Advertisement

Flavonoids – Food Sources, Health Benefits, and Mechanisms Involved

  • Aleksandra KozłowskaEmail author
  • Dorota Szostak-Węgierek
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

In recent years, growing attention has been focused on the use of natural sources of antioxidants in the prevention of chronic diseases. Flavonoids are the examples of such substances. It is a group of bioactive compounds that are widely distributed in many plant-based foods and beverages. Flavonoid-rich products include, among others, berries, citrus fruits, grapes, cherries, dock, arugula, onions, artichokes, soybeans, cowpeas, black beans, parsley, oregano, and tea. Flavonoids exhibit a wide range of positive effects, such as strong antioxidant, anti-inflammatory, and antiplatelet activities. They may contribute to the prevention of chronic diseases, including metabolic disorders, diabetes, and cardiovascular disease, because of their beneficial effect on blood lipids, blood pressure, plasma glucose levels, and also stabilization of athetosclerotic plaque. Furthermore, evidence from epidemiological, animal, and in vitro studies support protective effects of foods and dietary supplements rich in flavonoids against some types of cancer, Alzheimer’s disease, Parkinson’s disease, some viral infections, cataract, erectile dysfunction, and inflammatory bowel disease. Consumption of flavonoids with diet appears to be safe. There is a growing body of evidence that a diet rich in these substances is beneficial for health and its promotion is thus justifiable.

Keywords

Flavonoids Antioxidants Bioactive compounds Chronic diseases Prevention Neurodegenerative diseases Cataract Erectile dysfunction Inflammatory bowel disease Type 2 diabetes 

References

  1. 1.
    Middleton E Jr (1998) Effect of plant flavonoids on immune and inflammatory cell function. Adv Exp Med Biol 439:175–182PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Scientific World Journal 2013:162750PubMedPubMedCentralGoogle Scholar
  3. 3.
    Kozłowska A, Szostak-Węgierek D (2014) Flavonoids-food sources and health benefits. Rocz Panstw Zakl Hig 65:79–85PubMedPubMedCentralGoogle Scholar
  4. 4.
    Pollastri S, Tattini M (2011) Flavonols: old compounds for old roles. Ann Bot 108:1225–1233PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Csepregi K, Neugart S, Schreiner M, Hideg E (2016) Comparative evaluation of total antioxidant capacities of plant polyphenols. Molecules 21:28CrossRefGoogle Scholar
  6. 6.
    Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47.  https://doi.org/10.1017/jns.2016.41CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bhagwat S, Haytowits DB, Holden JM (2013) USDA Database for the flavonoid content of selected foods. Release 3.1. Nutrient Data Laboratory, Beltsville Human Nutrition Research Center Agricultural Research Service U.S. Department of Agriculture, 1–155Google Scholar
  8. 8.
    Zakaryan H, Arabyan E, Oo A, Zandi K (2017) Flavonoids: promising natural compounds against viral infections. Arch Virol 162:2539–2551.  https://doi.org/10.1007/s00705-017-3417-yCrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bhaswant M, Fanning K, Netzel M, Mathai ML, Panchal SK, Brown L (2015) Cyanidin 3-glucoside improves diet-induced metabolic syndrome in rats. Pharmacol Res 102:208–217PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Kim K, Vance TM, Chun OK (2016) Estimated intake and major food sources of flavonoids among US adults: changes between 1999–2002 and 2007–2010 in NHANES. Eur J Nutr 55:833–843PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Witkowska AM, Zujko ME, Waskiewicz A, Terlikowska KM, Piotrowski W (2015) Comparison of various databases for estimation of dietary polyphenol intake in the population of Polish adults. Forum Nutr 7:9299–9308Google Scholar
  12. 12.
    Kozłowska A, Przekop D, Szostak-Węgierek D (2015) Flavonoids intake among Polish and Spanish students. Rocz Panstw Zakl Hig 66(4):319–325PubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang Y, Qian J, Cao J, Wang D, Liu C, Yang R, Li X, Sun C (2017) Antioxidant capacity, anticancer ability and flavonoids composition of 35 citrus (Citrus reticulata Blanco) varieties. Molecules 22:–114.  https://doi.org/10.3390/molecules22071114PubMedCentralCrossRefGoogle Scholar
  14. 14.
