Techno–Economic Analysis of Chitosan-Based Hydrogels Production

  • Jimmy Anderson Martínez Ruano
  • Carlos Andrés Taimbu de la Cruz
  • Carlos Eduardo Orrego AlzateEmail author
  • Carlos Ariel Cardona AlzateEmail author
Reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


Currently, hydrogels have different applications due to its excellent water absorption capacity such as biomedical applications, absorbent materials manufacturing, chemical industries, and agroindustry industries. The hydrogels can be produced from natural, synthetic, or a combination of both sources. One of the most studied raw materials for the obtaining of hydrogels is chitosan, which is a linear polysaccharide that is composed of D-glucosamine and N-acetyl-D-glucosamine. Thanks to its structural and chemical properties, hydrogels based on this biopolymer are viable for biomedical applications. In this context, the aim of this chapter is to evaluate the preparation of chitosan-based hydrogels from process design point of view. An overview about chitosan-based hydrogels, main applications, description of the production process, and trends in this topic is presented. Additionally, the production of chitosan-based hydrogel using the interaction of hydrogen bonds technology is simulated in Aspen Plus generating the mass and energy balances in order to realize the technical and economic assessment of the process. The simulation shows that the even if the hydrogels from chitosan are economically feasible, there are a number of possibilities to improve the technology (to reduce the energy consumption or to improve the yields).


