Encyclopedia of Big Data Technologies

2019 Edition
| Editors: Sherif Sakr, Albert Y. Zomaya

Coordination Avoidance

  • Faisal NawabEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-77525-8_182


Coordination avoidance denotes a class of distributed system methods that minimize the amount of coordination between nodes while maintaining the integrity of the application.


In many data management systems, data and processing are replicated or distributed across nodes (Kemme et al. 2010; Bernstein and Goodman 1981). This replication and distribution increase the levels of fault tolerance and availability. However, they introduce a coordination cost to maintain the integrity of applications. Since nodes are processing data for the same application simultaneously, there is the possibility of conflicting operations that may overwrite the work of other nodes. To overcome this problem, coordination and synchronization protocols have been developed to ensure the integrity of data. Typically, the coordination protocols strive to ensure a guarantee of correctness, such as serializability (Bernstein et al. 1987) and linearizability (Herlihy and Wing 1990). These are...

This is a preview of subscription content, log in to check access.


  1. Agrawal D, Bernstein AJ, Gupta P, Sengupta S (1987) Distributed optimistic concurrency control with reduced rollback. Distrib Comput 2(1):45–59. https://doi.org/10.1007/BF01786254CrossRefGoogle Scholar
  2. Agrawal D, El Abbadi A, Singh AK (1993) Consistency and orderability: semantics-based correctness criteria for databases. ACM Trans Database Syst (TODS) 18(3):460–486CrossRefGoogle Scholar
  3. Agrawal D, Bruno JL, El Abbadi A, Krishnaswamy V (1994) Relative serializability (extended abstract): an approach for relaxing the atomicity of transactions. In: Proceedings of the thirteenth ACM SIGACT-SIGMOD-SIGART symposium on principles of database systems. ACM, pp 139–149zbMATHGoogle Scholar
  4. Alvaro P, Conway N, Hellerstein JM, Marczak WR (2011) Consistency analysis in bloom: a calm and collected approach. In: CIDR, pp 249–260Google Scholar
  5. Badrinath B, Ramamritham K (1992) Semantics-based concurrency control: beyond commutativity. ACM Trans Database Syst (TODS) 17(1):163–199CrossRefGoogle Scholar
  6. Bailis P, Ghodsi A (2013) Eventual consistency today: limitations, extensions, and beyond. Queue 11(3):20:20–20:32. https://doi.org/10.1145/2460276.2462076CrossRefGoogle Scholar
  7. Bailis P, Ghodsi A, Hellerstein JM, Stoica I (2013) Bolt-on causal consistency. In: Proceedings of the 2013 ACM SIGMOD international conference on management of data, SIGMOD’13. ACM, New York, pp 761–772. https://doi.org/10.1145/2463676.2465279CrossRefGoogle Scholar
  8. Bailis P, Fekete A, Franklin MJ, Ghodsi A, Hellerstein JM, Stoica I (2014) Coordination avoidance in database systems. Proc VLDB Endow 8(3):185–196CrossRefGoogle Scholar
  9. Berenson H, Bernstein P, Gray J, Melton J, O’Neil E, O’Neil P (1995) A critique of ansi SQL isolation levels. ACM SIGMOD Rec 24:1–10. https://doi.org/10.1145/223784.223785CrossRefGoogle Scholar
  10. Bernstein PA, Goodman N (1981) Concurrency control in distributed database systems. ACM Comput Surv (CSUR) 13(2):185–221MathSciNetCrossRefGoogle Scholar
  11. Bernstein PA, Hadzilacos V, Goodman N (1987) Concurrency control and recovery in database systems. Addison-Wesley, ReadingGoogle Scholar
  12. Cooper BF, Ramakrishnan R, Srivastava U, Silberstein A, Bohannon P, Jacobsen HA, Puz N, Weaver D, Yerneni R (2008) Pnuts: Yahoo!’s hosted data serving platform. Proc VLDB Endow 1(2):1277–1288. https://doi.org/10.14778/1454159.1454167CrossRefGoogle Scholar
  13. Corbett JC, Dean J, Epstein M, Fikes A, Frost C, Furman JJ, Ghemawat S, Gubarev A, Heiser C, Hochschild P, Hsieh W, Kanthak S, Kogan E, Li H, Lloyd A, Melnik S, Mwaura D, Nagle D, Quinlan S, Rao R, Rolig L, Saito Y, Szymaniak M, Taylor C, Wang R, Woodford D (2012) Spanner: Google’s globally-distributed database, pp 251–264. http://dl.acm.org/citation.cfm?id=2387880.2387905
  14. DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A, Sivasubramanian S, Vosshall P, Vogels W (2007) Dynamo: Amazon’s highly available key-value store. In: Proceedings of twenty-first ACM SIGOPS symposium on operating systems principles, SOSP’07. ACM, New York, pp 205–220. https://doi.org/10.1145/1294261.1294281CrossRefGoogle Scholar
  15. Du J, Elnikety S, Roy A, Zwaenepoel W (2013) Orbe: scalable causal consistency using dependency matrices and physical clocks. In: Proceedings of the 4th annual symposium on cloud computing, SOCC’13. ACM, New York, pp 11:1–11:14. https://doi.org/10.1145/2523616.2523628
  16. Farrag AA, Özsu MT (1989) Using semantic knowledge of transactions to increase concurrency. ACM Trans Database Syst (TODS) 14(4):503–525CrossRefGoogle Scholar