    Wen L, Zhao Y, Jiang Y, Yu L, Zeng X, Yang J, Tian M, Liu H, Yang B (2017) Identification of a flavonoid C-glycoside as potent antioxidant. Free Radic Biol Med 110:92–101PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Wen L, Jiang Y, Yang J, Zhao Y, Tian M, Yang B (2017) Structure, bioactivity, and synthesis of methylated flavonoids. Ann N Y Acad Sci 1398:120–129PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Marunaka Y (2017) Actions of quercetin, a flavonoid, on ion transporters: its physiological roles. Ann N Y Acad Sci 1398:142–151PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Jurikova T, Mlcek J, Skrovankova S, Sumczynski D, Sochor J, Hlavacova I, Snopek L, Orsavova J (2017) Fruits of Black Chokeberry Aronia melanocarpa in the prevention of chronic diseases. Molecules 22.  https://doi.org/10.3390/molecules22060944PubMedCentralCrossRefGoogle Scholar
  18. 18.
    Majewska-Wierzbicka M, Czeczot H (2012) Flavonoids in the prevention and treatment of cardiovascular diseases. Pol Merkur Lekarski 32:50–54PubMedPubMedCentralGoogle Scholar
  19. 19.
    Faggio C, Sureda A, Morabito S, Sanches-Silva A, Mocan A, Nabavi SF, Nabavi SM (2017) Flavonoids and platelet aggregation: a brief review. Eur J Pharmacol 807:91–101PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Lin SH, Huang KJ, Weng CF, Shiuan D (2015) Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening. Drug Des Devel Ther 9:3313–3324PubMedPubMedCentralGoogle Scholar
  21. 21.
    Li D, Zhang Y, Liu Y, Sun R, Xia M (2015) Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients. J Nutr 145:742–748PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Zhu Y, Huang X, Zhang Y, Wang Y, Liu Y, Sun R, Xia M (2014) Anthocyanin supplementation improves HDL-associated paraoxonase 1 activity and enhances cholesterol efflux capacity in subjects with hypercholesterolemia. J Clin Endocrinol Metab 99:561–569PubMedCrossRefGoogle Scholar
  23. 23.
    Kianbakht S, Abasi B, Hashem Dabaghian F (2014) Improved lipid profile in hyperlipidemic patients taking Vaccinium arctostaphylos fruit hydroalcoholic extract: a randomized double-blind placebo-controlled clinical trial. Phytother Res 28:432–436PubMedCrossRefGoogle Scholar
  24. 24.
    Cassidy A, Bertoia M, Chiuve S, Flint A, Forman J, Rimm EB (2016) Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men. Am J Clin Nutr 104:587–594PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Cassidy A, Mukamal KJ, Liu L, Franz M, Eliassen AH, Rimm EB (2013) High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation 127: 188–196PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    McCullough ML, Peterson JJ, Patel R, Jacques PF, Shah R, Dwyer JT (2012) Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am J Clin Nutr 95:454–464PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Goetz ME, Judd SE, Safford MM, Hartman TJ, McClellan WM, Vaccarino V (2016) Dietary flavonoid intake and incident coronary heart disease: the REasons for Geographic and Racial Differences in Stroke (REGARDS) study. Am J Clin Nutr 104:1236–1244PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Jacques PF, Cassidy A, Rogers G, Peterson JJ, Dwyer JT (2015) Dietary flavonoid intakes and CVD incidence in the Framingham Offspring Cohort. Br J Nutr 114:1496–1503PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Matsuyama T, Tanaka Y, Kamimaki I, Nagao T, Tokimitsu I (2008) Catechin safely improved higher levels of fatness, blood pressure, and cholesterol in children. Obesity (Silver Spring) 16:1338–1348CrossRefGoogle Scholar
  30. 30.
    Li B, Yang M, Liu JW, Yin GT (2016) Protective mechanism of quercetin on acute myocardial infarction in rats. Genet Mol Res 15:15017117.  https://doi.org/10.4238/gmr.15017117CrossRefPubMedGoogle Scholar
  31. 31.
