Encyclopedia of Big Data Technologies

2019 Edition
| Editors: Sherif Sakr, Albert Y. Zomaya

Search and Query Accelerators

  • Johns PaulEmail author
  • Bingsheng He
  • Chiew Tong Lau
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-77525-8_166

Search and Query Processing

Search and query processing involves translation of high-level queries or user requests into low-level operations which can be executed on physical hardware to retrieve relevant results from a database. The process generally involves conversion of the high-level query into an intermediate representation, optimization of the intermediate representation to generate an optimal evaluation plan and finally the execution of the optimized plan on physical hardware to retrieve relevant results (Markl 2009). Figure 1 shows the major steps involved in query processing for relational databases.
This is a preview of subscription content, log in to check access.


  1. Allison Linn (2016) The moonshot that succeeded: how bing and azure are using an AI supercomputer in the cloud. https://blogs.microsoft.com/ai/2016/10/17/the_moonshot_that_succeeded
  2. Avinash Sodani (2016) Knights landing (KNL): 2nd generation IntelⓇXeon Phi processor. https://www.alcf.anl.gov/files/HC27.25.710-Knights-Landing-Sodani-Intel.pdf
  3. Cheng X, He B, Du X, Lau CT (2017) A study of main-memory hash joins on many-core processor: a case with intel knights landing architecture. In: Proceedings of the 2017 ACM on conference on information and knowledge management, CIKM ’17. ACM, New York, pp 657–666. http://doi.acm.org/10.1145/3132847.3132916Google Scholar
  4. Fang R, He B, Lu M, Yang K, Govindaraju NK, Luo Q, Sander PV (2007) GPUQP: query co-processing using graphics processors. In: Proceedings of the 2007 ACM SIGMOD international conference on management of data, SIGMOD ’07. ACM, New York, pp 1061–1063. http://doi.acm.org/10.1145/1247480.1247606Google Scholar
  5. Heimel M, Saecker M, Pirk H, Manegold S, Markl V (2013) Hardware-oblivious parallelism for in-memory column-stores. Proc VLDB Endow 6(9):709–720. http://dx.doi.org/10.14778/2536360.2536370CrossRefGoogle Scholar
  6. Jha S, He B, Lu M, Cheng X, Huynh HP (2015) Improving main memory hash joins on intel xeon phi processors: an experimental approach. Proc VLDB Endow 8(6):642–653. http://dx.doi.org/10.14778/2735703.2735704CrossRefGoogle Scholar
  7. MapD (2016) The world’s fastest platform for data exploration. http://go.mapd.com/rs/116-GLR-105/images/Map%20Technica%20Whitepape%20Summe%202016.pdf
  8. Markl V (2009) Query processing (in relational databases). Springer US, Boston, pp 2288–2293.  https://doi.org/10.1007/978-0-387-39940-9_296Google Scholar
  9. Paul J, He J, He B (2016) GPL: a GPU-based pipelined query processing engine. In: Proceedings of the 2016 international conference on management of data, SIGMOD ’16. ACM, New York, pp 1935–1950. http://doi.acm.org/10.1145/2882903.2915224Google Scholar
  10. Pirk H, Moll O, Zaharia M, Madden S (2016) Voodoo – a vector algebra for portable database performance on modern hardware. Proc VLDB Endow 9(14):1707–1718. http://dx.doi.org/10.14778/3007328.3007336CrossRefGoogle Scholar
  11. Wang Z, Paul J, Cheah HY, He B, Zhang W (2016) Relational query processing on opencl-based fpgas. In: 2016 26th international conference on field programmable logic and applications (FPL), pp 1–10. http://dx.doi.org/10.1109/FPL.2016.7577329
  12. Woods L, István Z, Alonso G (2014) Ibex: an intelligent storage engine with support for advanced sql offloading. Proc VLDB Endow 7(11):963–974. http://dx.doi.org/10.14778/2732967.2732972CrossRefGoogle Scholar
  13. Wu L, Lottarini A, Paine TK, Kim MA, Ross KA (2014) Q100: the architecture and design of a database processing unit. SIGARCH Comput Archit News 42(1):255–268. http://doi.acm.org/10.1145/2654822.2541961Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Nanyang Technological UniversitySingaporeSingapore
  2. 2.National University of SingaporeSingaporeSingapore