Advertisement

Natural Food Pigments and Colorants

  • Delia B. Rodriguez-AmayaEmail author
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Extensive structure elucidation resulted in detailed information about anthocyanins, betacyanins, carotenoids, and chlorophylls, the major natural pigments in plant-derived foods. Modifications of the basic skeleton form a broad diversity of structures for anthocyanins and carotenoids. The chromophores responsible for the pleasant colors and the factors affecting them have been delineated. Identification of sources and determination of the composition in foods have also been widely pursued. Stability and influencing factors, alterations during processing and storage of foods, and stabilization methods have been studied as part of the effort to retain the natural color of foods and to substitute artificial food dyes with natural colorants, this substitution being justified by concern about the safety of artificial colorants and by the potential health benefits of the natural colorants. Carotenoids have been the most investigated in terms of health effects, involving epidemiological, in vitro, animal, and human intervention studies. A wide range of biological activities have been attributed to anthocyanins, based mainly on cell culture and animal studies; human clinical studies are lacking. Investigations of the potential health benefits of betacyanin and chlorophyll are in their initial stages.

Keywords

Natural pigments Natural colorants Anthocyanin Betacyanin Carotenoid Chlorophyll Bioactive compounds Health benefits 

References

  1. 1.
    Wrolstad RE, Culver CA (2012) Alternatives to those artificial FD&C food colorants. Annu Rev Food Sci Technol 3:59–77PubMedCrossRefGoogle Scholar
  2. 2.
    Sigurdson GT, Tang P, Giusti MM (2017) Natural colorants: food colorants from natural sources. Annu Rev Food Sci Technol 8:261–280PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Clifford MN (2000) Anthocyanins – nature, occurrence and dietary burden. J Sci Food Agric 80:1063–1072CrossRefGoogle Scholar
  4. 4.
    Kong J-M, Chia L-S, Goh N-K, Chia T-F, Brouillard R (2003) Analysis and biological activities of anthocyanins. Phytochemistry 64:923–933PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Castañeda-Ovando A, Pacheco-Hernández ML, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA (2009) Chemical studies of anthocyanins. Food Chem 113:859–871CrossRefGoogle Scholar
  6. 6.
    Francis FJ, Markakis PC (1989) Food colorants: anthocyanins. Crit Rev Food Sci Nutr 28:273–314PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Trouillas P, Sancho-Garcia JC, de Freitas V, Gierschner J, Otyepka M, Dangles O (2016) Stabilizing and modulating color by copigmentation: insights from theory and experiment. Chem Rev 116:4937–4982PubMedCrossRefGoogle Scholar
  8. 8.
    Giusti MM, Rodríguez-Saona LE, Wrolstad RE (1999) Molar absorptivity and color characteristics of acylated and non-acylated pelargonidin-based anthocyanins. J Agric Food Chem 47:4631–4637PubMedCrossRefGoogle Scholar
  9. 9.
    Giusti MM, Wrolstad RE (2003) Acylated anthocyanins from edible sources and their applications in food systems. Biochem Eng J 14:217–225CrossRefGoogle Scholar
  10. 10.
    Goto T (1987) Structure, stability and color variation of natural anthocyanins. Prog Chem Org Nat Prod 52:113–158Google Scholar
  11. 11.
    Odake K, Terahara N, Saito N, Toki K, Honda T (1992) Chemical structures of two anthocyanins from purple sweet potato, Ipomoea batatas. Phytochemistry 31:2127–2130CrossRefGoogle Scholar
  12. 12.
    Pina F, Oliveira J, de Freitas V (2015) Anthocyanins and derivatives are more than flavylium cations. Tetrahedron 71:3107–3114CrossRefGoogle Scholar
  13. 13.
    He J, Giusti MM (2010) Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci Technol 1:163–187PubMedCrossRefGoogle Scholar
  14. 14.
    De Brito ES, de Araújo MCP, Alves RE, Carkeet C, Clevidence BA, Novotny JA (2007) Anthocyanins present in selected tropical fruits: acerola, jambolão, jussara, and guajiru. J Agric Food Chem 55:9389–9394PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Einbond LS, Reynertson KA, Luo X-D, Basile MJ, Kennelly EJ (2004) Anthocyanin antioxidants from edible fruits. Food Chem 84:23–28CrossRefGoogle Scholar
  16. 16.
    Harborne JB, Williams CA (2001) Anthocyanins and other flavonoids. Nat Prod Rep 18:310–333PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Wu X, Prior RL (2005) Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: fruits and berries. J Agric Food Chem 53:2589–2599PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Wu X, Prior RL (2005) Identification and characterization of anthocyanins by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry in common foods in the United States: vegetables, nuts, and grains. J Agric Food Chem 53:3101–3113PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL (2006) Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J Agric Food Chem 54:4069–4075PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Mazza GJ (2007) Anthocyanins and heart health. Ann Ist Super Sanita 43:369–374PubMedPubMedCentralGoogle Scholar
  21. 21.
    Lee J, Finn CE (2007) Anthocyanin and other polyphenolics in American elderberry (Sambucus canadensis) and European elderberry (S. nigra) cultivars. J Sci Food Agric 87:2665–2675PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Dossett M, Lee J, Finn CE (2010) Variation in anthocyanins and total phenolics of black raspberry populations. J Funct Foods 2:292–297CrossRefGoogle Scholar
  23. 23.
    Ahmadiani N, Robbins RJ, Collins TM, Giusti MM (2014) Anthocyanins contents, profiles, and color characteristics of red cabbage extracts from different cultivars and maturity stages. J Agric Food Chem 62:7524–7531PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Jin AL, Ozga JA, Kennedy JA, Koerner-Smith JL, Botar G, Reinecke DM (2015) Developmental profile of anthocyanin, flavonol, and proanthocyanidin type, content, and localization in Saskatoon fruits (Amelanchier alnifolia Nutt.) J Agric Food Chem 63:1601–1614PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Jorjong S, Butkhup L, Samappito S (2015) Phytochemicals and antioxidant capacities of Mao-Luang (Antidesma bunius L.) cultivars from Northeastern Thailand. Food Chem 181:248–255PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Kim HJ, Park WS, Bae J-Y, Kang SY, Yang MH, Lee S, Lee H-S, Kwak S-S, Ahn M-J (2015) Variations in the carotenoid and anthocyanin contents of Korean cultural varieties and home-processed sweet potatoes. J Food Compos Anal 41:188–193CrossRefGoogle Scholar
  27. 27.
    Kovacevic DB, Putnik P, Dragovic-Uzelac V, Vahcic N, Babojelic MS, Levaj B (2015) Influences of organically and conventionally grown strawberry cultivars on anthocyanin content and color in purees and low-sugar jams. Food Chem 181:94–100CrossRefGoogle Scholar
  28. 28.
    Szalóki-Dorkó L, Stéger-Máté M, Abrankó L (2015) Evaluation of colouring ability of main European elderberry (Sambucus nigra L.) varieties as potential resources of natural food colourants. Int J Food Sci Technol 50:1317–1323CrossRefGoogle Scholar
  29. 29.
    Xu J, Su X, Lim S, Griffin J, Carey E, Katz B, Tomich J, Smith JC, Wang W (2015) Characterization and stability of anthocyanins in purple-fleshed sweet potato P40. Food Chem 186:90–96PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Rotray W, Orsat V (2011) Blackberries and their anthocyanins: factors affecting biosynthesis and properties. Compr Rev Food Sci Food Saf 10:303–320CrossRefGoogle Scholar
  31. 31.
    Olsen H, Aaby K, Borge GIA (2010) Characterization, quantification, and yearly variation of the naturally occurring polyphenols in a common red variety of curly kale (Brassica oleracea L. convar. acephala var. sabellica cv. “Redbor”). J Agric Food Chem 58:11346–11354PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Pervaiz T, Songtao J, Faghihi F, Haider MS, Fang J (2017) Naturally occurring anthocyanin, structure, functions and biosynthetic pathway in fruit plants. J Plant Biochem Physiol 5:187.  https://doi.org/10.4172/2329-9029.1000187CrossRefGoogle Scholar
  33. 33.
    Kovacevic DB, Putnik P, Dragovic-Uzelac V, Pedisíc S, Jambrak AR, Herceg Z (2016) Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegrate juice. Food Chem 190:317–323CrossRefGoogle Scholar
  34. 34.
    Amarowicz R, Carle R, Dongowski G, Durazzo A, Galensa R, Kammerer D, Maiani G, Piskula MK (2009) Influence of postharvest processing and storage on the content of phenolic acids and flavonoids in foods. Mol Nutr Food Res 53:S151–S183PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Mazza G, Brouillard R (1987) Recent developments in the stabilization of anthocyanins in food products. Food Chem 25:201–225CrossRefGoogle Scholar
  36. 36.
    Bridle P, Timberlake CF (1997) Anthocyanins as natural food colours – selected aspects. Food Chem 58:103–109CrossRefGoogle Scholar
  37. 37.