Chitosan Hydrogels Applications Simulation process Techno-economic analysis 


  1. 1.
    Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng C 57:414–433CrossRefGoogle Scholar
  2. 2.
    Chen J, Chang C (2014) Fabrications and applications of stimulus-responsive polymer films and patterns on surfaces: a review. Materials (Basel) 7(2):805–875CrossRefGoogle Scholar
  3. 3.
    Majeti NV, Kumar R (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27CrossRefGoogle Scholar
  4. 4.
    Khurma JR, Nand AV (2008) Temperature and pH sensitive hydrogels composed of chitosan and poly(ethylene glycol). Polym Bull 59(6):805–812CrossRefGoogle Scholar
  5. 5.
    Mohamed N, El-Ghany A (2012) Synthesis and antimicrobial activity of some novel terephthaloyl thiourea cross-linked carboxymethyl chitosan hydrogels. Cellulose 19(6):1879–1891CrossRefGoogle Scholar
  6. 6.
    Huang B, Liu M, Zhou C (2017) Chitosan composite hydrogels reinforced with natural clay nanotubes. Carbohydr Polym 175:689–698PubMedCrossRefGoogle Scholar
  7. 7.
    Williams PA, Campbell KT, Gharaviram H, Madrigal JL, Silva EA (2017) Alginate-chitosan hydrogels provide a sustained gradient of sphingosine-1-phosphate for therapeutic angiogenesis. Ann Biomed Eng 45(4):1003–1014PubMedCrossRefGoogle Scholar
  8. 8.
    Cascone MG, Maltinti S (1999) Hydrogels based on chitosan and dextran as potential drug delivery systems. J Mater Sci Mater Med 10(5):301–307PubMedCrossRefGoogle Scholar
  9. 9.
    Ahmadi F, Oveisi Z, Samani SM, Amoozgar Z (2015) Chitosan based hydrogels: characteristics and pharmaceutical applications. Res Pharm Sci 10(1):1–16PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Cerón I, Cardona CA (2011) Evaluación del proceso integral para la obtenciónn de aceite esencial y pectina a partir de cáscara de naranja. Ing Y Cienc 7(13):65–86Google Scholar
  11. 11.
    Crisspín M, Quintero JA, Felix ER, Rincón LE, Fernandez J, Khwaja Y, Cardona CA (2012) Social and techno-economical analysis of biodiesel production in Peru. Energy Policy 43:427–435CrossRefGoogle Scholar
  12. 12.
    Mussatto SI, Moncada J, Roberto IC, Cardona CA (2013) Bioresource technology techno-economic analysis for brewer’s spent grains use on a biorefinery concept : the Brazilian case. Bioresour Technol 148:302–310PubMedCrossRefGoogle Scholar
  13. 13.
    Moncada J, Matallana LG, Cardona CA (2013) Selection of process pathways for biorefinery design using optimization tools: a Colombian case for conversion of sugarcane bagasse to ethanol, poly-3-hydroxybutyrate (PHB), and energy. Ind Eng Chem Res 52(11):4132–4145CrossRefGoogle Scholar
  14. 14.
    Periayah MH, Halim AS, Saad AZM (2016) Chitosan: a promising marine polysaccharide for biomedical research. Pharmacogn Rev 10(19):39–42PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Silva HSRC, Kátia SCR, Ferreira EI (2006) Chitosan: hydrosoluble derivatives, pharmaceutical applications and recent advances. Quim Nova 29(4):776–785CrossRefGoogle Scholar
  16. 16.
    Orrego CE, Salgado N, Valencia JS, Giraldo GI, Giraldo OH, Cardona CA (2010) Novel chitosan membranes as support for lipases immobilization: Characterization aspects. Carbohydr Polym 79(1):9–16CrossRefGoogle Scholar
  17. 17.
    Shi Z, Gao X, Wajid M, Li Z, Wang Q (2016) Biomaterials electroconductive natural polymer-based hydrogels. Biomaterials 111:40–45PubMedCrossRefGoogle Scholar
  18. 18.
    Muxika A, Etxabide A, Uranga J, Guerrero P, De Caba K (2017) Chitosan as a bioactive polymer: processing, properties and applications. Int J Biol Macromol 105:1358. Scholar
  19. 19.
    Bano I, Arshad M, Yasin T, Afzal M, Younus M (2017) International journal of biological macromolecules chitosan : a potential biopolymer for wound management. Int J Biol Macromol 102:380–383PubMedCrossRefGoogle Scholar
  20. 20.
    Choi C, Nam J, Nah J (2016) Application of chitosan and chitosan derivatives as biomaterials. J Ind Eng Chem 33:1–10CrossRefGoogle Scholar
  21. 21.
    Miranda SP, Lizárraga EG (2012) Is Chitosan a New Panacea? Areas of Application. In the complex world of polysacchrides. InTechOpen, London, pp 3–46Google Scholar
  22. 22.
    Rinaudo M (2006) Chitin and chitosan : properties and applications. Prog Polym Sci 31(7):603–632CrossRefGoogle Scholar
  23. 23.
    Yalpani M, Johnson F, Robinson LE (1992) Chitin, chitosan: sources, chemistry, biochemistry, physical properties and applications. Elsevier, AmsterdamGoogle Scholar
  24. 24.
    Jayakumar R, Prabaharan, Muzzareli RAA (2011) Chitosan for biomaterials II. Advances in polymer science. Springer, Berlin, pp 19–167CrossRefGoogle Scholar
  25. 25.
    Aider M (2010) Chitosan application for active bio-based films production and potential in the food industry : review. LWT Food Sci Technol 43(6):837–842CrossRefGoogle Scholar
  26. 26.
    Li P, Zhao J, Chen Y, Cheng B, Yu Z, Zhao Y, Yan X, Tong Z, Jin S (2017) Preparation and characterization of chitosan physical hydrogels with enhanced mechanical and antibacterial properties. Carbohydr Polym 157:1383–1392PubMedCrossRefGoogle Scholar
  27. 27.
    Soto D, Oliva H (2012) Métodos para preparar hidrogeles químicos y físicos basados en almidón. Rev Latinoam Metal y Mater 32(2):154–175Google Scholar
  28. 28.
    Orrego CE, Valencia JS (2008) Preparation and characterization of chitosan membranes by using a combined freeze gelation and mild crosslinking method. Bioprocess Biosyst Eng 32(2):197–206PubMedCrossRefGoogle Scholar
  29. 29.
    Simi CK, Abraham TE (2010) Transparent xyloglucan–chitosan complex hydrogels for different applications. Food Hydrocoll 24(1):72–80CrossRefGoogle Scholar
  30. 30.
    Nishinari K, Zhang H, Ikeda S (2000) Hydrocolloid gels of polysaccharides and proteins. Curr Opin Colloid Interface Sci 5:195–201CrossRefGoogle Scholar
  31. 31.
