Encyclopedia of Mathematics Education

Living Edition
| Editors: Steve Lerman

Mathematical Representations

  • Gerald A. Goldin
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-77487-9_103-4

Definitions

As most commonly interpreted in education, mathematical representations are visible or tangible productions – such as diagrams, number lines, graphs, arrangements of concrete objects or manipulatives, physical models, written words, mathematical expressions, formulas and equations, or depictions on the screen of a computer or calculator – that encode, stand for, or embody mathematical ideas or relationships. Such a production is sometimes called an inscription when the intent is to focus on a specific instance without referring, even tacitly, to any interpretation of it. To call something a representation thus includes reference to some meaning or signification it is taken to have. Such representations are called external– i.e., they are external to the individual who produced them and accessible to others for observation, discussion, interpretation, and/or manipulation. Spoken language, interjections, gestures, facial expressions, movements, and postures may sometimes...

Keywords

Cognitive configurations Concrete embodiments Diagrams External representations Gestures Graphs Imagery Inscriptions Interpretation Internal representations Language Manipulatives Meanings Models Neuroscience Productions Representational systems Semiotics Signification Symbols Symbolization Visualization 
This is a preview of subscription content, log in to check access.

References

  1. Anderson C, Scheuer N, Pérez Echeverría MP, Teubal EV (eds) (2009) Representational systems and practices as learning tools. Sense, RotterdamGoogle Scholar
  2. Bruner JS (1966) Toward a theory of instruction. The Belknap Press – Harvard University Press, Cambridge, MAGoogle Scholar
  3. Common Core State Standards Initiative (2018) Preparing America’s students for success. Retrieved June 2018 from http://www.corestandards.org/
  4. Cuoco AA, Curcio FR (2001) The roles of representation in school mathematics: NCTM 2001 yearbook. National Council of Teachers of Mathematics, RestonGoogle Scholar
  5. Davis RB (1984) Learning mathematics: the cognitive science approach to mathematics education. Ablex, NorwoodGoogle Scholar
  6. Duval R (2006) A cognitive analysis of problems of comprehension in a learning of mathematics. Educ Stud Math 61:103–131CrossRefGoogle Scholar
  7. Goldin GA (1998) Representational systems, learning, and problem solving in mathematics. J Math Behav 17:137–165CrossRefGoogle Scholar
  8. Goldin GA (2008) Perspectives on representation in mathematical learning and problem solving. In: English LD (ed) Handbook of international research in mathematics education, 2nd edn. Routledge – Taylor and Francis, London, pp 176–201Google Scholar
  9. Goldin GA, Janvier, C (eds) (1998) Representations and the psychology of mathematics education: parts I and II (special issues). J Math Behav 17(1 & 2)Google Scholar
  10. Goldin GA, Kaput JJ (1996) A joint perspective on the idea of representation in learning and doing mathematics. In: Steffe L, Nesher P, Cobb P, Goldin GA, Greer B (eds) Theories of mathematical learning. Erlbaum, Hillsdale, pp 397–430Google Scholar
  11. Gravemeijer K, Doorman M, Drijvers P (2010) Symbolizing and the development of meaning in computer-supported algebra education. In: Verschaffel L, De Corte E, de Jong T, Elen J (eds) Use of representations in reasoning and problem solving: analysis and improvement. Routledge – Taylor and Francis, London, pp 191–208Google Scholar
  12. Heinze A, Star JR, Verschaffel L (2009) Flexible and adaptive use of strategies and representations in mathematics education. ZDM 41:535–540CrossRefGoogle Scholar
  13. Hitt F (ed) (2002) Representations and mathematics visualization. Departamento de Matemática Educativa del Cinvestav – IPN, MéxicoGoogle Scholar
  14. Janvier C (ed) (1987) Problems of representation in the teaching and learning of mathematics. Erlbaum, HillsdaleGoogle Scholar
  15. Kaput J, Noss R, Hoyles C (2002) Developing new notations for a learnable mathematics in the computational era. In: English LD (ed) Handbook of international research in mathematics education. Erlbaum, Mahwah, pp 51–75Google Scholar
  16. Lesh RA, Doerr HM (eds) (2003) Beyond constructivism: models and modeling perspectives on mathematics problem solving, learning, and teaching. Erlbaum, MahwahGoogle Scholar
  17. McClelland JL, Mickey K, Hansen S, Yuan A, Lu Q (2016) A parallel-distributed processing approach to mathematical cognition. Manuscript, Stanford University. Retrieved June 2018 from https://stanford.edu/~jlmcc/papers/
  18. Moreno-Armella L, Sriraman B (2010) Symbols and mediation in mathematics education. In: Sriraman B, English L (eds) Advances in mathematics education: seeking new frontiers. Springer, Berlin, pp 213–232Google Scholar
  19. Moreno-Armella L, Hegedus SJ, Kaput JJ (2008) From static to dynamic mathematics: historical and representational perspectives. Educ Stud Math 68:99–111CrossRefGoogle Scholar
  20. National Council of Teachers of Mathematics (2000) Principles and standards for school mathematics. NCTM, RestonGoogle Scholar
  21. Newell A, Simon HA (1972) Human problem solving. Prentice-Hall, Englewood CliffsGoogle Scholar
  22. Novack MA, Congdon EL, Hermani-Lopez N, Goldin-Meadow S (2014) From action to abstraction: using the hands to learn math. Psychol Sci 25:903–910CrossRefGoogle Scholar
  23. Palmer SE (1978) Fundamental aspects of cognitive representation. In: Rosch E, Lloyd B (eds) Cognition and categorization. Erlbaum, Hillsdale, pp 259–303Google Scholar
  24. Roth W-M (ed) (2009) Mathematical representation at the interface of body and culture. Information Age, CharlotteGoogle Scholar
  25. Skemp RR (ed) (1982) Understanding the symbolism of mathematics (special issue). Visible Language 26(3)Google Scholar
  26. van Garderen D, Scheuermann A, Poch A, Murray MM (2018) Visual representation in mathematics: special education teachers’ knowledge and emphasis for instruction. Teach Educ Spec Educ 41:7–23CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Graduate School of EducationRutgers UniversityNew BrunswickUSA

Section editors and affiliations

  • Ruhama Even
    • 1
  1. 1.Department of Science TeachingThe Weizmann Institute of ScienceRehovotIsrael