Recent Advances of Multifunctional Cellulose-Based Hydrogels

  • Jiajun Mao
  • Shuhui Li
  • Jianying Huang
  • Kai Meng
  • Guoqiang Chen
  • Yuekun LaiEmail author
Reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


Cellulose is an abundant and renewable natural resource with biodegradability and nontoxicity. Furthermore, cellulose and cellulose derivatives also have unique properties such as hydrophilicity, mechanical strength, biocompatibility, and tunable functionality due to the strong versatile hydrogen bonding. Cellulose-based hydrogels are prepared by physical or chemical cross-linking of cellulose derivatives with various functional molecules, which covalently bind different functional molecules and form a highly porous hydrogel, with three-dimensional network structure consisting of nanofibrillar-regenerated cellulose . Such cellulose-based hydrogels have great advantages due to high water-holding capacity, abundance, biodegradable biocompatibility and nontoxicity, which can be applied as superabsorbent in wastewater treatment (such as oil, heavy metals, dye, organic pollutants), as superabsorbent biomaterials, in pharmaceutical and biomedical field, in personal care and hygiene products, and tissue engineering and wound dressing. Moreover, they have also been used in catalysis, sensors, luminescence, and energy storage. This chapter will introduce the smart applications of cellulose-based hydrogels including native cellulose, cellulose derivatives, and cellulose-composite hydrogels. Among those, we will focus our discussion herein on the adsorption application of cellulose-based hydrogels. Most excellent research works are highlighted in this chapter, and cellulose-based hydrogels will be expected to be applied in agriculture, food, environment, industry, medical care, and personal health field. At last, we also give a prospect on cellulose-based hydrogels in the future.


Cellulose-based Hydrogel Super-hydrophilic Cross-linking Superabsorbent 



The authors acknowledge the National Natural Science Foundation of China (51502185; 21501127), Natural Science Foundation of Jiangsu Province of China (BK20140400), Natural Science Foundation of the Jiangsu Higher Education Institutions of People’s Republic of China (15KJB430025), Nantong Science and Technology Project (GY12016030), Jiangsu Advanced Textile Engineering Center Project (Project No.SPPGO [2014]22), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Jiangsu Province annual ordinary university graduate student research and innovation project (KYLX16_0138) for financial support of this work. J. Mao and S. Li equally contributed to this work.


  1. 1.
    Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158CrossRefGoogle Scholar
  4. 4.
    Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14:1120–1124CrossRefGoogle Scholar
  6. 6.
    Jeong B, Kim SW, Bae YH (2002) Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev 54:37–51CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hennink WE, van Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 54:13–36CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1879CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428: 487–492CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRefGoogle Scholar
  11. 11.
    Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRefGoogle Scholar
  14. 14.
    Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRefGoogle Scholar
  15. 15.
    Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373CrossRefGoogle Scholar
  16. 16.
    Chang CY, Zhang LN (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53CrossRefGoogle Scholar
  17. 17.
    Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18:53–75CrossRefGoogle Scholar
  18. 18.
    Wang H, Gurau G, Rogers RD (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41:1519–1537CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26: 1605–1688CrossRefGoogle Scholar
  20. 20.
    Oliveira WD, Glasser WG (1996) Hydrogels from polysaccharides. I. Cellulose beads for chromatographic support. J Appl Polym Sci 60:63–73CrossRefGoogle Scholar
  21. 21.
    Saito H, Sakurai A, Sakakibara M, Saga H (2003) Preparation and properties of transparent cellulose hydrogels. J Appl Polym Sci 90:3020–3025CrossRefGoogle Scholar
  22. 22.
    Ostlund Å, Lundberg D, Nordstierna L, Holmberg K, Nydén M (2009) Dissolution and gelation of cellulose in TBAF/DMSO solutions: the roles of fluoride ions and water. Biomacromolecules 10:2401–2407CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wang Z, Liu S, Matsumoto Y, Kuga S (2012) Cellulose gel and aerogel from LiCl/DMSO solution. Cellulose 19:393–399CrossRefGoogle Scholar
  24. 24.
    Zhang Y, Shao H, Wu C, Hu X (2001) Formation and characterization of cellulose membranes from N-methylmorpholine-N-oxide solution. Macromol Biosci 1:141–148CrossRefGoogle Scholar
  25. 25.
