cuzner ML. Increased expression of high affinity IL-2 receptors and β-adrenoceptors on peripheral blood mononuclear cells is associated with clinical and MRI activity in multiple sclerosis. Brain. 1994;117:307–15.PubMedCrossRefGoogle Scholar
  22. 22.
    Habek M. Immune and autonomic nervous system interactions in multiple sclerosis: clinical implications. Clin Auton Res. 2019;29:267–75.PubMedCrossRefGoogle Scholar
  23. 23.
    Kanjwal K, Karabin B, Kanjwal Y, Grubb BP. Autonomic dysfunction presenting as postural orthostatic tachycardia syndrome in patients with multiple sclerosis. Int J Med Sci. 2010;7:62–7.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Habek M, Krbot Skorić M, Crnošija L, Gabelić T, Barun B, Adamec I. Postural orthostatic tachycardia predicts early conversion to multiple sclerosis after clinically isolated syndrome. Eur Neurol. 2017;77:253–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Crnošija L, Adamec I, Lovrić M, Junaković A, Krbot Skorić M, Lušić I, et al. Autonomic dysfunction in clinically isolated syndrome suggestive of multiple sclerosis. Clin Neurophysiol. 2016;127:864–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Flachenecker P, Reiners K, Krauser M, Wolf A, Toyka KV. Autonomic dysfunction in multiple sclerosis is related to disease activity and progression of disability. Mult Scler J. 2001;7:327–34.CrossRefGoogle Scholar
  27. 27.
    McDougall AJ, McLeod JG. Autonomic nervous system function in multiple sclerosis. J Neurol Sci. 2003;215:79–85.PubMedCrossRefGoogle Scholar
  28. 28.
    Adamec I, Crnošija L, Junaković A, Krbot Skorić M, Habek M. Progressive multiple sclerosis patients have a higher burden of autonomic dysfunction compared to relapsing remitting phenotype. Clin Neurophysiol. 2018;129:1588–94.PubMedCrossRefGoogle Scholar
  29. 29.
    Studer V, Rocchi C, Motta C, Lauretti B, Perugini J, Brambilla L, et al. Heart rate variability is differentially altered in multiple sclerosis: implications for acute, worsening and progressive disability. Mult Scler J Exp Transl Clin. 2017;3:205521731770131.Google Scholar
  30. 30.
    Nasseri K, TenVoorde BJ, Adèr HJ, Uitdehaag BM, Polman CH. Longitudinal follow-up of cardiovascular reflex tests in multiple sclerosis. J Neurol Sci. 1998;155:50–4.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Nasseri K, Uitdehaag BM, van Walderveen MA, Ader HJ, Polman CH. Cardiovascular autonomic function in patients with relapsing remitting multiple sclerosis: a new surrogate marker of disease evolution? Eur J Neurol. 1999;6:29–33.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Marrie RA, Reider N, Cohen J, Stuve O, Trojano M, Cutter G, et al. A systematic review of the incidence and prevalence of cardiac, cerebrovascular, and peripheral vascular disease in multiple sclerosis. Mult Scler J. 2015;21:318–31.CrossRefGoogle Scholar
  33. 33.
    Christiansen CF, Christensen S, Farkas DK, Miret M, Sørensen HT, Pedersen L. Risk of arterial cardiovascular diseases in patients with multiple sclerosis: a population-based cohort study. Neuroepidemiology. 2010;35:267–74.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Habek M, Mutak T, Nevajdić B, Pucić D, Crnošija L, Krbot Skorić M. Adrenergic hyperactivity: a missing link between multiple sclerosis and cardiovascular comorbidities? Acta Neurol Belg [Internet]. 2018 [citato 17 giugno 2019]; Recuperato da.
  35. 35.
    Grassi G, Seravalle G, Brambilla G, Pini C, Alimento M, Facchetti R, et al. Marked sympathetic activation and baroreflex dysfunction in true resistant hypertension. Int J Cardiol. 2014;177:1020–5.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Dominique H, Inez W, Paul D, Eijnde BO. Exercise-onset heart rate increase is slowed in multiple sclerosis patients: does a disturbed cardiac autonomic control affect exercise tolerance? NeuroRehabilitation. 2013;33:139–46.Google Scholar
  37. 37.
