Advertisement

Use of Nanotechnology for Immobilization and Entrapment of Food Applicable Enzymes

  • Milad FathiEmail author
  • Mehri Karim
  • Soroush Rahimi Khoigani
  • Vahid Mosayebi
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Enzyme immobilization is defined as artificially restriction of enzyme mobility that leads to change of its structurer, properties, and activity. Since enzymes are very sensitive, their classical immobilization methods are still limited mostly as a result of reduction of enzyme activity. Because of unique and tunable properties of nanomaterials, they have been increasingly applied as carrier for enzyme immobilization. Using nanotechnology some features, such as multifunctionality, addressability, stability, and multi-compartmentalization, could be improved. In this chapter enzyme immobilization using some nanostructure materials such as nanoparticles, magnetic nanoparticles, nanofibers, nanoflowers, nanoliposome, and solgel silica has been reviewed, and their advantages and disadvantages were reviewed.

Keywords

Nanotechnology Enzymes Nanofibers Nanoflowers Magnetic nanoparticles Nanoliposomes Solgel 

References

  1. 1.
    Whitehurst RJ, Van Oort M (2009) Enzymes in food technology. Wiley, New DelhiGoogle Scholar
  2. 2.
    Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463CrossRefGoogle Scholar
  4. 4.
    Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307CrossRefGoogle Scholar
  5. 5.
    James J, Simpson BK, Marshall MR (1996) Application of enzymes in food processing. Crit Rev Food Sci Nutr 36:437–463PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Cao Y, Wen L, Svec F, Tan T, Lv Y (2016) Magnetic AuNP@Fe3O4 nanoparticles as reusable carriers for reversible enzyme immobilization. Chem Eng J 286:272–281CrossRefGoogle Scholar
  7. 7.
    Savolainen A, Zhang Y, Rochefort D, Holopainen U, Erho T, Virtanen J et al (2011) Printing of polymer microcapsules for enzyme immobilization on paper substrate. Biomacromolecules 12:2008–2015PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Ding C, Sun H, Ren J, Qu X (2017) Immobilization of enzyme on chiral polyelectrolyte surface. Anal Chim Acta 952:88–95PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Secundo F (2013) Conformational changes of enzymes upon immobilisation. Chem Soc Rev 42:6250–6261PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Delcea M, Yashchenok A, Videnova K, Kreft O, Möhwald H, Skirtach AG (2010) Multicompartmental micro-and nanocapsules: hierarchy and applications in biosciences. Macromol Biosci 10:465–474PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Jia H, Zhu G, Wang P (2003) Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility. Biotechnol Bioeng 84:406–414PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Kim J, Grate JW, Wang P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61:1017–1026CrossRefGoogle Scholar
  13. 13.
    Hyeon JE, Shin SK, Han SO (2016) Design of nanoscale enzyme complexes based on various scaffolding materials for biomass conversion and immobilization. Biotechnol J 11:1386PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Wang Z-G, Wang J-Q, Xu Z-K (2006) Immobilization of lipase from Candida rugosa on electrospun polysulfone nanofibrous membranes by adsorption. J Mol Catal B Enzym 42:45–51CrossRefGoogle Scholar
  15. 15.
    Cipolatti EP, Valério A, Nicoletti G, Theilacker E, Araújo PH, Sayer C et al (2014) Immobilization of Candida antarctica lipase B on PEGylated poly (urea-urethane) nanoparticles by step miniemulsion polymerization. J Mol Catal B Enzym 109:116–121CrossRefGoogle Scholar
  16. 16.
    Zhang Z, Zhang R, Chen L, McClements DJ (2016) Encapsulation of lactase (β-galactosidase) into κ-carrageenan-based hydrogel beads: impact of environmental conditions on enzyme activity. Food Chem 200:69–75PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Zhang Z, Zhang R, McClements DJ (2017) Lactase (β-galactosidase) encapsulation in hydrogel beads with controlled internal pH microenvironments: impact of bead characteristics on enzyme activity. Food Hydrocoll 67:85CrossRefGoogle Scholar
  18. 18.
    Kim J, Grate JW (2003) Single-enzyme nanoparticles armored by a nanometer-scale organic/inorganic network. Nano Lett 3:1219–1222CrossRefGoogle Scholar
  19. 19.