    Li L, Lin Z, Yang X, Wan Z, Cui S (2009) A novel cellulose hydrogel prepared from its ionic liquid solution. Chin Sci Bull 54:1622–1625CrossRefGoogle Scholar
  26. 26.
    Kadokawa J-i, Murakami M-a, Kaneko Y (2008) A facile preparation of gel materials from a solution of cellulose in ionic liquid. Carbohydr Res 343:769–772CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H, Han CC, Kuga S (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41(23):9345–9351CrossRefGoogle Scholar
  28. 28.
    Lue A, Zhang L, Ruan D (2007) Inclusion complex formation of cellulose in NaOH–thiourea aqueous system at low temperature. Macromol Chem Phys 208:2359–2366CrossRefGoogle Scholar
  29. 29.
    Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7:183–189CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kuang Q-L, Zhao J-C, Niu Y-H, Zhang J, Wang Z-G (2008) Celluloses in an ionic liquid: the rheological properties of the solutions spanning the dilute and semidilute regimes. J Phys Chem B 112:10234–10240CrossRefGoogle Scholar
  31. 31.
    Song H, Niu Y, Wang Z, Zhang J (2011) Liquid crystalline phase and gel−sol transitions for concentrated microcrystalline cellulose (MCC)/1-ethyl-3-methylimidazolium acetate (EMIMAc) solutions. Biomacromolecules 12:1087–1096CrossRefGoogle Scholar
  32. 32.
    Mao Y, Zhou J, Cai J, Zhang L (2006) Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution. J Membr Sci 279:246–255CrossRefGoogle Scholar
  33. 33.
    Li L, Thangamathesvaran P, Yue C, Tam K, Hu X, Lam YC (2001) Gel network structure of methylcellulose in water. Langmuir 17(26):8062–8068CrossRefGoogle Scholar
  34. 34.
    Li L, Shan H, Yue C, Lam Y, Tam K, Xu X (2002) Thermally induced association and dissociation of methylcellulose in aqueous solutions. Langmuir 18:7291–7298CrossRefGoogle Scholar
  35. 35.
    Gupta D, Tator CH, Shoichet MS (2006) Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials 27:2370–2379CrossRefGoogle Scholar
  36. 36.
    Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose – artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603CrossRefGoogle Scholar
  37. 37.
    Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose – a masterpiece of nature’s arts. J Mater Sci 35:261–270CrossRefGoogle Scholar
  38. 38.
    De Wulf P, Joris K, Vandamme EJ (1996) Improved cellulose formation by an Acetobacter xylinum mutant limited in (keto) gluconate synthesis. J Chem Technol Biotechnol 67:376–380CrossRefGoogle Scholar
  39. 39.
    Gelin K, Bodin A, Gatenholm P, Mihranyan A, Edwards K, Stromme M (2007) Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polymer 48:7623–7631CrossRefGoogle Scholar
  40. 40.
    Putra A, Kakugo A, Furukawa H, Gong JP, Osada Y (2008) Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polymer 49:1885–1891CrossRefGoogle Scholar
  41. 41.
    Sannino A, Madaghiele M, Lionetto M, Schettino T, Maffezzoli A (2006) A cellulose-based hydrogel as a potential bulking agent for hypocaloric diets: an in vitro biocompatibility study on rat intestine. J Appl Polym Sci 102:1524–1530CrossRefGoogle Scholar
  42. 42.
    Hirsch SG, Spontak RJ (2002) Temperature-dependent property development in hydrogels derived from hydroxypropylcellulose. Polymer 43:123–129CrossRefGoogle Scholar
  43. 43.
    Marsano E, Bianchi E, Sciutto L (2003) Microporous thermally sensitive hydrogels based on hydroxypropyl cellulose crosslinked with poly-ethyleneglycol diglycidyl ether. Polymer 44:6835–6841CrossRefGoogle Scholar
  44. 44.
    Yan L, Shuai Q, Gong X, Gu Q, Yu H (2009) Synthesis of microporous cationic hydrogel of hydroxypropyl cellulose (HPC) and its application on anionic dye removal. Clean Soil Air Water 37:392–398CrossRefGoogle Scholar
  45. 45.
    Kono H, Fujita S (2012) Biodegradable superabsorbent hydrogels derived from cellulose by esterification crosslinking with 1,2,3,4-butanetetracarboxylic dianhydride. Carbohydr Polym 87:2582–2588CrossRefGoogle Scholar
  46. 46.