    Brull V, Burak C, Stoffel-Wagner B, Wolffram S, Nickenig G, Muller C, Langguth P, Alteheld B, Fimmers R, Naaf S, Zimmermann BF, Stehle P, Egert S (2015) Effects of a quercetin-rich onion skin extract on 24 h ambulatory blood pressure and endothelial function in overweight-to-obese patients with (pre-)hypertension: a randomised double-blinded placebo-controlled cross-over trial. Br J Nutr 114:1263–1277PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Larson AJ, Symons JD, Jalili T (2012) Therapeutic potential of quercetin to decrease blood pressure: review of efficacy and mechanisms. Adv Nutr 3:39–46PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Czank C, Cassidy A, Zhang Q, Morrison DJ, Preston T, Kroon PA, Botting NP, Kay CD (2013) Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a (13)C-tracer study. Am J Clin Nutr 97:995–1003PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Cassidy A (2017) Berry anthocyanin intake and cardiovascular health. Mol Asp Med.  https://doi.org/10.1016/j.mam.2017.05.002PubMedCrossRefGoogle Scholar
  35. 35.
    Cassidy A, Minihane AM (2017) The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am J Clin Nutr 105:10–22PubMedCrossRefGoogle Scholar
  36. 36.
    Babu PVA, Liu D, Gilbert ER (2013) Recent advances in understanding the anti-diabetic actions of dietary flavonoids. J Nutr Biochem 24:1777–1789PubMedCrossRefGoogle Scholar
  37. 37.
    Liu Y-J, Zhan J, Liu X-L, Wang Y, Ji J, He Q-Q (2014) Dietary flavonoids intake and risk of type 2 diabetes: a meta-analysis of prospective cohort studies. Clin Nutr 33:59–63PubMedCrossRefGoogle Scholar
  38. 38.
    Tresserra-Rimbau A, Guasch-Ferre M, Salas-Salvado J, Toledo E, Corella D, Castaner O, Guo X, Gomez-Gracia E, Lapetra J, Aros F, Fiol M, Ros E, Serra-Majem L, Pinto X, Fito M, Babio N, Martinez-Gonzalez MA, Sorli JV, Lopez-Sabater MC, Estruch R, Lamuela-Raventos RM (2016) Intake of total polyphenols and some classes of polyphenols is inversely associated with diabetes in elderly people at high cardiovascular disease risk. J Nutr 146:767.  https://doi.org/10.3945/jn.115.223610CrossRefGoogle Scholar
  39. 39.
    Liu Y, Li J, Wang T, Wang Y, Zhao L, Fang Y (2017) The effect of genistein on glucose control and insulin sensitivity in postmenopausal women: a meta-analysis. Maturitas 97:44–52PubMedCrossRefGoogle Scholar
  40. 40.
    de Koning Gans JM, Uiterwaal CS, van der Schouw YT, Boer JM, Grobbee DE, Verschuren WM, Beulens JW (2010) Tea and coffee consumption and cardiovascular morbidity and mortality. Arterioscler Thromb Vasc Biol 30:1665–1671PubMedCrossRefGoogle Scholar
  41. 41.
    Wallace TC, Slavin M, Frankenfeld CL (2016) Systematic review of anthocyanins and markers of cardiovascular disease. Forum Nutr 8.  https://doi.org/10.3390/nu8010032PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    JS O, Kim H, Vijayakumar A, Kwon O, Choi YJ, Huh KB, Chang N (2016) Association between dietary flavanones intake and lipid profiles according to the presence of metabolic syndrome in Korean women with type 2 diabetes mellitus. Nutr Res Pract 10:67–73CrossRefGoogle Scholar
  43. 43.
    Schloesser A, Esatbeyoglu T, Schultheiss G, Vollert H, Luersen K, Fischer A, Rimbach G (2017) Antidiabetic properties of an apple/kale extract in vitro, in situ, and in mice fed a Western-type diet. J Med Food 20:846–854.  https://doi.org/10.1089/jmf.2017.0019CrossRefPubMedGoogle Scholar
  44. 44.