    Viton C, Agay D, Mari E, Roger T, Chancerelle Y, Domard A (2007) The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials 28:3478–3488PubMedCrossRefGoogle Scholar
  32. 32.
    Montembault A, Viton C, Domard A, Genevrier L, Goa D, Moulins ZLIT (2005) Rheometric study of the gelation of chitosan in aqueous solution without cross-linking agent. Biomacromolecules 6(2):653–662PubMedCrossRefGoogle Scholar
  33. 33.
    Montembault A, Viton C, Domard A (2005) Rheometric study of the gelation of chitosan in a hydroalcoholic medium. Biomaterials 26:1633–1643PubMedCrossRefGoogle Scholar
  34. 34.
    Jarry C, Shive MS (2008) Chitosan-based gels and hydrogels. In: Smart materials. CRC Press, Boca Raton, pp 10–15Google Scholar
  35. 35.
    Maitra J, Shukla VK (2014) Cross-linking in hydrogels – a review. Am J Polym Sci 4(2):25–31Google Scholar
  36. 36.
    Mathur AM, Moorjani SK, Scranton AB (1996) Methods for synthesis of hydrogel networks : a review. J Macromol Sci Part C 36(2):405–430CrossRefGoogle Scholar
  37. 37.
    Ebara M, Kotsuchibashi Y, Uto K, Aoyagi T, Kim YJ, Narain R, Idota N, Hoffman JM (2014) Smart hydrogels. In: Smart biomaterials. Springer, Tokyo/Japan, pp 9–65CrossRefGoogle Scholar
  38. 38.
    Valderruten NE, Valverde JD, Zuluaga F, Ruiz E (2014) Synthesis and characterization of chitosan hydrogels cross-linked with dicarboxylic acids. React Funct Polym 84:21–28CrossRefGoogle Scholar
  39. 39.
    Ryan C, Alcock E, Buttimer F, Schmidt M, Clarke D, Pemble M, Bardosova M (2017) Synthesis and characterisation of cross-linked chitosan composites functionalised with silver and gold nanoparticles for antimicrobial applications. Sci Technol Adv Mater 18(1):528–540PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34PubMedCrossRefGoogle Scholar
  41. 41.
    Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62(1):83–99PubMedCrossRefGoogle Scholar
  42. 42.
    Gulrez G, Al-Assaf S, Phillips S (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121CrossRefGoogle Scholar
  43. 43.
    Shu XZ, Zhu KJ, Song W (2001) Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release. Int J Pharm 212(1):19–28PubMedCrossRefGoogle Scholar
  44. 44.
    Mi FL, Chen CT, Tseng YC, Kuan CY, Shyu SS (1997) Iron(III)-carboxymethylchitin microsphere for the pH-sensitive release of 6-mercaptopurine. J Control Release 44(1):19–32CrossRefGoogle Scholar
  45. 45.
    Lee JY, Nam SH, Im SY, Park YJ, Lee YM, Seol YJ, Chung CP, Lee SJ (2002) Enhanced bone formation by controlled growth factor delivery from chitosan-based biomaterials. J Control Release 78(1–3):187–197PubMedCrossRefGoogle Scholar
  46. 46.
    Laffleur F (2017) Evaluation of chemical modified hydrogel formulation for topical suitability. Int J Biol Macromol 105:1310. Scholar
  47. 47.
    Montiel M, Gandini A, Goycoolea FM, Jacobsen NE, Lizardi J, Recillas M, Arguelles WM (2015) N-(furfural) chitosan hydrogels based on Diels-Alder cycloadditions and application as microspheres for controlled drug release. Carbohydr Polym 128:220–227CrossRefGoogle Scholar
  48. 48.
    García C, González K, Gurrea T, Guaresti O, Algar I, Eceiza A, Gabilondo N (2016) Maleimide-grafted cellulose nanocrystals as cross-linkers for bionanocomposite hydrogels. Carbohydr Polym 149:94–101CrossRefGoogle Scholar
  49. 49.
    Guaresti O, Garcia C, Palomares T, Alonso A, Eceiza A, Gabilondo N (2017) Synthesis and characterization of a biocompatible chitosan-based hydrogel cross-linked via click chemistry for controlled drug release. Int J Biol Macromol 102:1–9PubMedCrossRefGoogle Scholar
  50. 50.
    Guilherme MR, Aouada FA, Fajardo AR, Martins AF, Paulino AT, Davi MFT, Rubira AF, Muniz EC (2015) Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier : a review. Eur Polym J 72:365–385CrossRefGoogle Scholar
  51. 51.
    Chatterjee S, Lee MW, Woo SH (2009) Enhanced mechanical strength of chitosan hydrogel beads by impregnation with carbon nanotubes. Carbon 47(12):2933–2936CrossRefGoogle Scholar
  52. 52.
    Wang X, Lü S, Gao C, Xu X, Wei Y, Bai X, Feng C, Gao N, Liu M, Wu L (2014) Biomass-based multifunctional fertilizer system featuring controlled-release nutrient, water-retention and amelioration of soil. RSC Adv 4(35):18382–18390CrossRefGoogle Scholar
  53. 53.
    Klein MP, Hackenhaar CR, Lorenzoni ASG, Rodrigues RC, Costa TMH, Ninow JL, Hertz PF (2016) Chitosan crosslinked with genipin as support matrix for application in food process: support characterization and β-d-galactosidase immobilization. Carbohydr Polym 137:184–190PubMedCrossRefGoogle Scholar
  54. 54.
    De Gáscue R, Rojas B, Prin JL, Ramírez A (2011) Hidrogeles semi – ipn sintetizados a partir de quitosano y acrilamida : su aplicación en aguas industriales. Rev Iberoam Polímeros 12(6):342–351Google Scholar
  55. 55.
    García CA, Moncada J, Aristizábal V, Cardona CA (2017) Techno-economic and energetic assessment of hydrogen production through gasification in the Colombian context: coffee cut-stems case. Int J Hydrog Energy 42:5849–5864CrossRefGoogle Scholar
  56. 56.
    Ensymm-Project consulting or lifeScience (2017) Chitosan production line offer. Accessed 15 July 2017
  57. 57.
    Alibaba (2017) International prices. Accessed 15 July 2017
  58. 58.
    Quintero JA, Cardona CA, Felix E, Moncada J, Sánchez OJ, Gutiérrez LF (2012) Techno-economic analysis of bioethanol production in Africa: Tanzania case. Energy 48(1):442–454CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jimmy Anderson Martínez Ruano
    • 1
  • Carlos Andrés Taimbu de la Cruz
    • 1
  • Carlos Eduardo Orrego Alzate
    • 1
    Email author
  • Carlos Ariel Cardona Alzate
    • 1
    Email author
  1. 1.Institute of Biotechnology and AgroindustryNational University of Colombia - Manizales campusManizalesColombia

Personalised recommendations