Encyclopedia of Big Data Technologies

2019 Edition
| Editors: Sherif Sakr, Albert Y. Zomaya

Graph Query Processing

  • S. SalihogluEmail author
  • N. YakovetsEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-77525-8_215

Definitions

While being eminently useful in a wide variety of application domains, the high expressiveness of graph queries makes them hard to optimize and, hence, challenging to process efficiently. We discuss a number of state-of-the-art approaches which aim to overcome these challenges, focusing specifically on planning, optimization, and execution of two commonly used types of declarative graph queries: subgraph queries and regular path queries.

Overview

In this chapter, we give a broad overview of the general techniques for processing two classes of graph queries: subgraph queries, which find instances of a query subgraph in a larger input graph, and regular path queries (RPQs), which find pairs of nodes in the graph connected by a path matching a given regular expression. Certainly, software that manage and process graph-structured data, such as RDF triple stores (Neumann and Weikum (2010), Virtuoso), graph database management systems (GDBMSes) (Kankanamge et al. (2017), neo4j),...

This is a preview of subscription content, log in to check access.

References

  1. Aberger CR, Tu S, Olukotun K, Ré C (2016) EmptyHeaded: a relational engine for graph processing. In: SIGMODCrossRefGoogle Scholar
  2. Agrawal R (1988) Alpha: an extension of relational algebra to express a class of recursive queries. IEEE TSE 14(7):879–885Google Scholar
  3. Aref M, ten Cate B, Green TJ, Kimelfeld B, Olteanu D, Pasalic E, Veldhuizen TL, Washburn G (2015) Design and implementation of the logicblox system. In: SIGMODCrossRefGoogle Scholar
  4. Atserias A, Grohe M, Marx D (2013) Size bounds and query plans for relational joins. SIAM J Comput 42(4):1737–1767MathSciNetzbMATHCrossRefGoogle Scholar
  5. Consens MP, Mendelzon AO, Vista D, Wood PT (1995) Constant propagation versus join reordering in datalog. In: Rules in database systems. Springer, Berlin, Heidelberg, pp 245–259CrossRefGoogle Scholar
  6. Cordella L, Foggia P, Sansone C, Vento M (2004) A (sub)graph isomorphism algorithm for matching large graphs. TPAMI 26(10):1367–1372CrossRefGoogle Scholar
  7. Dey S, Cuevas-Vicenttín V, Köhler S, Gribkoff E, Wang M, Ludäscher B (2013) On implementing provenance-aware regular path queries with relational query engines. In: Proceedings of the joint EDBT/ICDT 2013 workshops. ACM, pp 214–223Google Scholar
  8. Färber F, Cha SK, Primsch J, Bornhövd C, Sigg S, Lehner W (2012) SAP HANA database: data management for modern business applications. SIGMOD Rec 40(4): 45–51CrossRefGoogle Scholar
  9. Fletcher GH, Peters J, Poulovassilis A (2016) Efficient regular path query evaluation using path indexes. In: Proceedings of the 19th international conference on extending database technologyGoogle Scholar
  10. Gou G, Chirkova R (2007) Efficiently querying large XML data repositories: a survey. TKDE 19(10): 1381–1403Google Scholar
  11. Gubichev A, Bedathur SJ, Seufert S (2013) Sparqling Kleene: fast property paths in RDF-3X. In: Workshop on graph data management experiences and systems. ACM, pp 14–20Google Scholar
  12. Han WS, Lee J, Lee JH (2013) Turboiso: towards ultrafast and robust subgraph isomorphism search in large graph databases. In: SIGMODCrossRefGoogle Scholar
  13. Kankanamge C, Sahu S, Mhedbhi A, Chen J, Salihoglu S (2017) Graphflow: an active graph database. In: SIGMODCrossRefGoogle Scholar
  14. Kochut KJ, Janik M (2007) SPARQLeR: extended SPARQL for semantic association discovery. In: The semantic web: research and applications. Springer, Berlin, pp 145–159CrossRefGoogle Scholar
  15. Koschmieder A, Leser U (2012) Regular path queries on large graphs. In: Scientific and statistical database management. Springer, Berlin/Heidelberg, pp 177–194CrossRefGoogle Scholar
  16. Lai L, Qin L, Lin X, Zhang Y, Chang L (2016) Scalable distributed subgraph enumeration. In: VLDBCrossRefGoogle Scholar
  17. Lai L, Qin L, Lin X, Chang L (2017) Scalable subgraph enumeration in MapReduce: a cost-oriented approach. VLDB J 26(3):421–446CrossRefGoogle Scholar
  18. Losemann K, Martens W (2012) The complexity of evaluating path expressions in SPARQL. In: Proceedings of the 31st symposium on principles of database systems. ACM, pp 101–112Google Scholar
  19. Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N, Czajkowski G (2010) Pregel: a system for large-scale graph processing. In: SIGMODCrossRefGoogle Scholar
  20. Mendelzon A, Wood P (1995) Finding regular simple paths in graph databases. SIAM J Comput 24(6): 1235–1258MathSciNetzbMATHCrossRefGoogle Scholar
  21. Neumann T, Weikum G (2010) The RDF-3X engine for scalable management of RDF data. VLDB 19:91–113CrossRefGoogle Scholar
  22. Ngo HQ, Porat E, Ré C, Rudra A (2012) Worst-case optimal join algorithms. In: PODSzbMATHCrossRefGoogle Scholar
  23. Nguyen D, Aref M, Bravenboer M, Kollias G, Ngo HQ, Ré C, Rudra A (2015) Join processing for graph patterns: an old dog with new tricks. In: GRADES workshopCrossRefGoogle Scholar
  24. Olteanu D, Schleich M (2016) Factorized databases. SIGMOD Rec 45(2):5–16CrossRefGoogle Scholar
  25. Pérez J, Arenas M, Gutierrez C (2010) nSPARQL: a navigational language for RDF. Web Semant Sci Serv Agents World Wide Web 8(4):255–270CrossRefGoogle Scholar
  26. Qiao M, Zhang H, Cheng H (2017) Subgraph matching: on compression and computation. VLDB 11(2):17–188Google Scholar
  27. Thompson K (1968) Regular expression search algorithm. Commun ACM 11(6):419–422zbMATHCrossRefGoogle Scholar
  28. Veldhuizen TL (2012) Leapfrog Triejoin: a worst-case optimal join algorithm. CoRR abs/1210.0481Google Scholar
  29. Yakovets N, Godfrey P, Gryz J (2013) Evaluation of SPARQL property paths via recursive SQL. In: AMWGoogle Scholar
  30. Yakovets N, Godfrey P, Gryz J (2016) Query planning for evaluating SPARQL property paths. In: SIGMOD, San Francisco, pp 1875–1889Google Scholar
  31. Zauner H, Linse B, Furche T, Bry F (2010) A RPL through RDF: expressive navigation in RDF graphs. In: Web reasoning and rule systems. Springer, Heidelberg, pp 251–257CrossRefGoogle Scholar
  32. Zhao P, Han J (2010) On graph query optimization in large networks. VLDB 3(1–2):340–351Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of WaterlooWaterlooCanada
  2. 2.Eindhoven University of TechnologyEindhovenNetherlands