    Rosiak J, Ulański P (1999) Synthesis of hydrogels by irradiation of polymers in aqueous solution. Radiat Phys Chem 55:139–151CrossRefGoogle Scholar
  47. 47.
    Fei B, Wach RA, Mitomo H, Yoshii F, Kume T (2000) Hydrogel of biodegradable cellulose derivatives. I. Radiation-induced crosslinking of CMC. J Appl Polym Sci 78:278–283CrossRefGoogle Scholar
  48. 48.
    Liu P, Peng J, Li J, Wu J (2005) Radiation crosslinking of CMC-Na at low dose and its application as substitute for hydrogel. Radiat Phys Chem 72:635–638CrossRefGoogle Scholar
  49. 49.
    Wach RA, Mitomo H, Yoshii F, Kume T (2002) Hydrogel of radiation-induced cross-linked hydroxypropylcellulose. Macromol Mater Eng 287:285–295CrossRefGoogle Scholar
  50. 50.
    Zhou D, Zhang L, Zhou J, Guo S (2004) Cellulose/chitin beads for adsorption of heavy metals in aqueous solution. Water Res 38:2643–2650CrossRefGoogle Scholar
  51. 51.
    Li N, Bai R (2005) Copper adsorption on chitosan–cellulose hydrogel beads: behaviors and mechanisms. Sep Purif Technol 42:237–247CrossRefGoogle Scholar
  52. 52.
    Tang Y, Wang X, Li Y, Lei M, Du Y, Kennedy JF, Knill CJ (2010) Production and characterisation of novel injectable chitosan/methylcellulose/salt blend hydrogels with potential application as tissue engineering scaffolds. Carbohydr Polym 82(3):833–841CrossRefGoogle Scholar
  53. 53.
    Baumann MD, Kang CE, Stanwick JC, Wang Y, Kim H, Lapitsky Y, Shoichet MS (2009) An injectable drug delivery platform for sustained combination therapy. J Control Release 138:205–213CrossRefGoogle Scholar
  54. 54.
    Krishna Rao K, Subha M, Vijaya Kumar Naidu B, Sairam M, Mallikarjuna N et al (2006) Controlled release of diclofenac sodium and ibuprofen through beads of sodium alginate and hydroxy ethyl cellulose blends. J Appl Polym Sci 102:5708–5718CrossRefGoogle Scholar
  55. 55.
    Chang C, Duan B, Zhang L (2009) Fabrication and characterization of novel macroporous cellulose–alginate hydrogels. Polymer 50:5467–5473CrossRefGoogle Scholar
  56. 56.
    Abitbol T, Johnstone T, Quinn TM, Gray DG (2011) Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing. Soft Matter 7:2373CrossRefGoogle Scholar
  57. 57.
    Chang C, Lue A, Zhang L (2008) Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromol Chem Phys 209:1266–1273CrossRefGoogle Scholar
  58. 58.
    Taleb MFA, El-Mohdy HA, El-Rehim HA (2009) Radiation preparation of PVA/CMC copolymers and their application in removal of dyes. J Hazard Mater 168:68–75CrossRefGoogle Scholar
  59. 59.
    Feng X, Pelton R, Leduc M (2006) Mechanical properties of polyelectrolyte complex films based on polyvinylamine and carboxymethyl cellulose. Ind Eng Chem Res 45:6665–6671CrossRefGoogle Scholar
  60. 60.
    Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14:1124–1128CrossRefGoogle Scholar
  61. 61.
    Buyanov A, Gofman I, Revel’skaya L, Khripunov A, Tkachenko A (2010) Anisotropic swelling and mechanical behavior of composite bacterial cellulose–poly (acrylamide or acrylamide–sodium acrylate) hydrogels. J Mech Behav Biomed Mater 3:102–111CrossRefGoogle Scholar
  62. 62.
    Caykara T, Şengül G, Birlik G (2006) Preparation and swelling properties of temperature-sensitive semi-interpenetrating polymer networks composed of poly [(N-tert-butylacrylamide)-co-acrylamide] and hydroxypropyl cellulose. Macromol Mater Eng 291: 1044–1051CrossRefGoogle Scholar
  63. 63.
    Chang C, Peng J, Zhang L, Pang D-W (2009) Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. J Mater Chem 19:7771–7776CrossRefGoogle Scholar
  64. 64.
