Encyclopedia of Big Data Technologies

2019 Edition
| Editors: Sherif Sakr, Albert Y. Zomaya

Holistic Schema Matching

  • Erhard RahmEmail author
  • Eric Peukert
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-77525-8_12



Holistic schema matching aims at identifying semantically corresponding elements in multiple schemas, e.g., database schemas, web forms, or ontologies. The corresponding elements from N (>2) sources are typically grouped into clusters with up to N members. Holistic schema matching is usually applied when multiple schemas need to be combined within an integrated schema or ontology.


Holistic schema matching aims at identifying semantically corresponding elements in multiple (>2) schemas, such as database schemas, web forms, or ontologies. It is to be contrasted with the traditional pairwise schema matching (Rahm and Bernstein 2001; Euzenat and Shvaiko 2013) between two input schemas only that determines a so-called mapping consisting of a set of correspondences, i.e., pairs of elements of the input schemas (table attributes, ontology concepts) that match with each other. Holistic schema matching is applied to more than two input...

This is a preview of subscription content, log in to check access.


  1. Balakrishnan S, Halevy AY, Harb B, Lee H, Madhavan J, Rostamizadeh A, Shen W, Wilder K, Wu F, Yu C (2015) Applying web tables in practice. In: Proceedings of the CIDRGoogle Scholar
  2. Barbosa L, Freire J, Silva A (2007) Organizing hidden-web databases by clustering visible web documents. In: Proceedings of the international conference on data engineering, pp 326–335Google Scholar
  3. Batini C, Lenzerini M, Navathe SB (1986) A comparative analysis of methodologies for database schema integration. ACM Comput Surv 18(4):323–364CrossRefGoogle Scholar
  4. Bodenreider O (2004) The unified medical language system (UMLS): integrating bio-medical terminology. Nucleic Acids Res 32(suppl 1):D267–D270CrossRefGoogle Scholar
  5. Das Sarma A, Dong X, Halevy AY (2008) Bootstrapping pay-as-you-go data integration systems. In: Proceedings of the ACM SIGMOD conferenceGoogle Scholar
  6. Do HH, Rahm E (2002) COMA – a system for flexible combination of schema matching approaches. In: Proceedings of the international conference on very large data bases, pp 610–621CrossRefGoogle Scholar
  7. Dong X, Gabrilovich E, Heitz G, Horn W, Lao N, Murphy K, Strohmann T, Sun S, Zhang W (2014) Knowledge vault: A web-scale approach to probabilistic knowledge fusion. In: Proceedings of KDD, New York, USA, pp 601–610Google Scholar
  8. Eberius J, Damme P, Braunschweig K, Thiele M, Lehner W (2013) Publish-time data integration for open data platforms. In: Proceedings of the ACM workshop on open dataGoogle Scholar
  9. Euzenat J, Shvaiko P (2013) Ontology matching, 2nd edn. Springer, Berlin/Heidelberg, GermanyzbMATHCrossRefGoogle Scholar
  10. Gross A, Hartung M, Kirsten T Rahm E (2011) Mapping composition for matching large life science ontologies. In: Proceedings of the ICBO, pp 109–116Google Scholar
  11. Gruetze T, Boehm C, Naumann F (2012) Holistic and scalable ontology alignment for linked open data. In: Proceedings of linked data on the webGoogle Scholar
  12. He B, Chang KC (2003) Statistical schema matching across web query interfaces. In: Proceedings of the ACM SIGMOD conference, pp 217–228Google Scholar
  13. He H, Meng W, Yu CT, Wu Z (2004) Automatic integration of web search interfaces with WISE-integrator. VLDB J 13(3):256–273CrossRefGoogle Scholar
  14. Hu W, Chen J, Zhang H, Qu Y (2011) How matchable are four thousand ontologies on the semantic web. In: Proceedings of the ESWC, Springer LNCS 6643Google Scholar
  15. Koepcke H, Rahm E (2010) Frameworks for entity matching: a comparison. Data Knowl Eng 69(2):197–210CrossRefGoogle Scholar
  16. Limaye G, Sarawagi S, Chakrabarti S (2010) Annotating and searching web tables using entities, types and relationships. PVLDB 3(1–2):1338–1347Google Scholar
  17. Madhavan J, Bernstein PA, Doan A, Halevy AY (2005) Corpus-based schema matching. In: Proceedings of the IEEE ICDE conferenceGoogle Scholar
  18. Mahmoud HA, Aboulnaga A (2010) Schema clustering and retrieval for multi-domain pay-as-you-go data integration systems. In: Proceedings of the ACM SIGMOD conferenceGoogle Scholar
  19. Nentwig M, Soru T, Ngonga Ngomo A, Rahm E (2014) LinkLion: a link repository for the web of data. In: Proceedings of the ESWC (Satellite Events), Springer LNCS 8798Google Scholar
  20. Rahm E (2011) Towards large-scale schema and ontology matching. In: Schema matching and mapping. Springer, Berlin/Heidelberg, GermanyGoogle Scholar
  21. Rahm E (2016) The case for holistic data integration. In: Proceedings of the ADBIS conference, Springer LNCS 9809Google Scholar
  22. Rahm E, Bernstein PA (2001) A survey of approaches to automatic schema matching. VLDB J 10(4):334–350zbMATHCrossRefGoogle Scholar
  23. Raunich S, Rahm E (2014) Target-driven merging of taxonomies with ATOM. Inf Syst 42:1–14CrossRefGoogle Scholar
  24. Saleem K, Bellahsene Z, Hunt E (2008) PORSCHE: performance oriented SCHEma mediation. Inf Syst 33(7–8):637–657CrossRefGoogle Scholar
  25. Wang J, Wang H, Wang Z, Zhu KQ (2012) Understanding tables on the web. In: Proceedings of the ER conference, Springer LNCS 7532, pp 141–155Google Scholar
  26. Yakout M, Ganjam K, Chakrabarti K, Chaudhuri S (2012) Infogather: entity augmentation and attribute discovery by holistic matching with web tables. In: Proceedings of the ACM SIGMOD conference, pp 97–108Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of LeipzigLeipzigGermany

Section editors and affiliations

  • Maik Thiele
    • 1
  1. 1.Database Systems GroupTechnische Universität DresdenDresdenDeutschland