    Jia H, Gao Z, Ma Y, Zhong C, Wang C, Zhou H et al (2016) Preparation and characterization of a highly stable phenoxazinone synthase nanogel. Chem Cent J 10:1–7CrossRefGoogle Scholar
  20. 20.
    Datta S, Christena LR, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Drauz K (2012) Enzyme catalysis in organic synthesis: a comprehensive handbook. Wiley, New DelhiGoogle Scholar
  22. 22.
    Tran DN, Balkus KJ (2012) Enzyme immobilization via electrospinning. Top Catal 55:1057–1069CrossRefGoogle Scholar
  23. 23.
    Hwang ET, Gu MB (2013) Enzyme stabilization by nano/microsized hybrid materials. Eng Life Sci 13:49–61CrossRefGoogle Scholar
  24. 24.
    Sheldon R, Schoevaart R, Van Langen L (2005) Cross-linked enzyme aggregates (CLEAs): a novel and versatile method for enzyme immobilization (a review). Biocatal Biotransformation 23:141–147CrossRefGoogle Scholar
  25. 25.
    Wang Z-G, Wan L-S, Liu Z-M, Huang X-J, Xu Z-K (2009) Enzyme immobilization on electrospun polymer nanofibers: an overview. J Mol Catal B Enzym 56:189–195CrossRefGoogle Scholar
  26. 26.
    Wang H, Shao H, Hu X (2006) Structure of silk fibroin fibers made by an electrospinning process from a silk fibroin aqueous solution. J Appl Polym Sci 101:961–968CrossRefGoogle Scholar
  27. 27.
    Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151–1170CrossRefGoogle Scholar
  29. 29.
    Kim BC, Nair S, Kim J, Kwak JH, Grate JW, Kim SH et al (2005) Preparation of biocatalytic nanofibres with high activity and stability via enzyme aggregate coating on polymer nanofibres. Nanotechnology 16:S382PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Ye P, Xu Z-K, Wu J, Innocent C, Seta P (2006) Nanofibrous membranes containing reactive groups: electrospinning from poly (acrylonitrile-co-maleic acid) for lipase immobilization. Macromolecules 39:1041–1045CrossRefGoogle Scholar
  31. 31.
    Jia H, Zhu G, Vugrinovich B, Kataphinan W, Reneker DH, Wang P (2002) Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnol Prog 18:1027–1032PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Lee KH, Ki CS, Baek DH, Kang GD, Ihm D-W, Park YH (2005) Application of electrospun silk fibroin nanofibers as an immobilization support of enzyme. Fibers Polym 6:181–185CrossRefGoogle Scholar
  33. 33.
    Lee JH, Hwang ET, Kim BC, Lee S-M, Sang B-I, Choi YS et al (2007) Stable and continuous long-term enzymatic reaction using an enzyme–nanofiber composite. Appl Microbiol Biotechnol 75:1301–1307PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Lee S-M, Jin LH, Kim JH, Han SO, Na HB, Hyeon T et al (2010) β-Glucosidase coating on polymer nanofibers for improved cellulosic ethanol production. Bioprocess Biosyst Eng 33:141PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Li S-F, Chen J-P, Wu W-T (2007) Electrospun polyacrylonitrile nanofibrous membranes for lipase immobilization. J Mol Catal B Enzym 47:117–124CrossRefGoogle Scholar
  36. 36.
    Huang XJ, Xu ZK, Wan LS, Innocent C, Seta P (2006) Electrospun nanofibers modified with phospholipid moieties for enzyme immobilization. Macromol Rapid Commun 27:1341–1345CrossRefGoogle Scholar
  37. 37.
    Huang X-J, Chen P-C, Huang F, Ou Y, Chen M-R, Xu Z-K (2011) Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane. J Mol Catal B Enzym 70:95–100CrossRefGoogle Scholar
  38. 38.
    Kim TG, Park TG (2006) Surface functionalized electrospun biodegradable nanofibers for immobilization of bioactive molecules. Biotechnol Prog 22:1108–1113PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Wang ZG, Xu ZK, Wan LS, Wu J, Innocent C, Seta P (2006) Nanofibrous membranes containing carbon nanotubes: electrospun for redox enzyme immobilization. Macromol Rapid Commun 27:516–521CrossRefGoogle Scholar
  40. 40.
