Encyclopedia of Big Data Technologies

2019 Edition
| Editors: Sherif Sakr, Albert Y. Zomaya

Graph Generation and Benchmarks

  • Angela BonifatiEmail author
  • Arnau Prat-PérezEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-77525-8_79


Benchmarking has been crucial for the uptake and evolution of database technologies. Benchmarks allow systems to compete on a fair, non-biased setup, giving users an understanding of how two or more systems would compare in the same real setting. Additionally, the competition for obtaining the best benchmark scores has guided the research and development of database systems during years, speeding up their progression and their impact in society. Among many benchmarking initiatives, the Transaction Processing Council (TPC 2017) family of benchmarks is the best example of influential database benchmarks.

Industry and academia are aware of the benefits benchmarking can provide to the evolution and adoption of graph database technologies, and as such, many graph benchmarking initiatives have emerged such as Erling et al. (2015), Iosup et al. (2016), Armstrong et al. (2013), or Bagan et al. (2017) just to cite a few of them. However, designing a benchmark is not a trivial task....

This is a preview of subscription content, log in to check access.


  1. Aluç G, Hartig O, Özsu MT, Daudjee K (2014) Diversified stress testing of RDF data management systems. In: The semantic web – ISWC 2014 – Proceedings of the 13th international semantic web conference, Part I, Riva del Garda, 19–23 Oct 2014, pp 197–212Google Scholar
  2. Armstrong TG, Ponnekanti V, Borthakur D, Callaghan M (2013) Linkbench: a database benchmark based on the Facebook social graph. In: SIGMOD. ACM, pp 1185–1196Google Scholar
  3. Backstrom L, Boldi P, Rosa M, Ugander J, Vigna S (2012) Four degrees of separation. In: WebSci. ACM, pp 33–42Google Scholar
  4. Bagan G, Bonifati A, Ciucanu R, Fletcher GH, Lemay A, Advokaat N (2017) gMark: schema-driven generation of graphs and queries. IEEE TKDE 29(4):856–869Google Scholar
  5. Bizer C, Schultz A (2009) The berlin sparql benchmark. Int J Semant Web Inf Syst 5(2):1–24CrossRefGoogle Scholar
  6. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex networks: structure and dynamics. Phys Rep 424(4):175–308MathSciNetzbMATHCrossRefGoogle Scholar
  7. Bonifati A, Martens W, Timm T (2017) An analytical study of large SPARQL query logs. PVLDB 11(2):149–161Google Scholar
  8. Chakrabarti D, Zhan Y, Faloutsos C (2004) R-mat: a recursive model for graph mining. In: SDM. SIAM, pp 442–446Google Scholar
  9. Erling O, Averbuch A, Larriba-Pey J, Chafi H, Gubichev A, Prat A, Pham MD, Boncz P (2015) The LDBC social network benchmark: interactive workload. In: SIGMOD. ACM, pp 619–630Google Scholar
  10. Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99(12):7821–7826MathSciNetzbMATHCrossRefGoogle Scholar
  11. gMark (2016) The gMark benchmark. https://github.com/graphMark/gmark
  12. Guo Y, Pan Z, Heflin J (2005) LUBM: a benchmark for owl knowledge base systems. Web Semant Sci Serv Agents World Wide Web 3(2): 158–182CrossRefGoogle Scholar
  13. Iosup A, Hegeman T, Ngai WL, Heldens S, Prat-Pérez A, Manhardto T, Chafio H, Capotă M, Sundaram N, Anderson M et al (2016) LDBC graphalytics: a benchmark for large-scale graph analysis on parallel and distributed platforms. VLDB 9(13): 1317–1328Google Scholar
  14. Kolda TG, Pinar A, Plantenga T, Seshadhri C (2014) A scalable generative graph model with community structure. SISC 36(5):C424–C452MathSciNetzbMATHCrossRefGoogle Scholar
  15. Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs for testing community detection algorithms. Phys Rev E 78(4):046110CrossRefGoogle Scholar
  16. Leskovec J, Chakrabarti D, Kleinberg J, Faloutsos C (2005) Realistic, mathematically tractable graph generation and evolution, using Kronecker multiplication. In: PKDD. Springer, Berlin/Heidelberg, vol 5, pp 133–145Google Scholar
  17. Leskovec J, Backstrom L, Kleinberg J (2009) Meme-tracking and the dynamics of the news cycle. In: SIGKDD. ACM, pp 497–506Google Scholar
  18. McPherson M, Smith-Lovin L, Cook JM (2001) Birds of a feather: homophily in social networks. Ann Rev Sociol 27(1):415–444CrossRefGoogle Scholar
  19. Morsey M, Lehmann J, Auer S, Ngomo ACN (2011) Dbpedia sparql benchmark–performance assessment with real queries on real data. In: ISWC. Springer, pp 454–469Google Scholar
  20. Newman ME (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256MathSciNetzbMATHCrossRefGoogle Scholar
  21. Newman ME, Strogatz SH, Watts DJ (2001) Random graphs with arbitrary degree distributions and their applications. Phys Rev E 64(2):026118CrossRefGoogle Scholar
  22. TPC (2017) Transaction processing council. http://www.tpc.org
  23. Ugander J, Karrer B, Backstrom L, Marlow C (2011) The anatomy of the Facebook social graph. arXiv preprint arXiv:11114503Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Lyon 1 UniversityVilleurbanneFrance
  2. 2.Universitat Politècnica de CatalunyaBarcelonaSpain