    Schwartz SJ, von Elbe JH, Giusti MM (2008) Colorants. In: Damodaran S, Parkin KL, Fennema OR (eds) Fennema’s food chemistry. CRC Press Taylor & Francis Group, Boca RatonGoogle Scholar
  38. 38.
    Patras A, Brunton NP, O’Donnell C, Tiwar BK (2010) Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci Technol 21:3–11CrossRefGoogle Scholar
  39. 39.
    Cavalcanti RN, Santos DT, Meireles MAA (2011) Non-thermal stabilization mechanisms of anthocyanins in model and food systems – an overview. Food Res Int 44:499–509CrossRefGoogle Scholar
  40. 40.
    Malaj N, de Simone BC, Quartarolo AD, Russo N (2013) Spectrophotometric study of copigmentation of malvidin-3-O-glucoside with p-coumaric, vanillic and syringic acids. Food Chem 141:3614–3620PubMedCrossRefGoogle Scholar
  41. 41.
    Stintzing FC, Carle R (2004) Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends Food Sci Technol 15:19–38CrossRefGoogle Scholar
  42. 42.
    Boyles MJ, Wrolstad RE (1993) Anthocyanin composition of red raspberry juice: influences of cultivar, processing, and environmental factors. J Food Sci 58:1135–1141CrossRefGoogle Scholar
  43. 43.
    Goto T, Kondo T (1991) Structure and molecular stacking of anthocyanins – flower color variation. Angew Chem Int Ed 30:17–33CrossRefGoogle Scholar
  44. 44.
    Brouillard R (1983) The in vivo expression of anthocyanin colour in plants. Phytochemistry 22:1311–1323CrossRefGoogle Scholar
  45. 45.
    Giusti MM, Wrolstad RE (1996) Radish anthocyanin extract as a natural red colorant for maraschino cherries. J Food Sci 61:688–694CrossRefGoogle Scholar
  46. 46.
    Giusti MM, Ghanadan H, Wrolstad RE (1998) Elucidation of the structure and conformation of red radish (Raphanus sativus) anthocyanins using one- and two-dimensional nuclear magnetic resonance techniques. J Agric Food Chem 46:4858–4863CrossRefGoogle Scholar
  47. 47.
    Giusti MM, Rodríguez-Saona LE, Bagett JR, Reed GL, Durst RW, Wrolstad RE (1998) Anthocyanin pigment composition of red radish cultivars as potential food colorants. J Food Sci 63:219–224CrossRefGoogle Scholar
  48. 48.
    Rodríguez-Saona LE, Giusti MM, Wrolstad RE (1999) Color and pigment stability of red radish and red-fleshed potato anthocyanins in juice model systems. J Food Sci 64:451–456CrossRefGoogle Scholar
  49. 49.
    Baublis A, Spomer A, Berber-Jiménez MD (1994) Anthocyanin pigments: comparison of extract stability. J Food Sci 59:1219–1221, 1233CrossRefGoogle Scholar
  50. 50.
    Stintzing FC, Stintzing AS, Carle R, Frei B, Wrolstad RE (2002) Color and antioxidant properties of cyanidin-based anthocyanin pigments. J Agric Food Chem 50:6172–6181PubMedCrossRefGoogle Scholar
  51. 51.
    Ersus S, Yurdagel U (2007) Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. J Food Eng 80:805–812CrossRefGoogle Scholar
  52. 52.
    Reyes LF, Cisneros-Zevallos L (2007) Degradation kinetics and colour of anthocyanins in aqueous extracts of purple- and red-flesh potatoes (Solanum tuberosum L.) Food Chem 100:885–894CrossRefGoogle Scholar
  53. 53.
    Cai Z, Qu Z, Lan Y, Zhao S, Ma X, Wan Q, Jing P, Li P (2016) Conventional, ultrasound-assisted, and accelerated-solvent extractions of anthocyanins from purple sweet potatoes. Food Chem 197:266–272PubMedCrossRefGoogle Scholar
  54. 54.
    Heinonen J, Farahmandazad H, Vuorinen A, Kallio H, Yang B, Sainio T (2016) Extraction and purification of anthocyanins from purple-fleshed potato. Food Bioprod Process 99:136–146CrossRefGoogle Scholar
  55. 55.
    Francis FJ (1992) A new group of food colorants. Trends Food Sci Technol 3:27–30CrossRefGoogle Scholar
  56. 56.
    Dangles O, Saito N, Brouillard R (1993) Anthocyanin intramolecular copigment effect. Phytochemistry 34:119–124CrossRefGoogle Scholar
  57. 57.
    Malien-Aubert C, Dangles O, Amiot MJ (2001) Color stability of commercial anthocyanin-based extracts in relation to the phenolic composition. Protective effects by intra- and intermolecular copigmentation. J Agric Food Chem 49:170–176PubMedCrossRefGoogle Scholar
  58. 58.
    Boulton R (2001) The copigmentation of anthocyanins and its role in the color of red wine: a critical review. Am J Enol Vitic 52:67–87Google Scholar
  59. 59.
    Yoshida K, Kondo T, Goto T (1991) Unusually stable monoacylated anthocyanin from purple yam Dioscorea alata. Tetrahedron Lett 32:5579–5580CrossRefGoogle Scholar
  60. 60.
    George F, Figueiredo P, Toki K, Tatsuzawa F, Saito N, Brouillard R (2001) Influence of trans-cis isomerisation of coumaric acid substituents on colour variance and stabilisation in anthocyanins. Phytochemistry 57:791–795PubMedCrossRefGoogle Scholar
  61. 61.
    Mazza G, Brouillard R (1990) The mechanism of co-pigmentation of anthocyanins in aqueous solutions. Phytochemistry 29:1097–1102CrossRefGoogle Scholar
  62. 62.
    Saito N, Tatsuzawa F, Yoda K, Yokoi M, Kasahara K, Iida S, Shigihara A, Honda T (1995) Acylated cyanidin glycosides in the violet-blue flowers of Ipomoea purpurea. Phytochemistry 40:1283–1289PubMedCrossRefGoogle Scholar
  63. 63.
    Davies AJ, Mazza G (1993) Copigmentation of simple and acylated anthocyanins with colorless phenolic compounds. J Agric Food Chem 41:716–720CrossRefGoogle Scholar
  64. 64.
    Gordillo B, Rodríguez-Pulido FJ, Escudero-Gilete ML, González-Miret ML, Heredia FJ (2012) Comprehensive colorimetric study of anthocyanic copigmentation in model solutions. Effects of pH and molar ratio. J Agric Food Chem 60:2896–2905PubMedCrossRefGoogle Scholar
  65. 65.
    Goto T, Tamura H, Kawai T, Hoshino T, Harada N, Kondo T (1986) Chemistry of metalloanthocyanins. Ann N Y Acad Sci 471:155–173CrossRefGoogle Scholar
  66. 66.
    Dangles O, Elhabiri M, Brouillard R (1994) Kinetic and thermodynamic investigation of the aluminum–anthocyanin complexation in aqueous solution. J Chem Soc Perkin Trans 2:2587–2596Google Scholar
  67. 67.
    Elhabiri M, Figueiredo P, Toki K, Saito N, Brouillard R (1997) Anthocyanin–aluminium and –gallium complexes in aqueous solution. J Chem Soc Perkin Trans 2:355–362CrossRefGoogle Scholar
  68. 68.
    Skrede G, Wrolstad RE, Lea P, Enersen G (1992) Color stability of strawberry and blackcurrant syrups. J Food Sci 57:172–177CrossRefGoogle Scholar
  69. 69.
    Martí N, Pérez-Vicente A, García-Viguera C (2001) Influence of storage temperature and ascorbic acid addition on pomegranate juice. J Sci Food Agric 82:217–221CrossRefGoogle Scholar
  70. 70.
    Berké B, Chèze C, Vercauteren J, Deffieux G (1998) Bisulfite addition to anthocyanins: revisited structures of colourless adducts. Tetrahedron Lett 39:5771–5774CrossRefGoogle Scholar
  71. 71.
    Wrolstad RE, Durst RW, Lee J (2005) Tracking color and pigment changes in anthocyanin products. Trends Food Sci Technol 16:423–428CrossRefGoogle Scholar
  72. 72.
    Skrede G, Wrolstad RE, Durst RW (2000) Changes in anthocyanins and polyphenolics during juice processing of highbush blueberries (Vaccinium corymbosum L.) J Food Sci 65:357–364CrossRefGoogle Scholar
  73. 73.
    Franke AA, Custer LJ, Arakaki C, Murphy SP (2004) Vitamin C and flavonoid levels of fruits and vegetables consumed in Hawaii. J Food Compos Anal 17:1–35CrossRefGoogle Scholar
  74. 74.
    Kırca A, Özkan M, Cemeroğlu B (2007) Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chem 101:212–218CrossRefGoogle Scholar
  75. 75.