    Zaenker P, Favret F, Lonsdorfer E, Muff G, de Seze J, Isner-Horobeti M-E. High-intensity interval training combined with resistance training improves physiological capacities, strength and quality of life in multiple sclerosis patients: a pilot study. Eur J Phys Rehabil Med [Internet]. 2018 [citato 17 giugno 2019]; Recuperato da:
  38. 38.
    Valencia-Sanchez C, Goodman BP, Carter JL, Wingerchuk DM. The spectrum of acute cardiopulmonary events associated with multiple sclerosis exacerbations. Mult Scler J. 2019;25:758–65.CrossRefGoogle Scholar
  39. 39.
    Biso S, Wongrakpanich S, Agrawal A, Yadlapati S, Kishlyansky M, Figueredo V. A review of neurogenic stunned myocardium. Cardiovasc Psychiatry Neurol. 2017;2017:5842182.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Baumann A, Audibert G, McDonnell J, Mertes PM. Neurogenic pulmonary edema. Acta Anaesthesiol Scand. 2007;51:447–55.PubMedCrossRefGoogle Scholar
  41. 41.
    Watanabe M, Izumo M, Akashi YJ. Novel understanding of Takotsubo syndrome. Int Heart J. 2018;59:250–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Templin C, Ghadri JR, Diekmann J, Napp LC, Bataiosu DR, Jaguszewski M, et al. Clinical features and outcomes of Takotsubo (stress) cardiomyopathy. N Engl J Med. 2015;373:929–38.PubMedCrossRefGoogle Scholar
  43. 43.
    Lyon AR, Bossone E, Schneider B, Sechtem U, Citro R, Underwood SR, et al. Current state of knowledge on Takotsubo syndrome: a position statement from the taskforce on Takotsubo syndrome of the heart failure association of the European Society of Cardiology: current state of knowledge on Takotsubo syndrome. Eur J Heart Fail. 2016;18:8–27.PubMedCrossRefGoogle Scholar
  44. 44.
    Kingwell E, Koch M, Leung B, Isserow S, Geddes J, Rieckmann P, et al. Cardiotoxicity and other adverse events associated with mitoxantrone treatment for MS. Neurology. 2010;74:1822–6.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Hartung H-P, Gonsette R, König N, Kwiecinski H, Guseo A, Morrissey SP, et al. Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet. 2002;360:2018–25.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Millefiorini E, Gasperini C, Pozzilli C, D’Andrea F, Bastianello S, Trojano M, et al. Randomized placebo-controlled trial of mitoxantrone in relapsing-remitting multiple sclerosis: 24-month clinical and MRI outcome. J Neurol. 1997;244:153–9.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Bastianello S, Pozzilli C, D’Andrea F, Millefiorini E, Trojano M, Morino S, et al. A controlled trial of mitoxantrone in multiple sclerosis: serial MRI evaluation at one year. Can J Neurol Sci. 1994;21:266–70.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Edan G, Miller D, Clanet M, Confavreux C, Lyon-Caen O, Lubetzki C, et al. Therapeutic effect of mitoxantrone combined with methylprednisolone in multiple sclerosis: a randomised multicentre study of active disease using MRI and clinical criteria. J Neurol Neurosurg Psychiatry. 1997;62:112–8.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Marriott JJ, Miyasaki JM, Gronseth G, O’Connor PW. Evidence report: the efficacy and safety of mitoxantrone (Novantrone) in the treatment of multiple sclerosis: report of the therapeutics and technology assessment subcommittee of the American Academy of Neurology. Neurology. 2010;74:1463–70.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Landi D, Vollaro S, Pellegrino G, Mulas D, Ghazaryan A, Falato E, et al. Oral fingolimod reduces glutamate-mediated intracortical excitability in relapsing-remitting multiple sclerosis. Clin Neurophysiol. 2015;126:165–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Kovarik JM, Lu M, Riviere G-J, Barbet I, Maton S, Goldwater DR, et al. The effect on heart rate of combining single-dose fingolimod with steady-state atenolol or diltiazem in healthy subjects. Eur J Clin Pharmacol. 2008;64:457–63.PubMedCrossRefGoogle Scholar
  52. 52.
    Calabresi PA, Radue E-W, Goodin D, Jeffery D, Rammohan KW, Reder AT, et al. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13:545–56.PubMedCrossRefGoogle Scholar
  53. 53.