  17. Garcia-Molina H (1983) Using semantic knowledge for transaction processing in a distributed database. ACM Trans Database Syst (TODS) 8(2):186–213zbMATHCrossRefGoogle Scholar
  18. Herlihy MP, Wing JM (1990) Linearizability: a correctness condition for concurrent objects. ACM Trans Program Lang Syst 12(3):463–492. https://doi.org/10.1145/78969.78972CrossRefGoogle Scholar
  19. Kemme B, Jimenez-Peris R, Patino-Martinez M (2010) Database replication. Synth Lect Data Manag 2(1):1–153. http://www.morganclaypool.com/doi/abs/10.2200/S00296ED1V01Y201008DTM007
  20. Korth HF (1983) Locking primitives in a database system. J ACM 30(1):55–79. https://doi.org/10.1145/322358.322363MathSciNetzbMATHCrossRefGoogle Scholar
  21. Korth HK, Speegle G (1988) Formal model of correctness without serializabilty. ACM SIGMOD Rec 17: 379–386CrossRefGoogle Scholar
  22. Lamport L (1976) Towards a theory of correctness for multi-user data base system. Teeh. Rep. Tech. Rep., TRCA-7610-0712, Massachusetts Computer AssociatesGoogle Scholar
  23. Lamport L (1978) Time, clocks, and the ordering of events in a distributed system. Commun ACM 21(7):558–565. https://doi.org/10.1145/359545.359563zbMATHCrossRefGoogle Scholar
  24. Li C, Porto D, Clement A, Gehrke J, Preguiça NM, Rodrigues R (2012) Making geo-replicated systems fast as possible, consistent when necessary. In: OSDI, vol 12, pp 265–278Google Scholar
  25. Lloyd W, Freedman MJ, Kaminsky M, Andersen DG (2011) Don’t settle for eventual: scalable causal consistency for wide-area storage with cops. In: Proceedings of the twenty-third ACM symposium on operating systems principles, SOSP’11. ACM, New York, pp 401–416. https://doi.org/10.1145/2043556.2043593CrossRefGoogle Scholar
  26. Lloyd W, Freedman MJ, Kaminsky M, Andersen DG (2013) Stronger semantics for low-latency geo-replicated storage. In: Proceedings of the 10th USENIX conference on networked systems design and implementation, NSDI’13. USENIX Association, Berkeley, pp 313–328. http://dl.acm.org/citation.cfm?id=2482626.2482657Google Scholar
  27. Lynch NA (1983) Multilevel atomicity: a new correctness criterion for database concurrency control. ACM Trans Database Syst (TODS) 8(4):484–502MathSciNetzbMATHCrossRefGoogle Scholar
  28. Nawab F, Arora V, Agrawal D, El Abbadi A (2015) Chariots: a scalable shared log for data management in multi-datacenter cloud environments. In: Proceedings of the 18th international conference on extending database technology, EDBT 2015, Brussels, pp 13–24. https://doi.org/10.5441/002/edbt.2015.03
  29. Preguica N, Marques JM, Shapiro M, Letia M (2009) A commutative replicated data type for cooperative editing. In: 29th IEEE international conference on distributed computing systems, ICDCS’09. IEEE, pp 395–403Google Scholar
  30. Roy S, Kot L, Bender G, Ding B, Hojjat H, Koch C, Foster N, Gehrke J (2015) The homeostasis protocol: avoiding transaction coordination through program analysis. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data. ACM, pp 1311–1326Google Scholar
  31. Satyanarayanan OT, Agrawal D (1993) Efficient execution of read-only transactions in replicated multiversion databases. IEEE Trans Knowl Data Eng 5(5):859–871. https://doi.org/10.1109/69.243514CrossRefGoogle Scholar
  32. Schlageter G (1981) Optimistic methods for concurrency control in distributed database systems. In: Proceedings of the seventh international conference on very large data bases, vol 7, VLDB Endowment, VLDB’81, pp 125–130. http://dl.acm.org/citation.cfm?id=1286831.1286844
  33. Shapiro M, Preguiça N, Baquero C, Zawirski M (2011) Convergent and commutative replicated data types. Bull Eur Assoc Theor Comput Sci (104):67–88MathSciNetzbMATHGoogle Scholar
  34. Shasha D, Llirbat F, Simon E, Valduriez P (1995) Transaction chopping: algorithms and performance studies. ACM Trans Database Syst (TODS) 20(3):325–363CrossRefGoogle Scholar
  35. Sovran Y, Power R, Aguilera MK, Li J (2011) Transactional storage for geo-replicated systems. In: Proceedings of the twenty-third ACM symposium on operating systems principles, SOSP’11. ACM, New York, pp 385–400. https://doi.org/10.1145/2043556.2043592CrossRefGoogle Scholar
  36. Weikum G (1985) A theoretical foundation of multi-level concurrency control. In: Proceedings of the fifth ACM SIGACT-SIGMOD symposium on principles of database systems. ACM, pp 31–43Google Scholar
  37. Zhang Y, Power R, Zhou S, Sovran Y, Aguilera MK, Li J (2013) Transaction chains: achieving serializability with low latency in geo-distributed storage systems. In: Proceedings of the twenty-fourth ACM symposium on operating systems principles, SOSP’13. ACM, New York, pp 276–291. https://doi.org/10.1145/2517349.2522729CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of CaliforniaSanta CruzUSA