    Brownmiller C, Howard LR, Prior RI (2008) Processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed blueberry products. J Food Sci 73:H72–H79PubMedCrossRefGoogle Scholar
  76. 76.
    Xu B, Chang SKC (2009) Total phenolic, phenolic acid, anthocyanin, flavan-3-ol, and flavonol profiles and antioxidant properties of pinto and black beans (Phaseolus vulgaris L.) as affected by thermal processing. J Agric Food Chem 57:4754–4764PubMedCrossRefGoogle Scholar
  77. 77.
    Kopjar M, Pilizota V (2011) Prevention of thermal degradation of anthocyanins in blackberry juice with the addition of different sugars. CyTA-J Food 9:237–242CrossRefGoogle Scholar
  78. 78.
    Brauch JE, Buchweitz M, Schweiggert RM, Carle R (2016) Detailed analyses of fresh and dried maqui (Aristotelia chilensis (Mol.) Stuntz) berries and juice. Food Chem 190:308–316PubMedCrossRefGoogle Scholar
  79. 79.
    Rubinskiene M, Viskelis P, Jasutiene I, Viskeliene R, Bobinas C (2005) Impact of various factor on the composition and stability of black currant anthocyanins. Food Res Int 38:867–871CrossRefGoogle Scholar
  80. 80.
    Sadilova E, Carle R, Stintzing FC (2007) Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity. Mol Nutr Food Res 51:1461–1471PubMedCrossRefGoogle Scholar
  81. 81.
    Sadilova E, Stintzing FC, Carle R (2006) Thermal degradation of acylated and nonacylated anthocyanins. J Food Sci 71:C504–C512CrossRefGoogle Scholar
  82. 82.
    Cortez R, Luna-Vital DA, Margulis D, de Mejia EG (2017) Natural pigments: stabilization methods of anthocyanins for food applications. Compr Rev Food Sci Food Saf 16:180–198CrossRefGoogle Scholar
  83. 83.
    Chung C, Rojanasasithara T, Mutilangi W, McClements DJ (2016) Stabilization of natural colors and nutraceuticals: inhibition of anthocyanin degradation in model beverages using polyphenols. Food Chem 212:596–603PubMedCrossRefGoogle Scholar
  84. 84.
    Sajilata MG, Singhal RS (2006) Isolation and stabilisation of natural pigments for food application. Stewart Postharvest Rev 5:11Google Scholar
  85. 85.
    Yousuf B, Gul K, Wani AA, Singh P (2016) Health benefits of anthocyanins and their encapsulation for potential use in food systems: a review. Crit Rev Food Sci Nutr 56:2223–2230PubMedCrossRefGoogle Scholar
  86. 86.
    Bakowska-Barczak AM, Kolodziejczyk PP (2011) Black currant polyphenols: their storage stability and microencapsulation. Ind Crop Prod 34:1301–1309CrossRefGoogle Scholar
  87. 87.
    Idham Z, Muhamad II, Setapar SHM, Sarmidi MR (2012) Effect of thermal processes on roselle anthocyanins encapsulated in different polymer matrices. J Food Process Preserv 36:176–184CrossRefGoogle Scholar
  88. 88.
    Mahdavi AS, Jafari SM, Ghorbani M, Assadpoor E (2014) Spray-drying microencapsulation of anthocyanins by natural biopolymers: a review. Dry Technol 32:509–518CrossRefGoogle Scholar
  89. 89.
    Robert P, Freedes C (2015) The encapsulation of anthocyanins from berry-type fruits. Molecules 20:5875–5888PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Liao H, Cai Y, Haslam E (1992) Polyphenol interactions. Anthocyanins: co-pigmentation and colour changes in red wines. J Sci Food Agric 59:299–305CrossRefGoogle Scholar
  91. 91.
    Brouillard R, Dangles O (1994) Anthocyanin molecular interactions: the first step in the formation of new pigments during wine aging? Food Chem 51:365–371CrossRefGoogle Scholar
  92. 92.
    Stintzing FC, Kammerer D, Schieber A, Adama H, Nacoulma OG, Carle R (2004) Betacyanins and phenolic compounds from Amaranthus spinosus L. and Boerhavia erecta L. Z. Naturforsch 59c:1–8Google Scholar
  93. 93.
    Stintzing FC, Schieber A, Carle R (2002) Betacyanins in fruits from red-purple pitaya Hylocereus polyrhizus (Weber) Britton & Rose. Food Chem 77:101–106, 517CrossRefGoogle Scholar
  94. 94.
    Wybraniec S, Platzner I, Geresh S, Gottlieb HE, Haimberg M, Mogilnitzki M, Mizrahi Y (2001) Betacyanins from vine cactus Hylocereus polyrhizus. Phytochemistry 58:1209–1212PubMedCrossRefGoogle Scholar
  95. 95.
    Khan MI, Giridhar P (2015) Plant betalains: chemistry and biochemistry. Phytochemistry 117:267–295PubMedCrossRefGoogle Scholar
  96. 96.
    Cejudo-Bastante MJ, Hurtado N, Mosquera N, Heredia FJ (2014) Potential use of new Colombian sources of betalains. Color stability of ulluco (Ullucus tuberosus) extracts under different pH and thermal conditions. Food Res Int 64:465–471PubMedCrossRefGoogle Scholar
  97. 97.
    Kumar SS, Manoj P, Shetty NP, Prakash M, Giridhar P (2015) Characterization of major betalain pigments – gomphrenin, betanin and isobetanin from Basella rubra L. fruit and evaluation of efficacy as a natural colourant in product (ice cream) development. J Food Sci Technol 52:4994–5002PubMedCrossRefGoogle Scholar
  98. 98.
    Castellar R, Obón JM, Alacid M, Fernández-López JA (2003) Color properties and stability of betacyanins from Opuntia fruits. J Agric Food Chem 51:2772–2776PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Stintzing FC, Schieber A, Carle R (2003) Evaluation of colour properties and chemical quality parameters of cactus juices. Eur Food Res Technol 216:303–311CrossRefGoogle Scholar
  100. 100.
    Moβhammer MR, Stintzing FC, Carle R (2005) Colour studies on fruit juice blends from Opuntia and Hylocereus cacti and betalain-containing model solutions derived therefrom. Food Res Int 38:975–981CrossRefGoogle Scholar
  101. 101.
    Moβhammer MR, Stintzing FC, Carle R (2005) Development of a process for the production of a betalain-based colouring foodstuff from cactus pear. Innov Food Sci Emerg Technol 6:221–231CrossRefGoogle Scholar
  102. 102.
    Mosshammer MR, Stintzing FC, Carle R (2006) Evaluation of different methods for the production of juice concentrates and fruit powders from cactus pear. Innov Food Sci Emerg Technol 7:275–287CrossRefGoogle Scholar
  103. 103.
    Herbach KM, Stintzing FC, Carle R (2004) Thermal degradation of betacyanins in juices from purple pitaya [Hylocereus polyrhisus (Weber) Britton & Rose] monitored by high-performance liquid chromatography-tandem mass spectrometric analyses. Eur Food Res Technol 219:377–385CrossRefGoogle Scholar
  104. 104.
    Herbach KM, Rohe M, Stintzing FC, Carle R (2006) Structural and chromatic stability of purple pitaya (Hylocereus polyrhisus [Weber] Britton & Rose) betacyanins as affected by the juice matrix and selected additives. Food Res Int 39:667–677CrossRefGoogle Scholar
  105. 105.
    Herbach KM, Maier C, Stintzing FC, Carle R (2007) Effects of processing and storage on juice color and betacyanin stability of purple pitaya (Hylocereus polyrhizus) juice. Eur Food Res Technol 224:649–658CrossRefGoogle Scholar
  106. 106.
    Wybraniec S, Mizrahi Y (2005) Generation of decarboxylated and dehydrogenated betacyanins in thermally treated purified fruit extract from purple pitaya (Hylocereus polyrhizus) monitored by LC-MS/MS. J Agric Food Chem 53:6704–6712PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Cai YZ, Corke H (2000) Production and properties of spray-dried Amaranthus betacyanin pigments. J Food Sci 65:1248–1252CrossRefGoogle Scholar
  108. 108.
    Cai YZ, Corke H (2001) Effect of postharvest treatments on Amaranthus betacyanin degradation evaluated by visible/near-infrared spectroscopy. J Food Sci 66:1112–1118CrossRefGoogle Scholar
  109. 109.
    Cai Y, Sun M, Corke H (1998) Colorant properties and stability of Amaranthus betacyanin pigments. J Agric Food Chem 46:4491–4495CrossRefGoogle Scholar
  110. 110.
    Cai Y-Z, Sun M, Corke H (2005) Characterization and application of betalain pigments from plants of the Amaranthaceae. Trends Food Sci Technol 16:370–376CrossRefGoogle Scholar
  111. 111.
    Von Elbe JH, Attoe EL (1985) Oxygen involvement in betanine degradation – measurement of active oxygen species and oxidation reduction potentials. Food Chem 16:49–67CrossRefGoogle Scholar
  112. 112.