    Assini JM, Mulvihill EE, Burke AC, Sutherland BG, Telford DE, Chhoker SS, Sawyez CG, Drangova M, Adams AC, Kharitonenkov A, Pin CL, Huff MW (2015) Naringenin prevents obesity, hepatic steatosis, and glucose intolerance in male mice independent of fibroblast growth factor 21. Endocrinology 156:2087–2102PubMedCrossRefGoogle Scholar
  45. 45.
    Priscilla DH, Roy D, Suresh A, Kumar V, Thirumurugan K (2014) Naringenin inhibits α-glucosidase activity: a promising strategy for the regulation of postprandial hyperglycemia in high fat diet fed streptozotocin induced diabetic rats. Chem Biol Interact 210:77–85PubMedCrossRefGoogle Scholar
  46. 46.
    Jennings A, Welch AA, Spector T, Macgregor A, Cassidy A (2014) Intakes of anthocyanins and flavones are associated with biomarkers of insulin resistance and inflammation in women. J Nutr 144:202–208PubMedCrossRefGoogle Scholar
  47. 47.
    Chahar MK, Sharma N, Dobhal MP, Joshi YC (2011) Flavonoids: a versatile source of anticancer drugs. Pharmacogn Rev 5:1–12PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Liao W, Chen L, Ma X, Jiao R, Li X, Wang Y (2016) Protective effects of kaempferol against reactive oxygen species-induced hemolysis and its antiproliferative activity on human cancer cells. Eur J Med Chem 114:24–32PubMedCrossRefGoogle Scholar
  49. 49.
    LY T, Bai HH, Cai JY, Deng SP (2016) The mechanism of kaempferol induced apoptosis and inhibited proliferation in human cervical cancer SiHa cell: from macro to nano. Scanning 38:644–653.  https://doi.org/10.1002/sca.21312CrossRefGoogle Scholar
  50. 50.
    Chen HJ, Lin CM, Lee CY, Shih NC, Peng SF, Tsuzuki M, Amagaya S, Huang WW, Yang JS (2013) Kaempferol suppresses cell metastasis via inhibition of the ERK-p38-JNK and AP-1 signaling pathways in U-2 OS human osteosarcoma cells. Oncol Rep 30:925–932PubMedCrossRefGoogle Scholar
  51. 51.
    Kim SH, Hwang KA, Choi KC (2016) Treatment with kaempferol suppresses breast cancer cell growth caused by estrogen and triclosan in cellular and xenograft breast cancer models. J Nutr Biochem 28:70–82PubMedCrossRefGoogle Scholar
  52. 52.
    Qin Y, Cui W, Yang X, Tong B (2016) Kaempferol inhibits the growth and metastasis of cholangiocarcinoma in vitro and in vivo. Acta Biochim Biophys Sin Shanghai 48:238–245PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Dang Q, Song W, Xu D, Ma Y, Li F, Zeng J, Zhu G, Wang X, Chang LS, He D, Li L (2015) Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis. Mol Carcinog 54:831–840PubMedCrossRefGoogle Scholar
  54. 54.
    Li C, Zhao Y, Yang D, Yu Y, Guo H, Zhao Z, Zhang B, Yin X (2015) Inhibitory effects of kaempferol on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-9. Biochem Cell Biol 93:16–27PubMedCrossRefGoogle Scholar
  55. 55.
    Katiyar SK (2016) Emerging phytochemicals for the prevention and treatment of head and neck cancer. Molecules 21.  https://doi.org/10.3390/molecules21121610PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Xie Q, Chen ML, Qin Y, Zhang QY, HX X, Zhou Y, Mi MT, Zhu JD (2013) Isoflavone consumption and risk of breast cancer: a dose-response meta-analysis of observational studies. Asia Pac J Clin Nutr 22:118–127PubMedGoogle Scholar
  58. 58.
    Wada K, Nakamura K, Tamai Y, Tsuji M, Kawachi T, Hori A, Takeyama N, Tanabashi S, Matsushita S, Tokimitsu N, Nagata C (2013) Soy isoflavone intake and breast cancer risk in Japan: from the Takayama study. Int J Cancer 133:952–960PubMedCrossRefGoogle Scholar
  59. 59.
