Advertisement

Neuroprotective and Antiaging Essential Oils and Lipids in Plants

  • Mamali Das
  • Kasi Pandima DeviEmail author
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Age-related neurological disorders, such as Alzheimer’s and Parkinson’s disease, have a huge medical and economical impact in both the industrialized and nonindustrialized countries. Neurodegenerative diseases alone affect 74 million people worldwide and among them, 6.8 million die every year. Essential oils (EOs) and plant lipids (PLs) are used since long time in traditional medicine for their ability to manage a wide range of diseases. There are numerous reports on the neuroprotective and antiaging potentials and mechanism of PLs and EOs. Several clinically important EOs and their components from Mentha piperita, Eucalyptus globulus, Nigella sativa, Jasminum sambac, Rosmarinus officinalis, and plant-derived lipids like stearidonic acid (SDA) from Echium oil, stigmasterol, β-sitosterol, from Datura innoxa, palmitic acid, linoleic acid from Celastrus paniculatus, and many more plants are reported for their neuroprotective and antiaging effects. This chapter aims to emphasize on the current finding on EOs and PLs tested against aging-associated neurodegenerative disorders like Alzheimer disease (AD) and possible molecular mechanism of their neuroprotective effects.

Keywords

Essential oils Plant lipids Alzheimer’s disease Cholinesterase inhibitors Antioxidants Amyloid-β NFTs Dementia BACE1 

Notes

Acknowledgment

The authors gladly acknowledge the bioinformatics infrastructure facility, Alagappa University, funded by the Department of Biotechnology, Ministry of Science and Technology, Government of India (No. BT/BI/25/015/2012). Mamali Das acknowledges DST–PURSE for offering Research Fellowship.

References

  1. 1.
    Harman D (1981) The aging process. Proc Natl Acad Sci U S A 78(11):7124–7128PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Klass MR (1983) A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech Ageing Dev 22(3):279–286PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Piper MD, Partridge L (2016) Protocols to study aging in Drosophila. Methods Mol Biol 1478:291–302PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Moskalev AA, Smit-McBride Z et al (2012) Gadd45 proteins: relevance to aging, longevity and age-related pathologies. Ageing Res Rev 11(1):51–66PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Talens RP, Christensen K et al (2012) Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs. Aging Cell 11(4):694–703PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy – inflammation – cell death axis in organismal aging. Science 333(6046):1109–1112PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Edris AE (2007) Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother Res 21(4):308–323PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Guenther E (1950) The essention oils. D. Van Nostrand Company, LondonGoogle Scholar
  10. 10.
    Smith-Palmer A, Stewart J, Fyfe L (2001) The potential application of plant essential oils as natural food preservatives in soft cheese. Food Microbiol 18(4):463–470CrossRefGoogle Scholar
  11. 11.
    Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods – a review. Int J Food Microbiol 94(3):223–253PubMedCrossRefGoogle Scholar
  12. 12.
    Keville K, Green M (2012) Aromatherapy: a complete guide to the healing art. Crossing Press, BerkeleyGoogle Scholar
  13. 13.
    Alabdulkarim B, Bakeet ZA, Arzoo S (2012) Role of some functional lipids in preventing diseases and promoting health. J King Saud Uni – Sci 24(4):319–329CrossRefGoogle Scholar
  14. 14.
    Innis SM (2008) Dietary omega 3 fatty acids and the developing brain. Brain Res 1237:35–43PubMedCrossRefGoogle Scholar
  15. 15.
    Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of ageing and cognitive decline. Nature 464(7288):529PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    González-Burgos E, Carretero ME, Gómez-Serranillos MP (2011) Sideritis spp.: uses, chemical composition and pharmacological activities – a review. J Ethnopharmacol 135(2):209–225PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Angioni A, Barra A, Coroneo V, Dessi S, Cabras P (2006) Chemical composition, seasonal variability, and antifungal activity of Lavandula stoechas L. ssp. stoechas essential oils from stem/leaves and flowers. J Agric Food Chem 54(12):4364–4370PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Ramadan MF, Zayed R, El-Shamy H (2007) Screening of bioactive lipids and radical scavenging potential of some solanaceae plants. Food Chem 103(3):885–890CrossRefGoogle Scholar
  19. 19.