    Schliemann W, Strack D (1998) Intramolecular stabilization of acylated betacyanins. Phytochemistry 49:585–588CrossRefGoogle Scholar
  113. 113.
    Havliková I, Miková K, Kyzlink V (1983) Heat stability of betacyanins. Z Lebensm-Unters -Forsch 177:247–250CrossRefGoogle Scholar
  114. 114.
    Huang AS, von Elbe JH (1987) Effect of pH on the degradation and regeneration of betanine. J Food Sci 52:1689–1693CrossRefGoogle Scholar
  115. 115.
    Czapski J (1985) The effect of heating conditions on losses and regeneration of betacyanins. Z Lebensm-Unters -Forsch 180:21–25CrossRefGoogle Scholar
  116. 116.
    von Elbe JH, Maing I-Y, Asmundson CH (1974) Color stability of betanin. J Food Sci 39:334–337CrossRefGoogle Scholar
  117. 117.
    Herbach KM, Stintzing FC, Carle R (2006) Betalain stability and degradation – structural and chromatic aspects. J Food Sci 71:R41–R50CrossRefGoogle Scholar
  118. 118.
    Kearsley MW, Katsaboxakis KZ (1980) Stability and use of natural colours in foods. Red beet powder, copper chlorophyll powder and cochineal. Int J Food Sci Technol 15:501–514CrossRefGoogle Scholar
  119. 119.
    Serris GS, Biliaderis CG (2001) Degradation kinetics of beetroot pigment encapsulated in polymeric matrices. J Sci Food Agric 81:691–700CrossRefGoogle Scholar
  120. 120.
    Attoe EL, von Elbe JH (1984) Oxygen involvement in betanin degradation – oxygen uptake and influence of metal ions. Z Lebensm-Unters -Forsch 179:232–236CrossRefGoogle Scholar
  121. 121.
    Czapski J (1990) Heat stability of betacyanins in red beet juice and in betanine solutions. Z Lebensm-Unters -Forsch 191:275–278CrossRefGoogle Scholar
  122. 122.
    Sobkowska E, Czapski J, Kaczmarek R (1991) Red table beet pigment as food colorant. Int Food Ingredient 3:24–28Google Scholar
  123. 123.
    Escribano J, Cabanes J, Chazarra S, Garcia-Carmona F (1997) Characterization of monophenolase activity of table beet polyphenol oxidase. Determination of kinetic parameters on the tyramine/dopamine pair. J Agric Food Chem 45:4209–4214CrossRefGoogle Scholar
  124. 124.
    Escribano J, Gandía-Herrero F, Cabellero N, Pedreño MA (2002) Subcellular localization and isoenzyme pattern of peroxidase and polyphenol oxidase in beet root (Beta vulgaris L.) J Agric Food Chem 50:6123–6129PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Zakharova NS, Petrova TA, Bokuchava MA (1987) Betanin enzymatic conversion. Appl Biochem Microbiol 25:768–774Google Scholar
  126. 126.
    Merin U, Gagel S, Popel G, Bernstein S, Rosenthal I (1987) Thermal degradation kinetics of prickly pear fruit red pigment. J Food Sci 52:485–486CrossRefGoogle Scholar
  127. 127.
    Herbach KM, Stintzing FC, Carle R (2004) Impact of thermal treatment on color and pigment pattern of red beet (Beta vulgaris L.) preparations. J Food Sci 69:C491–C498CrossRefGoogle Scholar
  128. 128.
    Wilcox ME, Wyler H, Dreiding AS (1965) Stereochemistry of betanidin and isobetanidin VIII. Structure of the bark pigment betanin. Helv Chim Acta 48:1134–1147CrossRefGoogle Scholar
  129. 129.
    Schwartz SJ, von Elbe JH (1983) Identification of betanin degradation products. Z Lebensm-Unters-Forsch 176:448–453PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Hilpert H, Siegfried MA, Dreiding AS (1985) Total synthese von decarboxybetalainen durch photochemische ringöffnung von 3-(4-pyridyl)alanin. Helv Chim Acta 68:1670–1678CrossRefGoogle Scholar
  131. 131.
    Von Elbe JH, Schwartz SJ, Hildenbrand BE (1981) Loss and regeneration of betacyanin pigments during processing of red beets. J Food Sci 46:1713–1715CrossRefGoogle Scholar
  132. 132.
    Jackman RL, Smith JL (1996) Anthocyanins and betalains. In: Hendry GAF, Houghton JD (eds) Natural food colorants, 2nd edn. Blackie Academic and Professional, GlasgowGoogle Scholar
  133. 133.
    Herbach KM, Stintzing FC, Carle R (2005) Identification of heat-induced degradation products from purified betanin, phyllocactin and hylocerenin by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 19:2603–2616PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Huang AS, von Elbe JH (1985) Kinetics of the degradation and regeneration of betanine. J Food Sci 50:1115–1120, 1129CrossRefGoogle Scholar
  135. 135.
    Han D, Kim SJ, Kim SH, Kim DM (1998) Repeated regeneration of degraded red beet juice pigments in the presence of antioxidants. J Food Sci 63:69–72CrossRefGoogle Scholar
  136. 136.
    Herbach KM, Stintzing FC, Carle R (2006) Stability and color changes of thermally treated betanin, phyllocactin and hylocerenin solutions. J Agric Food Chem 54:390–398PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Alard D, Wray V, Grotjahn L, Reznik H, Strack D (1985) Neobetanin: isolation and identification from Beta vulgaris. Phytochemistry 24:2383–2385CrossRefGoogle Scholar
  138. 138.
    Kujala T, Loponen J, Pihlaja K (2001) Betalains and phenolics in red beetroot (Beta vulgaris) peel extracts: extraction and characterization. Z Naturforsch C 56:343–348PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Strack D, Engel U, Wray V (1987) Neobetanin: a new natural plant constituent. Phytochemistry 26:2399–2400CrossRefGoogle Scholar
  140. 140.
    Wybraniec S (2005) Formation of decarboxylated betacyanins in heated purified betacyanin fractions from red beet root (Beta vulgaris L.) monitored by LC-MS/MS. J Agric Food Chem 53:3483–3487PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Rodriguez-Amaya DB (1999) A guide to carotenoid analysis in foods. International Life Sciences Institute (ILSI) Press, Washington, DCGoogle Scholar
  142. 142.
    Bartley GE, Scolnik PA (1995) Plant carotenoids: pigments for photoprotection, visual attraction, and human health. Plant Cell 7:1027–1038PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Breithaupt DE, Bamedi A (2001) Carotenoid esters in vegetables and fruits: a screening with emphasis on β-cryptoxanthin esters. J Agric Food Chem 49:2064–2070CrossRefGoogle Scholar
  144. 144.
    Weller P, Breithaupt DE (2003) Identification and quantification of zeaxanthin esters in plants using liquid chromatrography-mass spectrometry. J Agric Food Chem 51:7044–7049PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Inbaraj BS, Lu H, Hung CF, Wu WB, Lin CL, Chen BH (2008) Determination of carotenoids and their esters in fruits of Lycium barbarum Linnaeus by HPLC-DAD-APCI-MS. J Pharm Biomed Anal 47:812–818PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Mertz C, Gancel A-L, Gunata Z, Alter P, Dhuique-Mayer C, Vaillant F, Perez AM, Ruales J, Brat P (2009) Phenolic compounds, carotenoids and antioxidant capacity of three tropical fruits. J Food Compos Anal 22:381–387CrossRefGoogle Scholar
  147. 147.
    Delgado-Pelayo R, Hornero-Méndez D (2012) Identification and quantitative analysis of carotenoids and their esters from sarsaparilla (Smilax aspera L.) berries. J Agric Food Chem 60:8225–8232PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Gross J (1987) Pigments in fruits. Academic, LondonGoogle Scholar
  149. 149.
    Kobori CN, Rodriguez-Amaya DB (2008) Uncultivated Brazilian green leaves are richer sources of carotenoids than commercially produced leafy vegetables. Food Nutr Bull 29:333–341CrossRefGoogle Scholar
  150. 150.
    De Oliveira GPR, Rodriguez-Amaya DB (2007) Processed and prepared products of corn as sources of lutein and zeaxanthin. Compositional variation in the food chain. J Food Sci 72:S79–S85CrossRefGoogle Scholar
  151. 151.
    Rodriguez-Amaya DB, Kimura M (2004) HarvestPlus handbook for carotenoid analysis. International Food Policy Research Institute, Washington, DCGoogle Scholar
  152. 152.
    Niizu PY, Rodriguez-Amaya DB (2005) The flowers and leaves of Tropaeolum majus as rich sources of lutein. J Food Sci 70:S605–S609CrossRefGoogle Scholar
  153. 153.