    Hua X, Yu L, You R, Yang Y, Liao J, Chen D, Yu L (2016) Association among dietary flavonoids, flavonoid subclasses and ovarian cancer risk: a meta-analysis. PLoS One 11:e0151134.  https://doi.org/10.1371/journal.pone.0151134CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Woo HD, Kim J (2013) Dietary flavonoid intake and smoking-related cancer risk: a meta-analysis. PLoS One 8:e75604.  https://doi.org/10.1371/journal.pone.0075604CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Guo Y, Zhi F, Chen P, Zhao K, Xiang H, Mao Q, Wang X, Zhang X (2017) Green tea and the risk of prostate cancer: a systematic review and meta-analysis. Medicine (Baltimore) 96:e6426.  https://doi.org/10.1097/md.0000000000006426CrossRefGoogle Scholar
  62. 62.
    Grosso G, Godos J, Lamuela-Raventos R, Ray S, Micek A, Pajak A, Sciacca S, D'Orazio N, Del Rio D, Galvano F (2017) A comprehensive meta-analysis on dietary flavonoid and lignan intake and cancer risk: level of evidence and limitations. Mol Nutr Food Res 61.  https://doi.org/10.1002/mnfr.201600930CrossRefGoogle Scholar
  63. 63.
    Amawi H, Ashby CR Jr, Tiwari AK (2017) Cancer chemoprevention through dietary flavonoids: what’s limiting? Chin J Cancer 36:50.  https://doi.org/10.1186/s40880-017-0217-4CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Xin LT, Liu L, Shao CL, Yu RL, Chen FL, Yue SJ, Wang M, Guo ZL, Fan YC, Guan HS, Wang CY (2017) Discovery of DNA topoisomerase I inhibitors with low-cytotoxicity based on virtual screening from natural products. Mar Drugs 15.  https://doi.org/10.3390/md15070217PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Jablonska-Trypuc A, Matejczyk M, Rosochacki S (2016) Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem 1:7Google Scholar
  66. 66.
    George VC, Rupasinghe HPV (2017) Apple flavonoids suppress carcinogen-induced DNA damage in normal human bronchial epithelial cells. Oxidative Med Cell Longev 2017:1767198.  https://doi.org/10.1155/2017/1767198CrossRefGoogle Scholar
  67. 67.
    Russo M, Russo GL, Daglia M, Kasi PD, Ravi S, Nabavi SF, Nabavi SM (2016) Understanding genistein in cancer: the “good” and the “bad” effects: a review. Food Chem 196:589–600PubMedCrossRefGoogle Scholar
  68. 68.
    Jiang Y, Gong P, Madak-Erdogan Z, Martin T, Jeyakumar M, Carlson K, Khan I, Smillie TJ, Chittiboyina AG, Rotte SC, Helferich WG, Katzenellenbogen JA, Katzenellenbogen BS (2013) Mechanisms enforcing the estrogen receptor beta selectivity of botanical estrogens. FASEB J 27:4406–4418PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Seo HS, Choi HS, Choi HS, Choi YK, Um JY, Choi I, Shin YC, Ko SG (2011) Phytoestrogens induce apoptosis via extrinsic pathway, inhibiting nuclear factor-kappaB signaling in HER2-overexpressing breast cancer cells. Anticancer Res 31:3301–3313PubMedGoogle Scholar
  70. 70.