    Hassanien MF, Kinni SG, Moersel JT (2010) Bioactive lipids, fatty acids and radical scavenging activity of Indian Celastrus paniculatus oil. J Appl Bot Food Qual 83(2):157–162Google Scholar
  20. 20.
    Eckert GP, Franke C, Nöldner M, Rau O, Wurglics M, Schubert-Zsilavecz M, Müller WE (2010) Plant derived omega-3-fatty acids protect mitochondrial function in the brain. Pharmacol Res 61(3):234–241PubMedCrossRefGoogle Scholar
  21. 21.
    Longvah T, Deosthale YG (1991) Chemical and nutritional studies on Hanshi (Perilla frutescens), a traditional oilseed from Northeast India. J Am Oil Chem Soc 68(10):781–784CrossRefGoogle Scholar
  22. 22.
    Talboom JS, Velazquez R, Oddo S (2015) The mammalian target of rapamycin at the crossroad between cognitive aging and Alzheimer’s disease. NPJ Aging Mech Dis 1:15008.  https://doi.org/10.1038/1:npjamd2015.8CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    van Ham TJ, Breitling R, Swertz MA, Nollen EA (2009) Neurodegenerative diseases: lessons from genome-wide screens in small model organisms. EMBO Mol Med 1(8–9):360–370PubMedPubMedCentralGoogle Scholar
  24. 24.
    Passe TJ, Rajagopalan P, Tupler LA, Byrum CE, Macfall JR, Krishnan KR (1997) Age and sex effects on brain morphology. Prog Neuropsychopharmacol Biol Psychiatry 21(8):1231–1237PubMedCrossRefGoogle Scholar
  25. 25.
    Nussbaum RL, Ellis CE (2003) Alzheimer’s disease and Parkinson’s disease. N Engl J Med 348(14):1356–2364PubMedCrossRefGoogle Scholar
  26. 26.
    Reitz C (2012) Alzheimer’s disease and the amyloid cascade hypothesis: a critical review. Int J Alzheimers Dis 2012:369808.  https://doi.org/10.1155/2012/369808CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ayaz M, Junaid M, Ullah F, Sadiq A, Khan MA, Ahmad W, Shah MR, Imran M, Ahmad S (2015) Comparative chemical profiling, cholinesterase inhibitions and anti-radicals properties of essential oils from Polygonum hydropiper L: a preliminary anti-Alzheimer’s study. Lipids Health Dis 14(1):141PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ahmad S, Ullah F, Sadiq A, Ayaz M, Imran M, Ali I, Zeb A, Ullah F, Shah MR (2016) Chemical composition, antioxidant and anticholinesterase potentials of essential oil of Rumex hastatus D. Don collected from the North West of Pakistan. BMC Complement Altern Med 16(1):29PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Okello EJ, Dimaki C, Howes MJ, Houghton PJ, Perry EK (2008) In vitro inhibition of human acetyl-and butyryl-cholinesterase by Narcissus poeticus L.(Amaryllidaceae) flower absolute. Int J Essent Oil Ther 2(3):105–110Google Scholar
  30. 30.
    Loizzo MR, Menichini F, Conforti F, Tundis R, Bonesi M, Saab AM, Statti GA, de Cindio B, Houghton PJ, Menichini F, Frega NG (2009) Chemical analysis, antioxidant, antiinflammatory and anticholinesterase activities of Origanum ehrenbergii Boiss and Origanum syriacum L. essential oils. Food Chem 117(1):174–180CrossRefGoogle Scholar
  31. 31.
    Souza A, Silva MC, Cardoso-Lopes EM, Cordeiro I, Sobral ME, Young MC, Moreno PR (2009) Differential acetyl cholinesterase inhibition by volatile oils from two specimens of Marlierea racemosa (Myrtaceae) collected from different areas of the Atlantic Rain Forest. Nat Prod Commun 8:1143–1146Google Scholar
  32. 32.
    Loizzo MR, Jemia MB, Senatore F, Bruno M, Menichini F, Tundis R (2013) Chemistry and functional properties in prevention of neurodegenerative disorders of five Cistus species essential oils. Food Chem Toxicol 59:586–594PubMedCrossRefGoogle Scholar
  33. 33.
    Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221(2):555–563PubMedCrossRefGoogle Scholar
  34. 34.
    Anand R, Gill KD, Mahdi AA (2014) Therapeutics of Alzheimer’s disease: past, present and future. Neuropharmacology 76:27–50PubMedCrossRefGoogle Scholar
  35. 35.
    Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M (2010) Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 9(7):702–716PubMedCrossRefGoogle Scholar
  36. 36.
    Shimizu K, Gyokusen M, Kitamura S, Kawabe T, Kozaki T, Ishibashi K, Izumi R, Mizunoya W, Ohnuki K, Kondo R (2008) Essential oil of lavender inhibited the decreased attention during a long-term task in humans. Biosci Biotechnol Biochem 72(7):1944–1947PubMedCrossRefGoogle Scholar
  37. 37.
    Shimizu Y, Imayoshi Y, Kato M, Maeda K, Iwabuchi H, Shimomura K (2009) Volatiles from leaves of field-grown plants and shoot cultures of Gynura bicolor DC. Flavour Fragr J 24(5):251–258CrossRefGoogle Scholar
  38. 38.
    Faixova Z, Faix S (2008) Biological effects of rosemary (Rosmarinus officinalis L) essential oil (a review). Folia Vet 52(3–4):135–139Google Scholar
  39. 39.
    Hongratanaworakit T (2009) Simultaneous aromatherapy massage with rosemary oil on humans. Sci Pharm 77(2):375–388CrossRefGoogle Scholar
  40. 40.
    Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8(2):101PubMedCrossRefGoogle Scholar
  41. 41.
    De Strooper B, Vassar R, Golde T (2010) The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 6(2):99–107PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Lee C, Park GH, Kim CY, Jang JH (2011) [6]-gingerol attenuates β-amyloid-induced oxidative cell death via fortifying cellular antioxidant defense system. Food Chem Toxicol 49(6):1261–1269PubMedCrossRefGoogle Scholar
  43. 43.
    Hong YK, Park SH, Lee S, Hwang S, Lee MJ, Kim D, Lee JH, Han SY, Kim ST, Kim YK, Jeon S (2011) Neuroprotective effect of SuHeXiang Wan in Drosophila models of Alzheimer’s disease. J Ethnopharmacol 134(3):1028–1032PubMedCrossRefGoogle Scholar
  44. 44.
    Azizi Z, Ebrahimi S, Saadatfar E, Kamalinejad M, Majlessi N (2012) Cognitive-enhancing activity of thymol and carvacrol in two rat models of dementia. Behav Pharmacol 23(3):241–249PubMedCrossRefGoogle Scholar
  45. 45.
    Cioanca O, Hritcu L, Mihasan M, Trifan A, Hancianu M (2014) Inhalation of coriander volatile oil increased anxiolytic–antidepressant-like behaviors and decreased oxidative status in beta-amyloid (1–42) rat model of Alzheimer’s disease. Physiol Behav 131:68–74PubMedCrossRefGoogle Scholar
  46. 46.
    Majlessi N, Choopani S, Kamalinejad M, Azizi Z (2012) Amelioration of amyloid β-induced cognitive deficits by Zataria multiflora Boiss. essential oil in a rat model of Alzheimer’s disease. CNS Neurosci Ther 18(4):295–301PubMedCrossRefGoogle Scholar
  47. 47.
    Ayaz M, Sadiq A, Junaid M, Ullah F, Subhan F, Ahmed J (2017) Neuroprotective and anti-aging potentials of essential oils from aromatic and medicinal plants. Front Aging Neurosci 9:168PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ahmad S, Ullah F, Ayaz M, Sadiq A, Imran M (2015) Antioxidant and anticholinesterase investigations of Rumex hastatus D. Don: potential effectiveness in oxidative stress and neurological disorders. Biol Res 48(1):20PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Kamal Z, Ullah F, Ayaz M, Sadiq A, Ahmad S, Zeb A, Hussain A, Imran M (2015) Anticholinesterse and antioxidant investigations of crude extracts, subsequent fractions, saponins and flavonoids of Atriplex laciniata L.: potential effectiveness in Alzheimer’s and other neurological disorders. Biol Res 48(1):21PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Sadiq A, Mahmood F, Ullah F, Ayaz M, Ahmad S, Haq FU, Khan G, Jan MS (2015) Synthesis, anticholinesterase and antioxidant potentials of ketoesters derivatives of succinimides: a possible role in the management of Alzheimer’s. Chem Cent J 9(1):1–9CrossRefGoogle Scholar
  51. 51.