    Breithaupt D, Wirt U, Bamedi A (2002) Differentiation between lutein monoester regioisomers and detection of lutein diesters from marigold flowers (Tagetes erecta L.) and several fruits by liquid chromatography-mass spectrometry. J Agric Food Chem 50:66–70PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Schweiggert U, Kurz C, Schieber A, Carle R (2007) Effects of processing and storage on the stability of free and esterified carotenoids of red peppers (Capsicum annuum L) and hot chili peppers (Capsicum frutescens L.) Eur Food Res Technol 225:261–270CrossRefGoogle Scholar
  155. 155.
    Shahidi F, Metusalach, Brown JA (1998) Carotenoid pigments in seafoods and aquaculture. Crit Rev Food Sci Nutr 38:1–67PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Liaaen-Jensen S (2004) Basic carotenoid chemistry. In: Krinsky NI, Mayne ST, Sies H (eds) Carotenoids in health and disease. Marcel Dekker, New YorkGoogle Scholar
  157. 157.
    Weedon BCL, Moss GP (1995) Structure and nomenclature. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids vol. 1A, isolation and analysis. Birkhaüser Verlag, BaselGoogle Scholar
  158. 158.
    Lessin WJ, Catigani GL, Schwartz SJ (1997) Quantification of cis-trans isomers of provitamin A carotenoids in fresh and processed fruits and vegetables. J Agric Food Chem 45:3728–3732CrossRefGoogle Scholar
  159. 159.
    Marx M, Schieber A, Carle R (2000) Quantitative determination of carotene stereoisomer in carrot juices and vitamin supplemented (ATBC) drinks. Food Chem 70:403–408CrossRefGoogle Scholar
  160. 160.
    Dachtler M, Glaser T, Kohler K, Albert K (2001) Combined HPLC-MS and HPLC-NMR on-line coupling for the separation and determination of lutein and zeaxanthin stereoisomers in spinach and in retina. Anal Chem 73:667–674PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Humphries JM, Khachick F (2003) Distribution of lutein, zeaxanthin, and related geometrical isomers in fruit, vegetables, wheat, and pasta products. J Agric Food Chem 51:1322–1327PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Updike AA, Schwartz SJ (2003) Thermal processing of vegetables increases cis isomers of lutein and zeaxanthin. J Agric Food Chem 51:6184–6190PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Aman R, Biehl J, Carle R, Conrad J, Beifuss U, Schieber A (2005) Application of HPLC coupled with DAD, APcI-MS and NMR to the analysis of lutein and zeaxanthin stereoisomers in thermally processed vegetables. Food Chem 92:753–763CrossRefGoogle Scholar
  164. 164.
    Schierle J, Bretzel W, Bühler I, Faccin N, Hess D, Steiner K, Schüep W (1997) Content and isomeric ratio of lycopene in food and human blood plasma. Food Chem 59:459–465CrossRefGoogle Scholar
  165. 165.
    Tiziani S, Schwartz SJ, Vodovotz Y (2006) Profiling of carotenoids in tomato juice by one- and two-dimensional NMR. J Agric Food Chem 54:6094–6100PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Li H, Deng Z, Liu R, Loewen S, Tsao R (2012) Ultra-performance liquid chromatographic separation of geometric isomers of carotenoids and antioxidant activities of 20 tomato cultivars and breeding lines. Food Chem 132:508–517PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Stinco CM, Rodríguez-Pulido FJ, Escudero-Gilete ML, Gordillo B, Vicario IM, Meléndez-Martínez AJ (2013) Lycopene isomers in fresh and processed tomato products: correlations with instrumental color measurements by digital image analysis and spectroradiometry. Food Res Int 50:111–120CrossRefGoogle Scholar
  168. 168.
    Achir N, Randrianatoandro VA, Bohuon P, Laffargue A, Avallone S (2010) Kinetic study of β-carotene and lutein degradation in oils during heat treatment. Eur J Lipid Sci Technol 112:349–361Google Scholar
  169. 169.
    Holden JM, Eldridge AL, Beecher GR, Buzzard IM, Bhagwat S, Davis CS, Douglass LW, Gebhardt S, Haytowitz D, Schakel S (1999) Carotenoid content of US foods: an update of the database. J Food Compos Anal 12:169–196CrossRefGoogle Scholar
  170. 170.
    Murkovic M, Gams K, Draxl S, Pfannhauser W (2000) Development of an Austrian carotenoid database. J Food Compos Anal 13:435–440CrossRefGoogle Scholar
  171. 171.
    Furtado JD, Siles X, Campos H (2004) Carotenoid concentrations in vegetables and fruits common to the Costa Rican diet. Int J Food Sci Nutr 55:101–113PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Reif C, Arrigoni E, Schärer H, Nyström L, Hurrell RF (2013) Carotenoid database of commonly eaten Swiss vegetables and their estimated contribution to carotenoid intake. J Food Compos Anal 29:64–72CrossRefGoogle Scholar
  173. 173.
    Rodriguez-Amaya DB, Kimura M, Godoy HT, Amaya-Farfan J (2008) Updated Brazilian database on food carotenoids: factors affecting carotenoid composition. J Food Compos Anal 21:445–463CrossRefGoogle Scholar
  174. 174.
    Rodriguez-Amaya DB (2016) Food carotenoids: chemistry, biology and technology. IFT Press/Wiley, OxfordGoogle Scholar
  175. 175.
    Ishida BK, Turner C, Chapman MH, McKeon TA (2004) Fatty acid and carotenoid composition of Gac (Momordica cochinchinensis Spreng) fruit. J Agric Food Chem 52:274–279PubMedCrossRefGoogle Scholar
  176. 176.
    Vuong LT, Franke AA, Custer LJ, Murphy SP (2006) Momordica chochinchinensis Spreng. (gac) fruit carotenoids reevaluated. J Food Compos Anal 19:664–668CrossRefGoogle Scholar
  177. 177.
    Gross J (1991) Pigments in vegetables. Chlorophylls and carotenoids. Avi Van Nostrand Reinhold, New YorkCrossRefGoogle Scholar
  178. 178.
    Rodriguez-Amaya DB, Amaya-Farfan J, Rodriguez EB (2008a) Carotenoids in fruits: biology, chemistry, technology and health benefits. In: Francesco E (ed) Trends in phytochemistry. Research Signpost, KeralaGoogle Scholar
  179. 179.
    Maiani G, Castón MJP, Catasta G, Toti E, Cambrodón IG, Bysted A, Granado-Lorencio F, Olmedilla-Alonso B, Knuthsen P, Valoti M, Böhm V, Mayer-Miebach E, Behsnilian D, Schlemmer U (2009) Carotenoids: actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol Nutr Food Res 53:S194–S218PubMedCrossRefGoogle Scholar
  180. 180.
    Rodriguez-Amaya DB (1997) Carotenoids and food preparation: the retention of provitamin A carotenoids in prepared, processed, and stored foods. Opportunities for Micronutrient Intervention (OMNI), ArlingtonGoogle Scholar
  181. 181.
    Rodriguez-Amaya DB (1999b) Changes in carotenoids during processing and storage of foods. Arch Latinoam Nutr 49:38S–47SPubMedGoogle Scholar
  182. 182.
    Xianquan S, Shi J, Kakuda Y, Yueming J (2005) Stability of lycopene during food processing and storage. J Med Food 8:413–422PubMedCrossRefGoogle Scholar
  183. 183.
    Hager TJ, Howard LR (2006) Processing effects on carrot phytonutrients. HortSci 41:74–79Google Scholar
  184. 184.
    Shi I, le Maguer M (2000) Lycopene in tomatoes: chemical and physical properties affected by food processing. Crit Rev Food Sci Nutr 40:1–42PubMedCrossRefGoogle Scholar
  185. 185.
    Pénicaud C, Archir N, Dhuique-Mayer C, Dornier M, Bohuon P (2011) Degradation of β-carotene during fruit and vegetable processing or storage: reaction mechanisms and kinetic aspects: a review. Fruits 66:417–440CrossRefGoogle Scholar
  186. 186.
    Nguyen ML, Schwartz SJ (1998) Lycopene stability during food processing. Exp Biol Med 218:101–105CrossRefGoogle Scholar
  187. 187.
    Namitha KK, Negi PS (2010) Chemistry and biotechnology of carotenoids. Crit Rev Food Sci Nutr 50:728–760PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Marx M, Stuparic M, Schieber A, Carle R (2003) Effects of thermal processing on trans-cis-isomerization of β-carotene in carrot juice and carotene-containing preparations. Food Chem 83:609–617CrossRefGoogle Scholar
  189. 189.
    Shi J, le Maguer M, Bryan M, Kakuda Y (2003) Kinetics of lycopene degradation in tomato puree by heat and light irradiation. J Food Process Eng 25:485–498CrossRefGoogle Scholar
  190. 190.
    Seybold C, Fröhlich K, Bitsch R, Otto K, Böhm V (2004) Changes in contents of carotenoids and vitamin E during tomato processing. J Agric Food Chem 52:7005–7010PubMedCrossRefGoogle Scholar
  191. 191.