    Prietsch RF, Monte LG, da Silva FA, Beira FT, Del Pino FA, Campos VF, Collares T, Pinto LS, Spanevello RM, Gamaro GD, Braganhol E (2014) Genistein induces apoptosis and autophagy in human breast MCF-7 cells by modulating the expression of proapoptotic factors and oxidative stress enzymes. Mol Cell Biochem 390:235–242PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Shike M, Doane AS, Russo L, Cabal R, Reis-Filho JS, Gerald W, Cody H, Khanin R, Bromberg J, Norton L (2014) The effects of soy supplementation on gene expression in breast cancer: a randomized placebo-controlled study. J Natl Cancer Inst. 106.  https://doi.org/10.1093/jnci/dju189PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Bircsak KM, Aleksunes LM (2015) Interaction of isoflavones with the BCRP/ABCG2 drug transporter. Curr Drug Metab 16:124–140PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Letenneur L, Proust-Lima C, Le Gouge A, Dartigues JF, Barberger-Gateau P (2007) Flavonoid intake and cognitive decline over a 10-year period. Am J Epidemiol 165:1364–1371PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Calsolaro V, Edison P (2016) Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement 12:719–732PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Tramutola A, Lanzillotta C, Perluigi M, Butterfield DA (2016) Oxidative stress, protein modification and Alzheimer disease. Brain Res Bull 133:88–96.  https://doi.org/10.1016/j.brainresbull.2016.06.005CrossRefPubMedGoogle Scholar
  76. 76.
    Magalingam KB, Radhakrishnan AK, Haleagrahara N (2015) Protective mechanisms of flavonoids in Parkinson’s disease. Oxidative Med Cell Longev 2015:314560CrossRefGoogle Scholar
  77. 77.
    Vauzour D, Vafeiadou K, Rodriguez-Mateos A, Rendeiro C, Spencer JP (2008) The neuroprotective potential of flavonoids: a multiplicity of effects. Genes Nutr 3:115–126PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Solanki I, Parihar P, Mansuri ML, Parihar MS (2015) Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv Nutr 6:64–72PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1:a006189.  https://doi.org/10.1101/cshperspect.a006189CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Shimmyo Y, Kihara T, Akaike A, Niidome T, Sugimoto H (2008) Flavonols and flavones as BACE-1 inhibitors: structure-activity relationship in cell-free, cell-based and in silico studies reveal novel pharmacophore features. Biochim Biophys Acta 1780:819–825PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Dragicevic N, Smith A, Lin X, Yuan F, Copes N, Delic V, Tan J, Cao C, Shytle RD, Bradshaw PC (2011) Green tea epigallocatechin-3-gallate (EGCG) and other flavonoids reduce Alzheimer’s amyloid-induced mitochondrial dysfunction. J Alzheimers Dis 26:507–521PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Fernando W, Somaratne G, Goozee KG, Williams S, Singh H, Martins RN (2017) Diabetes and Alzheimer’s disease: can tea phytochemicals play a role in prevention? J Alzheimers Dis 59:481–501.  https://doi.org/10.3233/jad-161200CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Xicota L, Rodriguez-Morato J, Dierssen M, de la Torre R (2017) Potential role of (−)-Epigallocatechin-3-Gallate (EGCG) in the secondary prevention of Alzheimer disease. Curr Drug Targets 18:174–195PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Chesser AS, Ganeshan V, Yang J, Johnson GV (2016) Epigallocatechin-3-gallate enhances clearance of phosphorylated tau in primary neurons. Nutr Neurosci 19:21–31PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Magalingam KB, Radhakrishnan A, Haleagrahara N (2013) Rutin, a bioflavonoid antioxidant protects rat pheochromocytoma (PC-12) cells against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. Int J Mol Med 32:235–240PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Magalingam KB, Radhakrishnan A, Haleagrahara N (2014) Protective effects of flavonol isoquercitrin, against 6-hydroxy dopamine (6-OHDA)-induced toxicity in PC12 cells. BMC Res Notes 7:49PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Datla KP, Christidou M, Widmer WW, Rooprai HK, Dexter DT (2001) Tissue distribution and neuroprotective effects of citrus flavonoid tangeretin in a rat model of Parkinson’s disease. Neuroreport 12:3871–3875PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Gao X, Cassidy A, Schwarzschild MA, Rimm EB, Ascherio A (2012) Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology 78:1138–1145PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Socci V, Tempesta D, Desideri G, De Gennaro L, Ferrara M (2017) Enhancing human cognition with cocoa flavonoids. Front Nutr 4:19PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Mastroiacovo D, Kwik-Uribe C, Grassi D, Necozione S, Raffaele A, Pistacchio L, Righetti R, Bocale R, Lechiara MC, Marini C, Ferri C, Desideri G (2015) Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects: the Cocoa, Cognition, and Aging (CoCoA) Study-a randomized controlled trial. Am J Clin Nutr 101:538–548PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Samieri C, Sun Q, Townsend MK, Rimm EB, Grodstein F (2014) Dietary flavonoid intake at midlife and healthy aging in women. Am J Clin Nutr 100:1489–1497PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Eleazu C, Obianuju N, Eleazu K, Kalu W (2017) The role of dietary polyphenols in the management of erectile dysfunction-mechanisms of action. Biomed Pharmacother 88:644–652PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Pavan V, Mucignat-Caretta C, Redaelli M, Ribaudo G, Zagotto G (2015) The old made new: natural compounds against erectile dysfunction. Arch Pharm (Weinheim) 348:607–614CrossRefGoogle Scholar
  94. 94.