    Wu L, Yuan X, Sheng J (2005) Immobilization of cellulase in nanofibrous PVA membranes by electrospinning. J Membr Sci 250:167–173CrossRefGoogle Scholar
  41. 41.
    Nair S, Kim J, Crawford B, Kim SH (2007) Improving biocatalytic activity of enzyme-loaded nanofibers by dispersing entangled nanofiber structure. Biomacromolecules 8:1266–1270PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Lee G, Kim J, Lee J-h (2008) Development of magnetically separable polyaniline nanofibers for enzyme immobilization and recovery. Enzyme Microb Technol 42:466–472CrossRefGoogle Scholar
  43. 43.
    Wan L-S, Ke B-B, Xu Z-K (2008) Electrospun nanofibrous membranes filled with carbon nanotubes for redox enzyme immobilization. Enzyme Microb Technol 42:332–339CrossRefGoogle Scholar
  44. 44.
    Netto CG, Toma HE, Andrade LH (2013) Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. J Mol Catal B Enzym 85:71–92CrossRefGoogle Scholar
  45. 45.
    Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30:512–523PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Ranjbakhsh E, Bordbar A, Abbasi M, Khosropour A, Shams E (2012) Enhancement of stability and catalytic activity of immobilized lipase on silica-coated modified magnetite nanoparticles. Chem Eng J 179:272–276CrossRefGoogle Scholar
  47. 47.
    Huang SH, Liao MH, Chen DH (2003) Direct binding and characterization of lipase onto magnetic nanoparticles. Biotechnol Prog 19:1095–1100PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Dyal A, Loos K, Noto M, Chang SW, Spagnoli C, Shafi KV et al (2003) Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles. J Am Chem Soc 125:1684–1685PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Kodama R (1999) Magnetic nanoparticles. J Magn Magn Mater 200:359–372CrossRefGoogle Scholar
  50. 50.
    Kouassi GK, Irudayaraj J, McCarty G (2005) Examination of cholesterol oxidase attachment to magnetic nanoparticles. J Nanobiotechnol 3:1CrossRefGoogle Scholar
  51. 51.
    Kalkan NA, Aksoy S, Aksoy EA, Hasirci N (2012) Preparation of chitosan-coated magnetite nanoparticles and application for immobilization of laccase. J Appl Polym Sci 123:707–716CrossRefGoogle Scholar
  52. 52.
    Namdeo M, Bajpai S (2009) Immobilization of α-amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study. J Mol Catal B Enzym 59:134–139CrossRefGoogle Scholar
  53. 53.
    Seenuvasan M, Malar CG, Preethi S, Balaji N, Iyyappan J, Kumar MA et al (2013) Fabrication, characterization and application of pectin degrading Fe3O4–SiO2 nanobiocatalyst. Mater Sci Eng C 33:2273–2279CrossRefGoogle Scholar
  54. 54.
    Lin J, Qu W, Zhang S (2007) Disposable biosensor based on enzyme immobilized on Au–chitosan-modified indium tin oxide electrode with flow injection amperometric analysis. Anal Biochem 360:288–293PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Ma Z, Ding T (2009) Bioconjugates of glucose oxidase and gold nanorods based on electrostatic interaction with enhanced thermostability. Nanoscale Res Lett 4:1236PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ling YP, Heng LY (2010) A potentiometric formaldehyde biosensor based on immobilization of alcohol oxidase on acryloxysuccinimide-modified acrylic microspheres. Sensors 10:9963–9981PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Yang K, Xu N-S, Su WW (2010) Co-immobilized enzymes in magnetic chitosan beads for improved hydrolysis of macromolecular substrates under a time-varying magnetic field. J Biotechnol 148:119–127PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Dong Q, Ouyang L-M, Yu H-L, Xu J-H (2010) Efficient biosynthesis of uridine diphosphate glucose from maltodextrin by multiple enzymes immobilized on magnetic nanoparticles. Carbohydr Res 345:1622–1626PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112:5818–5878PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Charles SW (2002) The preparation of magnetic fluids. In: Ferrofluids. Springer, New York, pp 3–18CrossRefGoogle Scholar
  61. 61.