    Shah SM, Ayaz M, Khan AU, Ullah F, Farhan, Shah AU, Iqbal H, Hussain S (2015) 1, 1-diphenyl, 2-picrylhydrazyl free radical scavenging, bactericidal, fungicidal and leishmanicidal properties of Teucrium stocksianum. Toxicol Ind Health 31(11):1037–1043PubMedCrossRefGoogle Scholar
  52. 52.
    Ullah F, Ayaz M, Sadiq A, Hussain A, Ahmad S, Imran M, Zeb A (2016) Phenolic, flavonoid contents, anticholinesterase and antioxidant evaluation of Iris germanica var; florentina. Nat Prod Res 30(12):1440–1444PubMedCrossRefGoogle Scholar
  53. 53.
    Engel J, Pedley TA, Aicardi J (2008) Epilepsy: a comprehensive textbook. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  54. 54.
    Hancianu M, Cioanca O, Mihasan M, Hritcu L (2013) Neuroprotective effects of inhaled lavender oil on scopolamine-induced dementia via anti-oxidative activities in rats. Phytomedicine 20(5):446–452PubMedCrossRefGoogle Scholar
  55. 55.
    Tomaino A, Cimino F, Zimbalatti V, Venuti V, Sulfaro V, De Pasquale A, Saija A (2005) Influence of heating on antioxidant activity and the chemical composition of some spice essential oils. Food Chem 89(4):549–554CrossRefGoogle Scholar
  56. 56.
    El-Ghorab A, Shaaban HA, El-Massry KF, Shibamoto T (2008) Chemical composition of volatile extract and biological activities of volatile and less-volatile extracts of juniper berry (Juniperus drupacea L.) fruit. J Agric Food Chem 56(13):5021–5025PubMedCrossRefGoogle Scholar
  57. 57.
    Wei A, Shibamoto T (2010) Antioxidant/lipoxygenase inhibitory activities and chemical compositions of selected essential oils. J Agric Food Chem 58(12):7218–7225PubMedCrossRefGoogle Scholar
  58. 58.
    Botsoglou NA, Florou-Paneri P, Christaki E, Giannenas I, Spais AB (2004) Performance of rabbits and oxidative stability of muscle tissues as affected by dietary supplementation with oregano essential oil. Arch Anim Nutr 58(3):209–218PubMedCrossRefGoogle Scholar
  59. 59.
    Candan F, Unlu M, Tepe B, Daferera D, Polissiou M, Sökmen A, Akpulat HA (2003) Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp. millefolium Afan. (Asteraceae). J Ethnopharmacol 87(2):215–220PubMedCrossRefGoogle Scholar
  60. 60.
    Tepe B, Donmez E, Unlu M, Candan F, Daferera D, Vardar-Unlu G, Polissiou M, Sokmen A (2004) Antimicrobial and antioxidative activities of the essential oils and methanol extracts of Salvia cryptantha (Montbret et Aucher ex Benth.) and Salvia multicaulis (Vahl). Food Chem 84(4):519–525CrossRefGoogle Scholar
  61. 61.
    El-massry KF, El-Ghorab AH (2006) Effect of essential oils and non-volatile extracts of some aromatic plants on Cu++-induced oxidative modification of human low-density lipoprotein (LDL). J Essent Oil Bear Plants 9(3):292–299CrossRefGoogle Scholar
  62. 62.
    Mimica-Dukic N, Bozin B, Sokovic M, Simin N (2004) Antimicrobial and antioxidant activities of Melissa officinalis L.(Lamiaceae) essential oil. J Agric Food Chem 52(9):2485–2459PubMedCrossRefGoogle Scholar
  63. 63.
    Söderberg M, Edlund C, Kristensson K, Dallner G (1991) Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids 26(6):421PubMedCrossRefGoogle Scholar
  64. 64.
    Gemma C, Vila J, Bachstetter A, Bickford PC (2007) Oxidative stress and the aging brain: from theory to prevention. In: Riddle DR, editor. Brain Aging: Models, Methods, and Mechanisms. Boca Raton (FL): CRC Press/Taylor & FrancisGoogle Scholar
  65. 65.