    Oboh G, Ademiluyi AO, Ademosun AO, Olasehinde TA, Oyeleye SI, Boligon AA, Athayde ML (2015) Phenolic extract from Moringa oleifera leaves inhibits key enzymes linked to erectile dysfunction and oxidative stress in rats’ penile tissues. Biochem Res Int 2015:175950Google Scholar
  95. 95.
    Cassidy A, Franz M, Rimm EB (2016) Dietary flavonoid intake and incidence of erectile dysfunction. Am J Clin Nutr 103:534–541PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Patil KK, Gacche RN (2017) Inhibition of glycation and aldose reductase activity using dietary flavonoids: a lens organ culture studies. Int J Biol Macromol 98:730–738PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Patel DK, Prasad SK, Kumar R, Hemalatha S (2011) Cataract: a major secondary complication of diabetes, its epidemiology and an overview on major medicinal plants screened for anticataract activity. Asian Pac J Trop Dis 1:323–329CrossRefGoogle Scholar
  98. 98.
    Bhatnagar A, Srivastava SK (1992) Aldose reductase: congenial and injurious profiles of an enigmatic enzyme. Biochem Med Metab Biol 48:91–121PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Patil KK, Meshram RJ, Dhole NA, Gacche RN (2016) Role of dietary flavonoids in amelioration of sugar induced cataractogenesis. Arch Biochem Biophys 593:1–11PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Mok JW, Chang DJ, Joo CK (2014) Antiapoptotic effects of anthocyanin from the seed coat of black soybean against oxidative damage of human lens epithelial cell induced by H2O2. Curr Eye Res 39:1090–1098PubMedCrossRefGoogle Scholar
  101. 101.
    Chantrill BH, Coulthard CE, Dickinson L, Inkley GW, Mrris W, Pyle AH (1952) The action of plant extracts on a bacteriophage of pseudomonas pyocyanea and on influenza a virus. Microbiology 6:74–84Google Scholar
  102. 102.
    Li B, Guo QL, Tian Y, Liu SJ, Wang Q, Chen L, Dong JX (2016) New anti-HBV C-boivinopyranosyl flavones from Alternanthera philoxeroides. Molecules 21.  https://doi.org/10.3390/molecules21030336PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    He W, Li LX, Liao QJ, Liu CL, Chen XL (2011) Epigallocatechin gallate inhibits HBV DNA synthesis in a viral replication – inducible cell line. World J Gastroenterol 17:1507–1514PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zhong L, Hu J, Shu W, Gao B, Xiong S (2015) Epigallocatechin-3-gallate opposes HBV-induced incomplete autophagy by enhancing lysosomal acidification, which is unfavorable for HBV replication. Cell Death Dis 6:e1770.  https://doi.org/10.1038/cddis.2015.136CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Behbahani M, Sayedipour S, Pourazar A, Shanehsazzadeh M (2014) In vitro anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca. Res Pharm Sci 9:463–469PubMedPubMedCentralGoogle Scholar
  106. 106.
    Liang G, Li N, Ma L, Qian Z, Sun Y, Shi L, Zhao L (2016) Effect of quercetin on the transport of ritonavir to the central nervous system in vitro and in vivo. Acta Pharma 66:97–107CrossRefGoogle Scholar
  107. 107.