    DeCastro CL, Mitchell BS (2002) Nanoparticles from mechanical attrition. In: Synthesis, functionalization, and surface treatment of nanoparticles. American Scientific Publishers, California, pp 1–15Google Scholar
  62. 62.
    Amendola V, Riello P, Meneghetti M (2010) Magnetic nanoparticles of iron carbide, iron oxide, iron@ iron oxide, and metal iron synthesized by laser ablation in organic solvents. J Phys Chem C 115:5140–5146CrossRefGoogle Scholar
  63. 63.
    Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Oh JK, Park JM (2011) Iron oxide-based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application. Prog Polym Sci 36:168–189CrossRefGoogle Scholar
  66. 66.
    Timko M, Molcan M, Hashim A, Skumiel A, Muller M, Gojzewski H et al (2013) Hyperthermic effect in suspension of magnetosomes prepared by various methods. IEEE Trans Magn 49:250–254CrossRefGoogle Scholar
  67. 67.
    Baumgartner J, Bertinetti L, Widdrat M, Hirt AM, Faivre D (2013) Formation of magnetite nanoparticles at low temperature: from superparamagnetic to stable single domain particles. PLoS One 8:e57070PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Talekar S, Joshi A, Joshi G, Kamat P, Haripurkar R, Kambale S (2013) Parameters in preparation and characterization of cross linked enzyme aggregates (CLEAs). RSC Adv 3:12485–12511CrossRefGoogle Scholar
  69. 69.
    Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Rodrigues RC, Fernandez-Lafuente R (2014) Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv 4:1583–1600CrossRefGoogle Scholar
  70. 70.
    Mateo C, Palomo JM, Van Langen LM, Van Rantwijk F, Sheldon RA (2004) A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnol Bioeng 86:273–276PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Arsenault A, Cabana H, Jones JP (2011) Laccase-based CLEAs: chitosan as a novel cross-linking agent. Enzym Res 2011:1–11CrossRefGoogle Scholar
  72. 72.
    Talekar S, Nadar S, Joshi A, Joshi G (2014) Pectin cross-linked enzyme aggregates (pectin-CLEAs) of glucoamylase. RSC Adv 4:59444–59453CrossRefGoogle Scholar
  73. 73.
    Nadar SS, Rathod VK (2016) Magnetic macromolecular cross linked enzyme aggregates (CLEAs) of glucoamylase. Enzyme Microb Technol 83:78–87PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Sojitra UV, Nadar SS, Rathod VK (2017) Immobilization of pectinase onto chitosan magnetic nanoparticles by macromolecular cross-linker. Carbohydr Polym 157:677–685PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Park HJ, McConnell JT, Boddohi S, Kipper MJ, Johnson PA (2011) Synthesis and characterization of enzyme–magnetic nanoparticle complexes: effect of size on activity and recovery. Colloids Surf B Biointerfaces 83:198–203PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Jordan J, Kumar CS, Theegala C (2011) Preparation and characterization of cellulase-bound magnetite nanoparticles. J Mol Catal B Enzym 68:139–146CrossRefGoogle Scholar
  77. 77.
    Wang H, Huang J, Wang C, Li D, Ding L, Han Y (2011) Immobilization of glucose oxidase using CoFe2O4/SiO2 nanoparticles as carrier. Appl Surf Sci 257:5739–5745CrossRefGoogle Scholar
  78. 78.
    Šulek F, Knez Ž, Habulin M (2010) Immobilization of cholesterol oxidase to finely dispersed silica-coated maghemite nanoparticles based magnetic fluid. Appl Surf Sci 256:4596–4600CrossRefGoogle Scholar
  79. 79.
    Liu W, Bai S, Sun Y (2004) Preparation of magnetic nanoparticles and its application to enzyme immobilization. Chin J Process Eng 4:362–366Google Scholar
  80. 80.
    Shaw S-Y, Chen Y-J, Ou J-J, Ho L (2006) Preparation and characterization of Pseudomonas putida esterase immobilized on magnetic nanoparticles. Enzyme Microb Technol 39:1089–1095CrossRefGoogle Scholar
  81. 81.