    Mayer-Miebach E, Behsnilian D, Regier M, Schuchmann HP (2005) Thermal processing of carrots: lycopene stability and isomerization with regard to antioxidant potential. Food Res Int 38:1103–1108CrossRefGoogle Scholar
  192. 192.
    Vásquez-Caicedo AL, Schilling S, Carle R, Neidhart S (2007) Effects of thermal processing and fruit matrix on β-carotene stability and enzyme inactivation during transformation of mangoes into purée and nectar. Food Chem 102:1172–1186CrossRefGoogle Scholar
  193. 193.
    Imsic M, Winkler S, Tomkins B, Jones R (2010) Effect of storage and cooking on β-carotene isomers in carrots (Daucus carota L. cv. ‘Stefano’). J Agric Food Chem 58:5109–5113PubMedCrossRefGoogle Scholar
  194. 194.
    Cervantes-Paz B, Yahia EM, Ornelas-Paz JJ, Victoria-Campos CI, Ibarra-Junquera V, Pérez-Martínez JD, Escalante-Minakata P (2014) Antioxidant activity and content of chlorophylls and carotenoids in raw and heat-processed Jalapeño peppers at intermediate stages of ripening. Food Chem 146:188–196PubMedCrossRefGoogle Scholar
  195. 195.
    Knockaert G, Pulissery SK, Colle I, van Buggenhout S, Hendrickx M, van Loey A (2012) Lycopene degradation, isomerization and in vitro bioaccessibility in high pressure homogenized tomato puree containing oil: effect of additional thermal and high pressure processing. Food Chem 135:1290–1297PubMedCrossRefGoogle Scholar
  196. 196.
    Nguyen M, Francis D, Schwartz S (2001) Thermal isomerization susceptibility of carotenoids in different tomato varieties. J Sci Food Agric 81:910–917CrossRefGoogle Scholar
  197. 197.
    Rubio-Diaz DE, Santos A, Francis DM, Rodriguez-Saona LE (2010) Carotenoid stability during production and storage of tomato juice made from tomatoes with diverse pigment profiles measured by infrared spectroscopy. J Agric Food Chem 58:8692–8698PubMedCrossRefGoogle Scholar
  198. 198.
    Schieber A, Carle R (2005) Occurrence of carotenoid cis-isomers in food: technological, analytical, and nutritional implications. Trends Food Sci Technol 16:416–422CrossRefGoogle Scholar
  199. 199.
    Conn PF, Schalch W, Truscott TG (1991) The singlet oxygen and carotenoid interaction. J Photochem Photobiol B 11:41–47PubMedCrossRefGoogle Scholar
  200. 200.
    Stahl W, Sies H (1993) Physical quenching of singlet oxygen and cis-trans isomerization of carotenids. Ann N Y Acad Sci 691:10–19PubMedCrossRefGoogle Scholar
  201. 201.
    Rodriguez EB, Rodriguez-Amaya DB (2007) Formation of apocarotenals and epoxycarotenoids from β-carotene by chemical reactions and by autoxidation in model systems and processed foods. Food Chem 101:563–572CrossRefGoogle Scholar
  202. 202.
    Rodriguez EB, Rodríguez-Amaya DB (2009) Lycopene epoxides and apo-lycopenals formed by chemical reactions and autoxidation in model systems and processed foods. J Food Sci 74:C674–C682PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Marty C, Berset C (1988) Degradation products of trans-β-carotene produced during extrusion cooking. J Food Sci 53:1880–1886CrossRefGoogle Scholar
  204. 204.
    Marty C, Berset C (1990) Factors affecting the thermal degradation of all-trans-β-carotene. J Agric Food Chem 38:1063–1067CrossRefGoogle Scholar
  205. 205.
    Marty C, Berset C (1986) Degradation of trans-β-carotene during heating in sealed glass tubes and extrusion cooking. J Food Sci 51:698–702CrossRefGoogle Scholar
  206. 206.
    Henry LK, Puspitasari-Nienabe NL, Jarén-Galán M, van Breemen RB, Castignani GL, Schwartz SJ (2000) Effects of ozone and oxygen on the degradation of carotenoids in an aqueous system. J Agric Food Chem 48:5008–5013PubMedCrossRefGoogle Scholar
  207. 207.
    Kanasawud P, Crouzet JC (1990) Mechanism of formation of volatile compounds by thermal degradation of carotenoids in aqueous medium. 1. β-carotene degradation. J Agric Food Chem 38:237–243CrossRefGoogle Scholar
  208. 208.
    Khachik F, Steck A, Niggli UA, Pfander H (1998) Partial synthesis and structural elucidation of the oxidative metabolites of lycopene identified in tomato paste, tomato juice, and human serum. J Agric Food Chem 46:4874–4884CrossRefGoogle Scholar
  209. 209.
    Khachik F, Pfander H, Traber B (1998) Proposed mechanisms for the formation of synthetic and naturally occurring metabolites of lycopene in tomato products and human serum. J Agric Food Chem 46:4885–4890CrossRefGoogle Scholar
  210. 210.
    Mercadante AZ, Rodriguez-Amaya DB (1998) Influence of ripening, cultivar differences, and processing on the carotenoid composition of mango. J Agric Food Chem 46:128–130PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Cano MP, de Ancos B (1994) Carotenoid and carotenoid ester composition in mango fruit as influenced by processing method. J Agric Food Chem 42:2737–2742CrossRefGoogle Scholar
  212. 212.
    Lee HS, Coates GA (2003) Effect of thermal pasteurization on Valencia orange juice color and pigments. Lebensm-Wiss Technol 36:153–156CrossRefGoogle Scholar
  213. 213.
    Dhuique-Mayer C, Tbatou M, Carail M, Caris-Veyrat C, Dornier M, Amiot MJ (2007) Thermal degradation of antioxidant micronutrients in citrus juice: kinetics and newly formed components. J Agric Food Chem 55:4209–4216PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    Hadjal T, Dhuique-Mayer C, Madani K, Dornier M, Achir N (2013) Thermal degradation kinetics of xanthophylls from blood orange in model and real food systems. Food Chem 138:2442–2450PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Kopec RE, Riedl KM, Harrison EH, Curley RW Jr, Hruszkewycz DP, Clinton SK, Schwartz SJ (2010) Identification and quantification of apo-lycopenals in fruits, vegetables, and human plasma. J Agric Food Chem 58:3290–3296PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Zeb A, Murkovic M (2013) Determination of thermal oxidation and oxidation products of β-carotene in corn triacylglycerols. Food Res Int 50:534–544CrossRefGoogle Scholar
  217. 217.
    Zepka LQ, Mercadante AZ (2009) Degradation compounds of carotenoids formed during heating of a simulated cashew apple juice. Food Chem 117:28–34CrossRefGoogle Scholar
  218. 218.
    Kanasawud P, Crouzet JC (1990) Mechanism of formation of volatile compounds by thermal degradation of carotenoids in aqueous medium. 2. Lycopene degradation. J Agric Food Chem 38:1238–1242CrossRefGoogle Scholar
  219. 219.
    Caris-Veyrat C, Schmid A, Carail M, Bohm V (2003) Cleavage products of lycopene produced by in vitro oxidations: characterization and mechanisms of formation. J Agric Food Chem 51:7318–7732PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    Rios JJ, Fernández-García E, Mínguez-Mosquera MI, Pérez-Gálvez A (2008) Description of volatile compounds generated by the degradation of carotenoids in paprika, tomato and marigold oleoresins. Food Chem 106:1145–1153CrossRefGoogle Scholar
  221. 221.
    Kobori CN, Wagner R, Padula M, Rodriguez-Amaya DB (2014) Formation of volatile compounds from lycopene by autoxidation in a model system simulating dehydrated foods. Food Res Int 63(Part A):49–54CrossRefGoogle Scholar
  222. 222.
    Coria-Cayupán YS, de Pinto MIS, Nazareno MA (2009) Variations in bioactive substance contents and crop yields of lettuce (Lactuca sativa L.) cultivated in soils with different fertilization treatments. J Agric Food Chem 57:10122–10129PubMedCrossRefPubMedCentralGoogle Scholar
  223. 223.
    Znidarcic D, Ban D, Sircelj H (2011) Carotenoid and chlorophyll composition of commonly consumed leafy vegetables in Mediterranean countries. Food Chem 129:1164–1116PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Acosta-Quezada PG, Raigón MD, Riofrío-Cuenca T, García-Martínez MD, Plazas M, Burneo JI, Figueroa JG, Vilanova S, Prohens J (2015) Diversity for chemical composition in a collection of different varietal types of tree tomato (Solanum betaceum Cav.), an Andean exotic fruit. Food Chem 169:327–335PubMedCrossRefPubMedCentralGoogle Scholar
  225. 225.
    Schwartz SJ, Lorenzo TV (1990) Chlorophyll in foods. Crit Rev Food Sci Nutr 29:1–17PubMedCrossRefPubMedCentralGoogle Scholar
  226. 226.