    Kappos L, Antel J, Comi G, Montalban X, O’Connor P, Polman CH, et al. Oral Fingolimod (FTY720) for relapsing multiple sclerosis. N Engl J Med. 2006;355:1124–40.PubMedCrossRefGoogle Scholar
  54. 54.
    Cohen JA, Barkhof F, Comi G, Hartung H-P, Khatri BO, Montalban X, et al. Oral Fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362:402–15.PubMedCrossRefGoogle Scholar
  55. 55.
    Kaplan TB, Berkowitz AL, Samuels MA. Cardiovascular dysfunction in multiple sclerosis. Neurologist. 2015;20:108–14.PubMedCrossRefGoogle Scholar
  56. 56.
    For the FIRST Study Investigators, Gold R, Comi G, Palace J, Siever A, Gottschalk R, et al. Assessment of cardiac safety during fingolimod treatment initiation in a real-world relapsing multiple sclerosis population: a phase 3b, open-label study. J Neurol. 2014;261:267–76.CrossRefGoogle Scholar
  57. 57.
    Hughes B, Cascione M, McCague K, Pestreich L, Schofield L, Kim E, et al. Cardiac effects of fingolimod after first dose administration and therapy change in patients with multiple sclerosis (P01.170). Neurology. 2013;80:P01.170.Google Scholar
  58. 58.
    Meissner A, Miro F, Jiménez-Altayó F, Jurado A, Vila E, Planas AM. Sphingosine-1-phosphate signalling – a key player in the pathogenesis of Angiotensin II-induced hypertension. Cardiovasc Res. 2017;113:123–33.PubMedCrossRefGoogle Scholar
  59. 59.
    Rossi S, Rocchi C, Studer V, Motta C, Lauretti B, Germani G, et al. The autonomic balance predicts cardiac responses after the first dose of fingolimod. Mult Scler J. 2015;21:206–16.CrossRefGoogle Scholar
  60. 60.
    Cantalupo A, Gargiulo A, Dautaj E, Liu C, Zhang Y, Hla T, et al. S1PR1 (sphingosine-1-phosphate receptor 1) signaling regulates blood flow and pressure. Hypertension. 2017;70:426–34.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kappos L, Li DKB, Stüve O, Hartung H-P, Freedman MS, Hemmer B, et al. Safety and efficacy of siponimod (BAF312) in patients with relapsing-remitting multiple sclerosis: dose-blinded, randomized extension of the phase 2 BOLD study. JAMA Neurol. 2016;73:1089.PubMedCrossRefGoogle Scholar
  62. 62.
    Comi G, Freedman MS, Kappos L, Olsson TP, Miller AE, Wolinsky JS, et al. Pooled safety and tolerability data from four placebo-controlled teriflunomide studies and extensions. Mult Scler Relat Disord. 2016;5:97–104.PubMedCrossRefGoogle Scholar
  63. 63.
    Baker JF, Sauer B, Teng C-C, George M, Cannon GW, Ibrahim S, et al. Initiation of disease-modifying therapies in rheumatoid arthritis is associated with changes in blood pressure. JCR: Journal of Clinical Rheumatology. 2018;24:203–9.PubMedGoogle Scholar
  64. 64.
    Rozman B. Leflunomide and hypertension. Ann Rheum Dis. 2002;61:567–9.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Hermann R, Litwin JS, Friberg LE, Dangond F, Munafo A. Effects of cladribine tablets on heart rate, atrio-ventricular conduction and cardiac repolarization in patients with relapsing multiple sclerosis. Br J Clin Pharmacol [Internet]. 2019 [citato 16 giugno 2019]; Recuperato da:
  66. 66.
    Cook S, Leist T, Comi G, Montalban X, Giovannoni G, Nolting A, et al. Safety of cladribine tablets in the treatment of patients with multiple sclerosis: an integrated analysis. Mult Scler Relat Disord. 2019;29:157–67.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Camilla Rocchi
    • 1
    Email author
  • Giorgia Mataluni
    • 2
  • Doriana Landi
    • 2
  1. 1.Neurology Unit, Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
  2. 2.Multiple Sclerosis Unit, Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly

Section editors and affiliations

  • Roberto Bergamaschi
    • 1
  1. 1.Istituto Neurologico Nazionale ‘C. Mondino’PaviaItaly

Personalised recommendations