    Adibhatla RM, Hatcher JF (2008) Altered lipid metabolism in brain injury and disorders. Subcell Biochem 49:241–268PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Chiurchiù V, Orlacchio A, Maccarrone M (2016) Is modulation of oxidative stress an answer? The state of the art of redox therapeutic actions in neurodegenerative diseases. Oxidative Med Cell Longev 2016:7909380CrossRefGoogle Scholar
  67. 67.
    Ramirez-Ramirez V, Macias-Islas MA, Ortiz GG, Pacheco-Moises F, Torres-Sanchez ED, Sorto-Gomez TE, Cruz-Ramos JA, Orozco-Aviña G, Celis De La Rosa AJ (2013) Efficacy of fish oil on serum of TNFα, IL-1β, and IL-6 oxidative stress markers in multiple sclerosis treated with interferon beta-1b. Oxid Med Cell Longev 2013:709493PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Lauritzen LA, Hansen HS, Jørgensen MH, Michaelsen KF (2001) The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog Lipid Res 40(1):1–94PubMedCrossRefGoogle Scholar
  69. 69.
    Schaefer EJ, Bongard V, Beiser AS, Lamon-Fava S, Robins SJ, Au R, Tucker KL, Kyle DJ, Wilson PW, Wolf PA (2006) Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch Neurol 63(11):1545–1550PubMedCrossRefGoogle Scholar
  70. 70.
    Yurko-Mauro K, Alexander DD, Van Elswyk ME (2015) Docosahexaenoic acid and adult memory: a systematic review and meta-analysis. PLoS One 10(3):e0120391PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Kotani S, Sakaguchi E, Warashina S, Matsukawa N, Ishikura Y, Kiso Y, Sakakibara M, Yoshimoto T, Guo J, Yamashima T (2006) Dietary supplementation of arachidonic and docosahexaenoic acids improves cognitive dysfunction. Neurosci Res 56(2):159–164PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Chiu CC, Su KP, Cheng TC, Liu HC, Chang CJ, Dewey ME, Stewart R, Huang SY (2008) The effects of omega-3 fatty acids monotherapy in Alzheimer’s disease and mild cognitive impairment: a preliminary randomized double-blind placebo-controlled study. Prog Neuropsychopharmacol Biol Psychiatry 32(6):1538–1544PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Koletzko B, Larqué E, Demmelmair H (2007) Placental transfer of long-chain polyunsaturated fatty acids (LC-PUFA). J Perinat Med 35(S1):S5–11PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Bazan NG, Molina MF, Gordon WC (2011) Docosahexaenoic acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer’s, and other neurodegenerative diseases. Annu Rev Nutr 31:321–351PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Martin RE, Bazan NG (1992) Changing fatty acid content of growth cone lipids prior to synaptogenesis. J Neurochem 59(1):318–325PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Larqué E, Krauss-Etschmann S, Campoy C, Hartl D, Linde J, Klingler M, Demmelmair H, Caño A, Gil A, Bondy B, Koletzko B (2006) Docosahexaenoic acid supply in pregnancy affects placental expression of fatty acid transport proteins. Am J Clin Nutr 84(4):853–861PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    De Vriese SR, Matthys C, De Henauw S, De Backer G, Dhont M, Christophe AB (2002) Maternal and umbilical fatty acid status in relation to maternal diet. Prostaglandins Leukot Essent Fatty Acids 67(6):389–396PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Dunstan JA, Mori TA, Barden A, Beilin LJ (2004) Effects of n-3 polyunsaturated fatty acid supplementation in pregnancy on maternal and fetal erythrocyte fatty acid composition. Eur J Clin Nutr 58(3):429PubMedCrossRefGoogle Scholar
  79. 79.
    de Urquiza AM, Liu S, Sjöberg M, Zetterström RH, Griffiths W, Sjövall J, Perlmann T (2000) Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 290(5499):2140–2144PubMedCrossRefGoogle Scholar
  80. 80.