    Heaton JW, Marangoni AG (1996) Chlorophyll degradation in processed foods and senescent plant tissues. Trends Food Sci Technol 7:8–15CrossRefGoogle Scholar
  227. 227.
    Schwartz SJ, Woo SL, von Elbe JH (1981) High-performance liquid chromatography of chlorophylls and their derivatives in fresh and processed spinach. J Agric Food Chem 29:533–535CrossRefGoogle Scholar
  228. 228.
    Watanabe T, Nakazato M, Mazaki H, Hongu A, Konno M, Saitoh S, Honda K (1985) Chlorophyll a epimer and pheophytin a in green leaves. Biochim Biophys Acta 807:110–117CrossRefGoogle Scholar
  229. 229.
    López-Ayerra B, Murcia MA, Garcia-Carmona F (1998) Lipid peroxidation and chlorophyll levels in spinach during refrigerated storage and after industrial processing. Food Chem 61:113–118CrossRefGoogle Scholar
  230. 230.
    Murcia MA, López-Ayerra B, Martínez-Tomé M, García-Carmona F (2000) Effect of industrial processing on chlorophyll content of broccoli. J Sci Food Agric 80:1447–1451CrossRefGoogle Scholar
  231. 231.
    Turkmen N, Poyrazoglu ES, Sari F, Sedat Velioglu Y (2006) Effects of cooking methods on chlorophylls, pheophytins and colour of selected green vegetables. Int J Food Sci Technol 41:281–288CrossRefGoogle Scholar
  232. 232.
    Schwartz SJ, von Elbe JH (1983b) Kinetics of chlorophyll degradation to pyropheophytin in vegetables. J Food Sci 48:1303–1306CrossRefGoogle Scholar
  233. 233.
    Canjura FL, Schwartz SJ, Nunes RV (1991) Degradation kinetics of chlorophylls and chlorophyllides. J Food Sci 56:1639–1643CrossRefGoogle Scholar
  234. 234.
    Koca N, Karadeniz F, Burdurlu HS (2006) Effect of pH on chlorophyll degradation and colour loss in blanched green peas. Food Chem 100:609–615CrossRefGoogle Scholar
  235. 235.
    Belitz HI, Grosch W (1987) Vegetables and their products. Food chemistry (trans: Hadziyev D). Springer, BerlinGoogle Scholar
  236. 236.
    Matile P, Hörtensteiner S, Thomas H (1999) Chlorophyll degradation. Annu Rev Plant Physiol Plant Mol Biol 50:67–95PubMedCrossRefPubMedCentralGoogle Scholar
  237. 237.
    Takamiya K-I, Tsuchiya T, Ohta H (2000) Degradation pathway(s) of chlorophyll: what has gene cloning revealed? Trends Plant Sci 5:426–431PubMedCrossRefPubMedCentralGoogle Scholar
  238. 238.
    Vergara-Domínguez H, Rios JJ, Gandul-Rojas B, Roca M (2016) Chlorophyll catabolism in olive fruits (var. Arbequina and Hojiblanca) during maturation. Food Chem 212:604–611PubMedCrossRefPubMedCentralGoogle Scholar
  239. 239.
    von Elbe JH, Huang AS, Attoe EL, Nank WK (1986) Pigment composition and color of conventional and Veri-Green canned beans. J Agric Food Chem 34:52–54CrossRefGoogle Scholar
  240. 240.
    Gaur S, Shivhare U, Ahmed J (2006) Degradation of chlorophyll during processing of green vegetables a review. Stewart Postharvest Rev 5:14Google Scholar
  241. 241.
    Tapiero H, Townsend DM, Tew KD (2004) The role of carotenoids in the prevention of human pathologies. Biomed Pharmacother 58:100–110PubMedCrossRefPubMedCentralGoogle Scholar
  242. 242.
    Krinsky NI, Johnson EJ (2005) Carotenoid actions and their relation to health and disease. Mol Asp Med 26:459–516CrossRefGoogle Scholar
  243. 243.
    Voutilainen S, Nurmi T, Mursu J, Rissanen TH (2006) Carotenoids and cardiovascular health. Am J Clin Nutr 83:1265–1271PubMedCrossRefGoogle Scholar
  244. 244.
    Rao AV, Rao LG (2007) Carotenoids and human health. Pharmacol Res 55:207–216PubMedCrossRefPubMedCentralGoogle Scholar
  245. 245.
    Riccioni G (2009) Carotenoids and cardiovascular disease. Curr Atheroscler Rep 11:434–439PubMedCrossRefPubMedCentralGoogle Scholar
  246. 246.
    Krinsky NI (2001) Carotenoids as antioxidants. Nutrition 17:815–817PubMedCrossRefPubMedCentralGoogle Scholar
  247. 247.
    Kiokias S, Gordon MH (2004) Antioxidant properties of carotenoids in vitro and in vivo. Food Rev Int 20:99–121CrossRefGoogle Scholar
  248. 248.
    Stahl W, Sies H (2003) Antioxidant activity of carotenoids. Mol Asp Med 24:345–351CrossRefGoogle Scholar
  249. 249.
    Stahl W, Ale-Agha N, Polidori MC (2002) Non-antioxidant properties of carotenoids. Biol Chem 383:553–558PubMedCrossRefPubMedCentralGoogle Scholar
  250. 250.
    Pan M-H, Lai C-S, Dushenkov S, Ho C-T (2009) Modulation of inflammatory genes by natural dietary bioactive compounds. J Agric Food Chem 57:4467–4477PubMedCrossRefPubMedCentralGoogle Scholar
  251. 251.
    Agarwal S, Rao AV (2000) Tomato lycopene and its role in human health and chronic diseases. Can Med Assoc J 163:739–744Google Scholar
  252. 252.
    Agarwal M, Parameswari RP, Vasanthi HR, Das DK (2012) Dynamic action of carotenoids in cardioprotection and maintenance of cardiac health. Molecules 17:4755–4769PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Giovannucci E (2002a) A review of epidemiologic studies of tomatoes, lycopene and prostate cancer. Exp Biol Med 227:852–859CrossRefGoogle Scholar
  254. 254.
    Rao AV, Rao LG (2004) Lycopene and human health. Curr Top Nutr Res 2:127–136Google Scholar
  255. 255.
    Singh P, Goyal GK (2008) Dietary lycopene: its properties and anticarcinogenic effects. Comp Rev Food Sci Food Saf 7:255–270CrossRefGoogle Scholar
  256. 256.
    Sharoni Y, Linnewiel-Hermoni K, Zango G, Khanin M, Salman H, Veprik A, Danilenko M, Levy J (2012) The role of lycopene and its derivatives in the regulation of transcription systems: implications for cancer prevention. Am J Clin Nutr 96:1173–1178SCrossRefGoogle Scholar
  257. 257.
    Hadley CW, Miller EC, Schwartz SJ, Clinton SK (2002) Tomatoes, lycopene, and prostate cancer: progress and promise. Exp Biol Med 227:869–880CrossRefGoogle Scholar
  258. 258.
    Miller EC, Giovannucci E, Erdman JW Jr, Bahnson R, Schwartz SJ, Clinton S (2002) Tomato products, lycopene and prostate cancer risk. Urol Clin N Am 29:83–93CrossRefGoogle Scholar
  259. 259.
    Wertz K, Siler U, Goralczyk R (2004) Lycopene: modes of action to promote prostate health. Arch Biochem Biophys 430:127–134PubMedCrossRefPubMedCentralGoogle Scholar
  260. 260.
    Stacewicz-Sapuntzakis M, Bowen PE (2005) Role of lycopene and tomato products in prostate health. Biochim Biophys Acta 1740:202–205PubMedCrossRefPubMedCentralGoogle Scholar
  261. 261.
    Ito Y, Wakai K, Suzuki K, Tamakoshi A, Seki N, Ando M, Nishino Y, Kondo T, Watanabe Y, Ozasa K, Ohno Y, for the JACC Study Group (2003) Serum carotenoids and mortality from lung cancer: a case-control study nested in the Japan Collaborative Cohort (JACC) Study. Cancer Sci 94:57–63PubMedCrossRefPubMedCentralGoogle Scholar
  262. 262.
    Nkondjock A, Ghadirian P, Johnson KC, Krewski D, the Canadian Cancer Registries Epidemiology Research Group (2005) Dietary intake of lycopene is associated with reduced pancreatic cancer risk. J Nutr 135:592–597PubMedCrossRefPubMedCentralGoogle Scholar
  263. 263.
    Erhardt JG, Meisner C, Bode JC, Bode C (2003) Lycopene, β-carotene, and colorectal adenomas. Am J Clin Nutr 78:1219–1224PubMedCrossRefPubMedCentralGoogle Scholar
  264. 264.
    Franceschi S, Bidioli E, La Vecchia C, Talamini R, D’Avanzo B, Negri E (1994) Tomatoes and risk of digestive-tract cancers. Int J Cancer 59:181–184PubMedCrossRefPubMedCentralGoogle Scholar
  265. 265.