    Sequeira S, Evtuguin DV, Portugal I, Esculcas AP (2007) Synthesis and characterisation of cellulose/silica hybrids obtained by heteropoly acid catalysed sol–gel process. Mater Sci Eng C 27:172–179CrossRefGoogle Scholar
  65. 65.
    Bagheri M, Rabieh S (2013) Preparation and characterization of cellulose-ZnO nanocomposite based on ionic liquid ([C4mim] Cl). Cellulose 20:699–705CrossRefGoogle Scholar
  66. 66.
    Wu J, Zhao N, Zhang X, Xu J (2012) Cellulose/silver nanoparticles composite microspheres: eco-friendly synthesis and catalytic application. Cellulose 19:1239–1249CrossRefGoogle Scholar
  67. 67.
    Luo X, Liu S, Zhou J, Zhang L (2009) In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery. J Mater Chem 19:3538–3545CrossRefGoogle Scholar
  68. 68.
    Ashori A, Sheykhnazari S, Tabarsa T, Shakeri A, Golalipour M (2012) Bacterial cellulose/silica nanocomposites: preparation and characterization. Carbohydr Polym 90:413–418CrossRefGoogle Scholar
  69. 69.
    Katepetch C, Rujiravanit R, Tamura H (2013) Formation of nanocrystalline ZnO particles into bacterial cellulose pellicle by ultrasonic-assisted in situ synthesis. Cellulose 20:1275–1292CrossRefGoogle Scholar
  70. 70.
    Hutchens SA, Benson RS, Evans BR, O’Neill HM, Rawn CJ (2006) Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials 27:4661–4670CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Zhang H, Zhai D, He Y (2014) Graphene oxide/polyacrylamide/carboxymethyl cellulose sodium nanocomposite hydrogel with enhanced mechanical strength: preparation, characterization and the swelling behavior. RSC Adv 4:44600–44609CrossRefGoogle Scholar
  72. 72.
    Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452:301–310CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97:219–243CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027CrossRefGoogle Scholar
  75. 75.
    Mohan D, Pittman CU (2007) Arsenic removal from water/wastewater using adsorbents – a critical review. J Hazard Mater 142:1–53CrossRefGoogle Scholar
  76. 76.
    Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97:1061–1085CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Fu FL, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418CrossRefGoogle Scholar
  78. 78.
    Zhou YM, Fu SY, Zhang LL, Zhan HY, Levit MV (2014) Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II). Carbohydr Polym 101:75–82CrossRefGoogle Scholar
  79. 79.
    Liu Z, Wang HS, Liu C, Jiang YJ, Yu G, Mu XD, Wang XY (2012) Magnetic cellulose-chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions. Chem Commun 48:7350–7352CrossRefGoogle Scholar
  80. 80.
    Isobe N, Chen XX, Kim UJ, Kimura S, Wada M, Saito T, Isogai A (2013) TEMPO-oxidized cellulose hydrogel as a high-capacity and reusable heavy metal ion adsorbent. J Hazard Mater 260:195–201CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124CrossRefGoogle Scholar
  82. 82.
    Pei AH, Butchosa N, Berglund LA, Zhou Q (2013) Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9:2047–2055CrossRefGoogle Scholar
  83. 83.
    Zhou CJ, Wu QL, Lei TZ, Negulescu JI (2014) Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Chem Eng J 251:17–24CrossRefGoogle Scholar
  84. 84.
    Liu L, Gao ZY, Su XP, Chen X, Jiang L, Yao JM (2015) Adsorption removal of dyes from single and binary solutions using a cellulose-based bioadsorbent. ACS Sustain Chem Eng 3:432–442CrossRefGoogle Scholar
  85. 85.
    Akin F, Spraker M, Aly R, Leyden J, Raynor W, Ladin W (2001) Effects of breathable disposable diapers: reduced prevalence of Candida and common diaper dermatitis. Pediatr Dermatol 18:282–290CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Noonan C, Quigley S, Curley MA (2006) Skin integrity in hospitalized infants and children: a prevalence survey. J Pediatr Nurs 21:445–453CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Holaday B, Waugh G, Moukaddem VE, West J, Harshman S (1995) Diaper type and fecal contamination in child day care. J Pediatr Health Care 9:67–74CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Adalat S, Wall D, Goodyear H (2007) Diaper dermatitis-frequency and contributory factors in hospital attending children. Pediatr Dermatol 24:483–488CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Davis JA, Leyden JJ, Grove GL, Raynor WJ (1989) Comparison of disposable diapers with fluff absorbent and fluff plus absorbent polymers: effects on skin hydration, skin pH, and diaper dermatitis. Pediatr Dermatol 6:102–108CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Bartlett BL (1994) Disposable diaper recycling process. Google PatentsGoogle Scholar
  91. 91.