    Saiyed Z, Sharma S, Godawat R, Telang S, Ramchand C (2007) Activity and stability of alkaline phosphatase (ALP) immobilized onto magnetic nanoparticles (Fe3O4). J Biotechnol 131:240–244PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Li Y, Fei X, Liang L, Tian J, Xu L, Wang X et al (2016) The influence of synthesis conditions on enzymatic activity of enzyme-inorganic hybrid nanoflowers. J Mol Catal B Enzym 133:92–97CrossRefGoogle Scholar
  83. 83.
    Ge J, Lei J, Zare RN (2012) Protein-inorganic hybrid nanoflowers. Nat Nanotechnol 7:428–432PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Altinkaynak C, Tavlasoglu S, Ocsoy I (2016) A new generation approach in enzyme immobilization: organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability. Enzyme Microb Technol 93:105–112PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Zhu L, Gong L, Zhang Y, Wang R, Ge J, Liu Z et al (2013) Rapid detection of phenol using a membrane containing laccase nanoflowers. Chem Asian J 8:2358–2360PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Zhang B, Li P, Zhang H, Wang H, Li X, Tian L et al (2016) Preparation of lipase/Zn3(PO4)2 hybrid nanoflower and its catalytic performance as an immobilized enzyme. Chem Eng J 291:287–297CrossRefGoogle Scholar
  87. 87.
    Lin Z, Xiao Y, Wang L, Yin Y, Zheng J, Yang H et al (2014) Facile synthesis of enzyme–inorganic hybrid nanoflowers and their application as an immobilized trypsin reactor for highly efficient protein digestion. RSC Adv 4:13888–13891CrossRefGoogle Scholar
  88. 88.
    Yu Y, Fei X, Tian J, Xu L, Wang X, Wang Y (2015) Self-assembled enzyme–inorganic hybrid nanoflowers and their application to enzyme purification. Colloids Surf B Biointerfaces 130:299–304PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Altinkaynak C, Yilmaz I, Koksal Z, Özdemir H, Ocsoy I, Özdemir N (2016) Preparation of lactoperoxidase incorporated hybrid nanoflower and its excellent activity and stability. Int J Biol Macromol 84:402–409PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Sun J, Ge J, Liu W, Lan M, Zhang H, Wang P et al (2014) Multi-enzyme co-embedded organic–inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor. Nanoscale 6:255–262PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Somturk B, Yilmaz I, Altinkaynak C, Karatepe A, Özdemir N, Ocsoy I (2016) Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties. Enzyme Microb Technol 86:134–142PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Yin Y, Xiao Y, Lin G, Xiao Q, Lin Z, Cai Z (2015) An enzyme–inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity. J Mater Chem B 3:2295–2300CrossRefGoogle Scholar
  93. 93.
    Zhang B, Li P, Zhang H, Fan L, Wang H, Li X et al (2016) Papain/Zn3(PO4)2 hybrid nanoflower: preparation, characterization and its enhanced catalytic activity as an immobilized enzyme. RSC Adv 6:46702–46710CrossRefGoogle Scholar
  94. 94.
    Patel SK, Otari SV, Kang YC, Lee J-K (2017) Protein–inorganic hybrid system for efficient his-tagged enzymes immobilization and its application in l-xylulose production. RSC Adv 7:3488–3494CrossRefGoogle Scholar
  95. 95.
    Zhao F, Wang Q, Dong J, Xian M, Yu J, Yin H et al (2017) Enzyme-inorganic nanoflowers/alginate microbeads: an enzyme immobilization system and its potential application. Process Biochem 57:87–94CrossRefGoogle Scholar
  96. 96.