    Cantatore A, Randall SD, Traum D, Adams SD (2013) Effect of black tea extract on herpes simplex virus-1 infection of cultured cells. BMC Complement Altern Med 13:139PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    de Oliveira A, Adams SD, Lee LH, Murray SR, Hsu SD, Hammond JR, Dickinson D, Chen P, Chu TC (2013) Inhibition of herpes simplex virus type 1 with the modified green tea polyphenol palmitoyl-epigallocatechin gallate. Food Chem Toxicol 52:207–215PubMedCrossRefGoogle Scholar
  109. 109.
    Liang W, He L, Ning P, Lin J, Li H, Lin Z, Kang K, Zhang Y (2015) (+)-Catechin inhibition of transmissible gastroenteritis coronavirus in swine testicular cells is involved its antioxidation. Res Vet Sci 103:28–33PubMedCrossRefGoogle Scholar
  110. 110.
    Muller P, Downard KM (2015) Catechin inhibition of influenza neuraminidase and its molecular basis with mass spectrometry. J Pharm Biomed Anal 111:222–230PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Isaacs CE, Xu W, Merz G, Hillier S, Rohan L, Wen GY (2011) Digallate dimers of (−)-epigallocatechin gallate inactivate herpes simplex virus. Antimicrob Agents Chemother 55:5646–5653PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Hung PY, Ho BC, Lee SY, Chang SY, Kao CL, Lee SS, Lee CN (2015) Houttuynia cordata targets the beginning stage of herpes simplex virus infection. PLoS One 10:e0115475.  https://doi.org/10.1371/journal.pone.0115475CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Li J, Liu Y, Wang Z, Liu K, Wang Y, Liu J, Ding H, Yuan Z (2011) Subversion of cellular autophagy machinery by hepatitis B virus for viral envelopment. J Virol 85:6319–6333PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Liu SH, Lu TH, Su CC, Lay IS, Lin HY, Fang KM, Ho TJ, Chen KL, Su YC, Chiang WC, Chen YW (2014) Lotus leaf (Nelumbo nucifera) and its active constituents prevent inflammatory responses in macrophages via JNK/NF-kappaB signaling pathway. Am J Chin Med 42:869–889PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Fan FY, Sang LX, Jiang M (2017) Catechins and their therapeutic benefits to inflammatory bowel disease. Molecules 22.  https://doi.org/10.3390/molecules22030484PubMedCentralCrossRefPubMedGoogle Scholar
  116. 116.
    Bruckner M, Westphal S, Domschke W, Kucharzik T, Lugering A (2012) Green tea polyphenol epigallocatechin-3-gallate shows therapeutic antioxidative effects in a murine model of colitis. J Crohns Colitis 6:226–235PubMedCrossRefGoogle Scholar
  117. 117.
    Vasconcelos PC, Seito LN, Di Stasi LC, Akiko Hiruma-Lima C, Pellizzon CH (2012) Epicatechin used in the treatment of intestinal inflammatory disease: an analysis by experimental models. Evid Based Complement Alternat Med 2012:508902.  https://doi.org/10.1155/2012/508902CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Chen XQ, Hu T, Han Y, Huang W, Yuan HB, Zhang YT, Du Y, Jiang YW (2016) Preventive effects of catechins on cardiovascular disease. Molecules 21.  https://doi.org/10.3390/molecules21121759PubMedCentralCrossRefPubMedGoogle Scholar
  119. 119.
    Chiou YS, Huang Q, Ho CT, Wang YJ, Pan MH (2016) Directly interact with Keap1 and LPS is involved in the anti-inflammatory mechanisms of (−)-epicatechin-3-gallate in LPS-induced macrophages and endotoxemia. Free Radic Biol Med 94:1–16PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Na HK, Surh YJ (2008) Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem Toxicol 46:1271–1278PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aleksandra Kozłowska
    • 1
    Email author
  • Dorota Szostak-Węgierek
    • 2
  1. 1.First Faculty of Medicine, Department of Social Medicine and Public HealthMedical University of WarsawWarsawPoland
  2. 2.Faculty of Health Science, Department of Clinical DieteticsMedical University of WarsawWarsawPoland

Personalised recommendations