    Sannino A, Mensitieri G, Nicolais L (2004) Water and synthetic urine sorption capacity of cellulose-based hydrogels under a compressive stress field. J Appl Polym Sci 91:3791–3796CrossRefGoogle Scholar
  92. 92.
    Demitri C, Del Sole R, Scalera F, Sannino A, Vasapollo G, Maffezzoli A, Ambrosio L, Nicolais L (2008) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci 110:2453–2460CrossRefGoogle Scholar
  93. 93.
    Esposito A, Sannino A, Cozzolino A, Nappo Quintiliano S, Lamberti M, Ambrosio L, Nicolais L (2005) Response of intestinal cells and macrophages to an orally administered cellulose-PEG based polymer as a potential treatment for intractable edemas. Biomaterials 26:4101–4110CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Guilherme MR, Aouada FA, Fajardo AR, Martins AF, Paulino AT, Davi MFT, Rubira AF, Muniz EC (2015) Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: a review. Eur Polym J 72:365–385CrossRefGoogle Scholar
  95. 95.
    Raafat AI, Eid M, El-Arnaouty MB (2012) Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications. Nucl Instrum Methods B 283:71–76CrossRefGoogle Scholar
  96. 96.
    Sarvaš M, Pavlenda P, Takáčová E (2007) Effect of hydrogel application on survival and growth of pine seedlings in reclamations. J For Sci 53:204–209Google Scholar
  97. 97.
    Sannino A, Esposito A, Rosa AD, Cozzolino A, Ambrosio L, Nicolais L (2003) Biomedical application of a superabsorbent hydrogel for body water elimination in the treatment of edemas. J Biomed Mater Res A 67(3):1016–1024CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Marcì G, Mele G, Palmisano L, Pulito P, Sannino A (2006) Environmentally sustainable production of cellulose-based superabsorbent hydrogels. Green Chem 8:439–444CrossRefGoogle Scholar
  99. 99.
    Xie L, Liu M, Ni B, Wang Y (2012) Utilization of wheat straw for the preparation of coated controlled-release fertilizer with the function of water retention. J Agric Food Chem 60:6921–6928CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Siepmann J, Peppas NA (2001) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 48:139–157CrossRefPubMedGoogle Scholar
  101. 101.
    Chang CY, Duan B, Cai J, Zhang LN (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100CrossRefGoogle Scholar
  102. 102.
    Ciolacu D, Oprea AM, Anghel N, Cazacu G, Cazacu M (2012) New cellulose–lignin hydrogels and their application in controlled release of polyphenols. Mater Sci Eng C 32:452–463CrossRefGoogle Scholar
  103. 103.
    Wang J, Zhou X, Xiao H (2013) Structure and properties of cellulose/poly (N-isopropylacrylamide) hydrogels prepared by SIPN strategy. Carbohydr Polym 94:749–754CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Sanna R, Fortunati E, Alzari V, Nuvoli D, Terenzi A, Casula MF, Kenny JM, Mariani A (2013) Poly (N-vinylcaprolactam) nanocomposites containing nanocrystalline cellulose: a green approach to thermoresponsive hydrogels. Cellulose 20:2393–2402CrossRefGoogle Scholar
  105. 105.
    Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99CrossRefGoogle Scholar
  106. 106.
    Pandey M, Mohd Amin MCI, Ahmad N, Abeer MM (2013) Rapid synthesis of superabsorbent smart-swelling bacterial cellulose/acrylamide-based hydrogels for drug delivery. Int J Polym Sci 2013:1–10CrossRefGoogle Scholar
  107. 107.
    Qi H, Cai J, Zhang L, Kuga S (2009) Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules 10: 1597–1602CrossRefPubMedGoogle Scholar
  108. 108.
    Boateng JS, Matthews KH, Stevens HNE, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892–2923CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Silver S, Phung LT, Silver G (2006) Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol 33:627–634CrossRefPubMedGoogle Scholar
  110. 110.
    Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, Lim CT (2007) Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater 3:321–330CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51CrossRefGoogle Scholar
  112. 112.
    Li S-M, Jia N, Ma M-G, Zhang Z, Liu Q-H, Sun RC (2011) Cellulose–silver nanocomposites: microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydr Polym 86:441–447CrossRefGoogle Scholar
  113. 113.
    Chiaoprakobkij N, Sanchavanakit N, Subbalekha K, Pavasant P, Phisalaphong M (2011) Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts. Carbohydr Polym 85:548–553CrossRefGoogle Scholar
  114. 114.
    Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349CrossRefGoogle Scholar
  115. 115.
    Mohamad N, Mohd Amin MCI, Pandey M, Ahmad N, Rajab NF (2014) Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr Polym 114:312–320CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Markstedt K, Mantas A, Tournier I, Avila HM, Hagg D, Gatenholm P (2015) 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16:1489–1496CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Saska S, Teixeira LN, de Oliveira PT, Gaspar AMM, Ribeiro SJL, Messaddeq Y, Marchetto R (2012) Bacterial cellulose-collagen nanocomposite for bone tissue engineering. J Mater Chem 22:22102–22112CrossRefGoogle Scholar
  120. 120.
    Yannas I, Lee E, Orgill DP, Skrabut E, Murphy GF (1989) Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci 86:933–937CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Brauker JH, Carr-Brendel VE, Martinson LA, Crudele J, Johnston WD, Johnson RC (1995) Neovascularization of synthetic membranes directed by membrane microarchitecture. J Biomed Mater Res A 29:1517–1524CrossRefGoogle Scholar
  122. 122.
    Schwartz I, Robinson BP, Hollinger JO, Szachowicz EH, Brekke J (1995) Calvarial bone repair with porous D, L-polylactide. Otolaryngol Head Neck Surg 112:707–713CrossRefGoogle Scholar
  123. 123.
    Whang K, Healy K, Elenz D, Nam E, Tsai D, Thomas C, Nuber G, Glorieux F, Travers R, Sprague S (1999) Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Eng 5:35–51CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Yamazaki S, Takegawa A, Kaneko Y, Kadokawa J-i, Yamagata M, Ishikawaa M (2010) Performance of electric double-layer capacitor with acidic cellulose–chitin hybrid gel electrolyte. J Electrochem Soc 157:A203–A208CrossRefGoogle Scholar
  126. 126.
    Lee JH, Paik U, Hackley VA, Choi YM (2005) Effect of carboxymethyl cellulose on aqueous processing of natural graphite negative electrodes and their electrochemical performance for lithium batteries. J Electrochem Soc 152:A1763–A1769CrossRefGoogle Scholar
  127. 127.
    Kemell M, Pore V, Ritala M, Leskelä M, Lindén M (2005) Atomic layer deposition in nanometer-level replication of cellulosic substances and preparation of photocatalytic TiO2/cellulose composites. J Am Chem Soc 127:14178–14179CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Van Den Berg O, Schroeter M, Capadona JR, Weder C (2007) Nanocomposites based on cellulose whiskers and (semi) conducting conjugated polymers. J Mater Chem 17:2746–2753CrossRefGoogle Scholar
  129. 129.
    Olsson RT, Azizi Samir MA, Salazar-Alvarez G, Belova L, Strom V, Berglund LA, Ikkala O, Nogues J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584–588CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Pang X, He Y, Jung J, Lin Z (2016) 1D nanocrystals with precisely controlled dimensions, compositions, and architectures. Science 353:1268–1272CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Yang J, Zhang E, Li X, Zhang Y, Qu J, Yu Z (2016) Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon 98:50–57CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jiajun Mao
    • 2
  • Shuhui Li
    • 2
  • Jianying Huang
    • 2
    • 3
  • Kai Meng
    • 2
  • Guoqiang Chen
    • 2
  • Yuekun Lai
    • 1
    • 2
    • 3
    Email author
  1. 1.College of Chemical EngineeringFuzhou UniversityFuzhouChina
  2. 2.National Engineering Laboratory for Modern Silk, College of Textile and Clothing EngineeringSoochow UniversitySuzhouChina
  3. 3.Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/NanofabricationSoochow UniversitySuzhouChina

Personalised recommendations