    Bone RA, Landrum JT, Mayne ST, Gomez CM, Tibor SE, Twaroska EE (2001) Macular pigment in donor eyes with and without AMD: a case-control study. Invest Ophthalmol Vis Sci 42:235–240PubMedPubMedCentralGoogle Scholar
  266. 266.
    Landrum JT, Bone RA (2001) Lutein, zeaxanthin, and the macular pigment. Arch Biochem Biophys 385:28–40PubMedCrossRefPubMedCentralGoogle Scholar
  267. 267.
    Moeller SM, Jacques PF, Blumberg JB (2000) The potential role of dietary xanthophylls in cataract and age-related macular degeneration. J Am Coll Nutr 19:522S–527SPubMedCrossRefPubMedCentralGoogle Scholar
  268. 268.
    Moeller SM, Parekh N, Tinker L, Ritrenbaugh C, Blodi B, Wallace RB, Mares JA (2006) Associations between intermediate age-related macular degeneration and lutein and zeaxanthin in the Carotenoids in Age-related Eye Disease Study (CAREDS): ancillary study of the Women’s Health Initiative. Arch Opthalmol 124:1151–1162CrossRefGoogle Scholar
  269. 269.
    Gale CR, Hall NF, Phillips DIW, Martyn CN (2003) Lutein and zeaxanthin status and risk of age-related macular degeneration. Invest Opthalmol Vis Sci 44:2461–2465CrossRefGoogle Scholar
  270. 270.
    Delcourt C, Carriere I, Delage M, Barbenger-Gateau P, Schalch W (2006) Plasma lutein and zeaxanthin and other carotenoids as modifiable risk factors for age-related maculopathy and cataract; the POLA Study. Invest Opthalmol Vis Sci 47:2329–2335CrossRefGoogle Scholar
  271. 271.
    Tan JSL, Wang JJ, Flood V, Rochtchina E, Smith W, Mitchell P (2008) Dietary antioxidants and the long-term incidence of age-related macular degeneration – The Blue Mountain Eye Study. Opthalmology 115:334–341CrossRefGoogle Scholar
  272. 272.
    Carpentier S, Knaus M, Suh M (2009) Associations between lutein, zeaxanthin, and age-related macular degeneration. Crit Rev Food Sci Nutr 49:313–326PubMedCrossRefPubMedCentralGoogle Scholar
  273. 273.
    Gale CR, Hall NF, Phillips DIW, Martyn CN (2001) Plasma antioxidant vitamins and carotenoids and age-related cataract. Ophthalmology 108:1992–1998PubMedCrossRefPubMedCentralGoogle Scholar
  274. 274.
    Dherani M, Murthy GVS, Gupta SK, Young IS, Maraini G, Camparini M, Price GM, John N, Chakravarthy U, Fletcher AE (2008) Blood levels of vitamin C, carotenoids and retinol are inversely associated with cataract in a North Indian population. Invest Ophthalmol Vis Sci 49:3328–3335PubMedCrossRefPubMedCentralGoogle Scholar
  275. 275.
    Ma L, Dou H-L, Wu Y-Q, Huang Y-M, Huang Y-B, Xu X-R, Zou Z-Y, Lin X-M (2012) Lutein and zeaxanthin intake and the risk of age-related macular degeneration: a systematic review and meta-analysis. Br J Nutr 107:350–359PubMedCrossRefPubMedCentralGoogle Scholar
  276. 276.
    Olmedilla B, Granado F, Blanco I, Vaquero M, Cajigal C (2001) Lutein in patients with cataracts and age-related macular degeneration: a long-term supplementation study. J Sci Food Agric 81:904–909CrossRefGoogle Scholar
  277. 277.
    Olmedilla B, Granado F, Blanco I, Vaquero M (2003) Lutein, but not alpha-tocopherol, supplementation improves visual function in patients with age-related cataracts: a 2-year double-blind, placebo-controlled pilot study. Nutrition 19:21–24PubMedCrossRefPubMedCentralGoogle Scholar
  278. 278.
    Krinsky NI, Landrum JT, Bone RA (2003) Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr 23:171–201PubMedCrossRefPubMedCentralGoogle Scholar
  279. 279.
    Dwyer JH, Navab M, Dwyer KM, Hassan K, Sun P, Shircore A, Hama-Levy S, Hough G, Wang X, Drake T, Merz CNB, Fogelman AM (2001) Oxygenated carotenoid lutein and progression of early atherosclerosis: The Los Angeles Atherosclerosis study. Circulation 103:2922–2927PubMedCrossRefPubMedCentralGoogle Scholar
  280. 280.
    Xu X-R, Zou Z-Y, Huang Y-M, Xiao X, Ma L, Lin X-M (2012) Serum carotenoids in relation to risk factors for the development of atherosclerosis. Clin Biochem 45:1357–1361PubMedCrossRefPubMedCentralGoogle Scholar
  281. 281.
    Karppi J, Kurl S, Mäkikallioi TH, Ronkainen K, Laukkanen JA (2013) Serum β-carotene concentrations and the risk of congestive heart failure in men: a population-based study. Int J Cardiol 168:1841–1846PubMedCrossRefPubMedCentralGoogle Scholar
  282. 282.
    Connor SL, Ojeda LS, Sexton G, Weidner G, Connor WE (2004) Diets lower in folic acid and carotenoids are associated with coronary disease epidemic in central and eastern Europe. J Am Diet Assoc 104:1793–1799PubMedCrossRefPubMedCentralGoogle Scholar
  283. 283.
    Ghosh D, Konishi T (2007) Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pac J Clin Nutr 16:200–208PubMedPubMedCentralGoogle Scholar
  284. 284.
    Pojer E, Mattivi F, Johnson D, Stockley CS (2013) The case for anthocyanin consumption to promote human health: a review. Compr Rev Food Sci Food Saf 12:483–508CrossRefGoogle Scholar
  285. 285.
    Gowd V, Jia Z, Chen W (2017) Anthocyanins as promising molecules and dietary bioactive components against diabetes – a review of recent advances. Trends Food Sci Technol 68:1–13CrossRefGoogle Scholar
  286. 286.
    Hou D-X (2003) Potential mechanisms of cancer chemoprevention by anthocyanin. Curr Mol Med 3:149–159PubMedCrossRefPubMedCentralGoogle Scholar
  287. 287.
    Wang LS, Stoner GD (2008) Anthocyanins and their role in cancer prevention. Cancer Lett 269:281–290PubMedPubMedCentralCrossRefGoogle Scholar
  288. 288.
    Li D, Wang P, Luo Y, Zhao M, Chen F (2017) Health benefits of anthocyanins and molecular mechanisms: update from recent decade. Crit Rev Food Sci Nutr 57:1729–1741PubMedCrossRefPubMedCentralGoogle Scholar
  289. 289.
    Wallace TC (2011) Anthocyanins in cardiovascular disease. Adv Nutr 2:1–7PubMedPubMedCentralCrossRefGoogle Scholar
  290. 290.
    Tesoriere L, Allegra M, Butera D, Livrea MA (2004) Absorption, excretion, and distribution of dietary antioxidant betalains in LDLs: potential health effects of betalains in humans. Am J Clin Nutr 80:941–945PubMedCrossRefPubMedCentralGoogle Scholar
  291. 291.
    Clifford T, Howatson G, West DJ, Stevenson EJ (2015) The potential benefits of red beetroot supplementation in heath and disease. Forum Nutr 7:2801–2822Google Scholar
  292. 292.
    Gengatharan A, Dykes GA, Cho WS (2015) Betalains: Natural plant pigments with potential application in functional foods. LWT- Food Sci Technol 64:645–649CrossRefGoogle Scholar
  293. 293.
    Balder HF, Vogel J, Jansen MC, Weijenberg MP, van den Brandt PA, Westenbrink S, van der Meer R, Goldbohm RA (2006) Heme and chlorophyll intake and risk of colorectal cancer in the Netherlands cohort study. Cancer Epidemiol Biomark Prev 15:717–725CrossRefGoogle Scholar
  294. 294.
    Dashwood RH (1997) Chlorophylls as anticarcinogens. Int J Oncol 10:721–727PubMedPubMedCentralGoogle Scholar
  295. 295.
    Tajmir-Riahi HA, Neault JF, Diamantoglou S (2004) DNA adducts with chlorophyll and chlorophyllin as antimutagenic agents: synthesis, stability, and structural features. Methods Mol Biol 274:159–171PubMedPubMedCentralGoogle Scholar
  296. 296.
    De Vogel J, Jonker-Termont DS, van Lieshout EM, Katan MB, van der Meer R (2005) Green vegetables, red meat and colon cancer: chlorophyll prevents the cytotoxic and hyperproliferative effects of haem in rat colon. Carcinogenesis 26:387–393PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Food EngineeringUniversity of CampinasCampinasBrazil
  2. 2.Universidade Federal da Fonteira SulLaranjeiras do SulBrazil

Personalised recommendations