    Wang L-B, Wang Y-C, He R, Zhuang A, Wang X, Zeng J et al (2013) A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance. J Am Chem Soc 135:1272–1275PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Ye R, Zhu C, Song Y, Lu Q, Ge X, Yang X et al (2016) Bioinspired synthesis of all-in-one organic–inorganic hybrid nanoflowers combined with a handheld pH meter for on-site detection of food pathogen. Small 12:3094–3100PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Cui J, Zhao Y, Liu R, Zhong C, Jia S (2016) Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance. Sci Rep 6:27928PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Altinkaynak C, Tavlasoglu S, Kalin R, Sadeghian N, Ozdemir H, Ocsoy I et al (2017) A hierarchical assembly of flower-like hybrid Turkish black radish peroxidase-Cu2+ nanobiocatalyst and its effective use in dye decolorization. Chemosphere 182:122–128PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Liu Y, Chen J, Du M, Wang X, Ji X, He Z (2017) The preparation of dual-functional hybrid nanoflower and its application in the ultrasensitive detection of disease-related biomarker. Biosens Bioelectron 92:68–73PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Lee HR, Chung M, Kim MI, Ha SH (2017) Preparation of glutaraldehyde-treated lipase-inorganic hybrid nanoflowers and their catalytic performance as immobilized enzymes. Enzyme Microb Technol 105:24PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Wei T, Du D, Zhu M-J, Lin Y, Dai Z (2016) An improved ultrasensitive enzyme-linked immunosorbent assay using hydrangea-like antibody–enzyme–inorganic three-in-one nanocomposites. CS Applied Materials & Interfaces 8(10):6329–6335CrossRefGoogle Scholar
  103. 103.
    Ke C, Fan Y, Chen Y, Xu L, Yan Y (2016) A new lipase–inorganic hybrid nanoflower with enhanced enzyme activity. RSC Adv 6:19413–19416CrossRefGoogle Scholar
  104. 104.
    Nadar SS, Gawas SD, Rathod VK (2016) Self-assembled organic inorganic hybrid glucoamylase nanoflowers with enhanced activity and stability. Int J Biol Macromol 92:660–669PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Xu Z, Wang R, Liu C, Chi B, Gao J, Chen B et al (2016) A new l-arabinose isomerase with copper ion tolerance is suitable for creating protein–inorganic hybrid nanoflowers with enhanced enzyme activity and stability. RSC Adv 6:30791–30794CrossRefGoogle Scholar
  106. 106.
    Mozafari MR, Khosravi-Darani K, Borazan GG, Cui J, Pardakhty A, Yurdugul S (2008) Encapsulation of food ingredients using nanoliposome technology. Int J Food Prop 11:833–844CrossRefGoogle Scholar
  107. 107.
    Reza Mozafari M, Johnson C, Hatziantoniou S, Demetzos C (2008) Nanoliposomes and their applications in food nanotechnology. J Liposome Res 18:309–327PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Meesters GM (2010) Encapsulation of enzymes and peptides. In: Encapsulation technologies for active food ingredients and food processing. Springer, New York, pp 253–268Google Scholar
  109. 109.
    Fathi M, Mozafari M-R, Mohebbi M (2012) Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci Technol 23:13–27CrossRefGoogle Scholar
  110. 110.
    Mohammadi R, Mahmoudzade M, Atefi M, Khosravi-Darani K, Mozafari M (2015) Applications of nanoliposomes in cheese technology. Int J Dairy Technol 68:11–23CrossRefGoogle Scholar
  111. 111.
    Rother C, Nidetzky B (2009) Enzyme immobilization by microencapsulation: methods, materials, and technological applications. In: Encyclopedia of industrial biotechnology. Weily, New DelhiGoogle Scholar
  112. 112.
    Sirisha V, Jain A, Jain A (2016) Chapter 9: Enzyme immobilization: an overview on methods, support material, and applications of immobilized enzymes. Adv Food Nutr Res 79:179–211PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Cellesi F, Tirelli N (2006) Sol–gel synthesis at neutral pH in W/O microemulsion: a method for enzyme nanoencapsulation in silica gel nanoparticles. Colloids Surf A Physicochem Eng Asp 288:52–61CrossRefGoogle Scholar
  114. 114.
    Avnir D, Coradin T, Lev O, Livage J (2006) Recent bio-applications of sol–gel materials. J Mater Chem 16:1013–1030CrossRefGoogle Scholar
  115. 115.
    Pierre A (2004) The sol-gel encapsulation of enzymes. Biocatal Biotransformation 22:145–170CrossRefGoogle Scholar
  116. 116.
    Lee C-H, Lin T-S, Mou C-Y (2009) Mesoporous materials for encapsulating enzymes. Nano Today 4:165–179CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Milad Fathi
    • 1
    Email author
  • Mehri Karim
    • 1
  • Soroush Rahimi Khoigani
    • 1
  • Vahid Mosayebi
    • 1
  1. 1.Department of Food Science and Technology, College of AgricultureIsfahan University of TechnologyIsfahanIran

Personalised recommendations