Encyclopedia of Big Data Technologies

2019 Edition
| Editors: Sherif Sakr, Albert Y. Zomaya

Truth Discovery

  • Laure Berti-ÉquilleEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-77525-8_23

Introduction

In the era of Big Data, volume, velocity, and variety are commonly used to characterize the salient features of Big Data. However, the importance of veracity, the fourth “V” of Big Data, is now well-recognized as a critical dimension that needs to be assessed by joint solutions coming from various research communities such as natural language processing (NLP), database (DB), and machine learning (ML), as well as from data science practitioners and journalists (Cohen et al. 2011; Berti-Équille 2016). The problem of estimating veracity of online information in presence of multiple conflicting data is very challenging: information extraction suffers from uncertainties and errors; information sources may be dependent or colluded; and misinformation is evolving and spreading fast in complex social networks. All these aspects have to be well-understood to be properly modeled in order to detect and combat effectively fake news and misinformation campaigns.

Rumor detection,...

This is a preview of subscription content, log in to check access.

References

  1. Balakrishnan R, Kambhampati S (2011) SourceRank: relevance and trust assessment for deep web sources based on inter-source agreement. In: Proceedings of the international conference on world wide web (WWW 2011), pp 227–236Google Scholar
  2. Berti-Équille L (2015) Data veracity estimation with ensembling truth discovery methods. In: 2015 IEEE international conference on big data, big data 2015, Santa Clara, 29 Oct–1 Nov 2015, pp 2628–2636Google Scholar
  3. Berti-Équille L (2016) Scaling up truth discovery. In: Proceedings of the 32nd IEEE international conference on data engineering (ICDE), Helsinki, 16–20 May 2016, pp 1418–1419Google Scholar
  4. Berti-Équille L, Borge-Holthoefer J (2015) Veracity of data: from truth discovery computation algorithms to models of misinformation dynamics. Synthesis lectures on data management. Morgan & Claypool Publishers, San RafaelGoogle Scholar
  5. Cohen S, Li C, Yang J, Yu C (2011) Computational journalism: a call to arms to database researchers. In: Proceedings of the fifth biennial conference on innovative data systems research (CIDR 2011), pp 148–151Google Scholar
  6. Dong XL, Berti-Equille L, Srivastava D (2009) Integrating conflicting data: the role of source dependence. PVLDB 2(1):550–561Google Scholar
  7. Dong XL, Berti-Equille L, Hu Y, Srivastava D (2010) Global detection of complex copying relationships between sources. Proc VLDB Endow 3(1–2):1358–1369CrossRefGoogle Scholar
  8. Dong XL, Gabrilovich E, Heitz G, Horn W, Lao N, Murphy K, Strohmann T, Sun S, Zhang W (2014) Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: The 20th ACM SIGKDD international conference on knowledge discovery and data mining (KDD’14), New York, 24–27 Aug 2014, pp 601–610Google Scholar
  9. Dong XL, Gabrilovich E, Murphy K, Dang V, Horn W, Lugaresi C, Sun S, Zhang W (2016) Knowledge-based trust: estimating the trustworthiness of web sources. IEEE Data Eng Bull 39(2):106–117Google Scholar
  10. Galland A, Abiteboul S, Marian A, Senellart P (2010) Corroborating information from disagreeing views. In: WSDM, pp 131–140Google Scholar
  11. Hassan N, Zhang G, Arslan F, Caraballo J, Jimenez D, Gawsane S, Hasan S, Joseph M, Kulkarni A, Nayak AK, Sable V, Li C, Tremayne M (2017) Claimbuster: the first-ever end-to-end fact-checking system. PVLDB 10(12):1945–1948Google Scholar
  12. Li Q, Li Y, Gao J, Su L, Zhao B, Demirbas M, Fan W, Han J (2014) A confidence-aware approach for truth discovery on long-tail data. Proc VLDB Endow 8(4):425–436CrossRefGoogle Scholar
  13. Li Y, Gao J, Meng C, Li Q, Su L, Zhao B, Fan W, Han J (2015) A survey on truth discovery. SIGKDD Explor 17(2):1–16CrossRefGoogle Scholar
  14. Marshall J, Argueta A, Wang D (2018) A neural network approach for truth discovery in social sensing. In: 2017 IEEE 14th international conference on mobile Ad Hoc and sensor systems (MASS), pp 343–347Google Scholar
  15. Pasternack J, Roth D (2010) Knowing what to believe (when you already know something). In: Proceedings of the conference on computational linguistics (COLING’10), pp 877–885Google Scholar
  16. Pasternack J, Roth D (2013) Latent credibility analysis. In: Proceedings of the international world wide web conference (WWW 2013), pp 1009–1020Google Scholar
  17. Shao C, Ciampaglia GL, Flammini A, Menczer F Hoaxy: a platform for tracking online misinformation. In: Proceedings of the 25th international conference companion on world wide web (WWW’16 companion), Republic and canton of Geneva, 2016. International World Wide Web Conferences Steering Committee, pp 745–750Google Scholar
  18. Waguih DA, Berti-Equille L (2014) Truth discovery algorithms: an experimental evaluation. CoRR abs/1409.6428Google Scholar
  19. Waguih DA, Goel N, Hammady HM, Berti-Equille L (2015) AllegatorTrack: combining and reporting results of truth discovery from multi-source data. In: Proceedings of the IEEE international conference on data engineering (ICDE 2015), pp 1440–1443Google Scholar
  20. Wang D, Kaplan LM, Le HK, Abdelzaher TF (2012) On truth discovery in social sensing: a maximum likelihood estimation approach. In: IPSN, pp 233–244Google Scholar
  21. Xiao H, Gao J, Li Q, Ma F, Su L, Feng Y, Zhang A (2016) Towards confidence in the truth: a bootstrapping based truth discovery approach. In: Proceedings of the 22Nd ACM SIGKDD international conference on knowledge discovery and data mining (KDD’16), pp 1935–1944Google Scholar
  22. Yin X, Han J (2007) Truth discovery with multiple conflicting information providers on the web. In: Proceeding of 2007 ACM SIGKDD international conference on knowledge discovery in databases (KDD’07)Google Scholar
  23. Zhao B, Rubinstein BIP, Gemmell J, Han J (2012) A Bayesian approach to discovering truth from conflicting sources for data integration. PVLDB 5(6):550–561Google Scholar
  24. Zhi S, Zhao B, Tong W, Gao J, Yu D, Ji H, Han J (2015) Modeling truth existence in truth discovery. In: Proceedings of the 21st ACM SIGKDD international conference on knowledge discovery and data mining (KDD’15), pp 1543–1552Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Aix-Marseille University, CNRS, LISMarseilleFrance