    Dyall SC (2015) Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Front Aging Neurosci 7:52PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Plourde M, Fortier M, Vandal M, Tremblay-Mercier J, Freemantle E, Begin M, Pifferi F, Cunnane SC (2007) Unresolved issues in the link between docosahexaenoic acid and Alzheimer’s disease. Prostaglandins Leukot Essent Fatty Acids 77(5):301–308PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Conquer JA, Tierney MC, Zecevic J, Bettger WJ, Fisher RH (2000) Fatty acid analysis of blood plasma of patients with Alzheimer’s disease, other types of dementia, and cognitive impairment. Lipids 35(12):1305–1312PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Greiner RS, Moriguchi T, Hutton A, Slotnick BM, Salem N (1999) Rats with low levels of brain docosahexaenoic acid show impaired performance in olfactory-based and spatial learning tasks. Lipids 34(1):S239–S243PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Bazan NG (2009) Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer’s disease. J Lipid Res 50:S400–S405PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Cole GM, Frautschy SA (2010) DHA may prevent age-related dementia. J Nutr 140(4):869–874PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Hashimoto M, Tanabe Y, Fujii Y, Hagiwara R, Yamasaki H, Shido O (2002) Mechanism of improvement of spatial cognition with dietary docosahexaenoic acid. Nihon yakurigaku zasshi. Folia Pharmacol Jpn 120(1):54P–56PGoogle Scholar
  87. 87.
    Akbar M, Calderon F, Wen Z, Kim HY (2005) Docosahexaenoic acid: a positive modulator of Akt signaling in neuronal survival. Proc Natl Acad Sci U S A 102(31):10858–10863PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Wu A, Ying Z, Gomez-Pinilla F (2008) Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition. Neuroscience 155(3):751–759PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Calon F, Lim GP, Morihara T, Yang F, Ubeda O, Salem N, Frautschy SA, Cole GM (2005) Dietary n-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer’s disease. Eur J Neurosci 22(3):617–626PubMedCrossRefGoogle Scholar
  90. 90.
    Elgersma Y, Sweatt JD, Giese KP (2004) Mouse genetic approaches to investigating calcium/calmodulin-dependent protein kinase II function in plasticity and cognition. J Neurosci 24(39):8410–8415PubMedCrossRefGoogle Scholar
  91. 91.
    Grimm MO, Kuchenbecker J, Grösgen S, Burg VK, Hundsdörfer B, Rothhaar TL, Friess P, De Wilde MC, Broersen LM, Penke B, Péter M (2011) Docosahexaenoic acid reduces amyloid β production via multiple pleiotropic mechanisms. J Biol Chem 286(16):14028–14039PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Nishikawa M, Kimura S, Akaike N (1994) Facilitatory effect of docosahexaenoic acid on N-methyl-D-aspartate response in pyramidal neurones of rat cerebral cortex. J Physiol 475(1):83–93PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Poling JS, Karanian JW, Salem N, Vicini S (1995) Time-and voltage-dependent block of delayed rectifier potassium channels by docosahexaenoic acid. Mol Pharmacol 47(2):381–390PubMedGoogle Scholar
  94. 94.
    Horrocks LA, Farooqui AA (2004) Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot Essent Fatty Acids 70(4):361–372PubMedCrossRefGoogle Scholar
  95. 95.
    Jump DB (2002) Dietary polyunsaturated fatty acids and regulation of gene transcription. Curr Opin Lipidol 13(2):155–164PubMedCrossRefGoogle Scholar
  96. 96.
    Lim GP, Calon F, Morihara T, Yang F, Teter B, Ubeda O, Salem N, Frautschy SA, Cole GM (2005) A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J Neurosci 25(12):3032–3040PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Fernandes JS, Mori MA, Ekuni R, Oliveira RM, Milani H (2008) Long-term treatment with fish oil prevents memory impairments but not hippocampal damage in rats subjected to transient, global cerebral ischemia. Nutr Res 28(11):798–808PubMedCrossRefGoogle Scholar
  98. 98.
    Pomponi M, Pomponi M (2008) DHA deficiency and Alzheimer’s disease. Clin Nutr 27(1):170PubMedCrossRefGoogle Scholar
  99. 99.
    Su HM (2010) Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance. J Nutr Biochem 21(5):364–373PubMedCrossRefGoogle Scholar
  100. 100.
    Pasinetti GM, Wang J, Ho L, Zhao W, Dubner L (2015) Roles of resveratrol and other grape-derived polyphenols in Alzheimer’s disease prevention and treatment. Biochim Biophys Acta 1852(6):1202–1208PubMedCrossRefGoogle Scholar
  101. 101.
    Patel KR, Scott E, Brown VA, Gescher AJ, Steward WP, Brown K (2011) Clinical trials of resveratrol. Ann N Y Acad Sci 1215(1):161–169PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyAlagappa University [Science Campus]KaraikudiIndia

Personalised recommendations