Advertisement

Diversity, Ecology, and Significance of Fungal Endophytes

  • Kandikere R. Sridhar
Living reference work entry

Latest version View entry history

Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Fungal mutualistic association with plant species has become one of the important emerging contemporary issues in biology. Non-mycorrhizal endophytic fungal studies have multifold interest owing to their basic and applied value. Various tissues (leaf, stem, bark, seed, root, rhizome, and tuber) of a wide array of phototrophs (forest trees, plantations, shrubs, medicinal plants, vegetables, macrophytes, seaweeds, seagrass, ferns, and orchids) occurring in different ecosystems (terrestrial, riparian, freshwaters, mangroves, marine, marshes, and coastal sand dunes) have attracted the attention of researchers. The main focus of such interest is to understand their coevolution, life history, lifestyle, diversity, ecology, stress tolerance, natural products, biological control, bioprospects, and bioremediation. Climate change and anthropogenic interference on biodiversity have dramatic impact on the mutualistic association between plant species and endophytic fungi. The purpose of this review is to provide a brief overview on endophytic fungal studies carried out in different plant species, ecological perspectives, methods, and applications in different fields.

Keywords

Mutualism Natural products Biological control Bioprospects Bioremediation Techniques 

List of Abbreviations

AM

Arbuscular mycorrhizal

BLAST

Basic local alignment search

CAZymes

Carbohydrate active enzymes

DGGE

Denaturing gradient gel electrophoresis

DNA

Deoxyribonucleic acid

DSE

Dark septate endophytes

EM

Ectomycorrhizal

HIV

Human immunodeficiency virus

ITS

Internal transcribed spacer

LC-MS

Liquid chromatography-mass spectrometry

LSU

Large subunit

MAP

Mitogen-activated protein

OTU

Operational taxonomic unit

PCWDE

Plant cell wall degrading enzyme

RBP

Retinal-binding protein

RFLP

Restriction fragment length polymorphism

RIA

Radioimmunoassay

RNA

Ribonucleic acid

SEM

Scanning electron microscopy

SSU

Small subunit

TEF

Transcription enhancer factor

UPLC-ESI-MS/MS

Ultra-performance liquid chromatography-electrospray ionization mass spectrometry

VOC

Volatile organic compound

Notes

Acknowledgments

The author acknowledges the award of UGC-BSR Faculty Fellowship by the University Grants Commission, New Delhi, India. The author is grateful to the Mangalore University for the award of adjunct professorship.

References

  1. 1.
    De Silva NI, Lumyong S, Hyde KD et al (2016) Mycosphere essays 9: defining biotrophs and hemibiotrophs. Mycosphere 7:545–559CrossRefGoogle Scholar
  2. 2.
    Bacon CW, Hill NS (1996) Symptomless grass endophytes: products of coevolutionary symbiosis and their role in ecological adaptations of infected grasses. In: Redlin SC, Carris LM (eds) Endophytic fungi in grass and woody plants. APS Press, Minnesota, pp 155–178Google Scholar
  3. 3.
    Krings M, Taylor TN, Hass H et al (2007) Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytol 174:648–657CrossRefGoogle Scholar
  4. 4.
    Parfrey LW, Lahr DJ, Knoll AH, Katz LA (2011) Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci 108:13624–13629CrossRefGoogle Scholar
  5. 5.
    De Bary A (1866) Morphologie und Physiologie der Pilze, Flechten und Myxomyceten. Engelmann, LeipzigCrossRefGoogle Scholar
  6. 6.
    Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173Google Scholar
  7. 7.
    Carroll GC (1986) The biology of endophytism in plants with particular reference to woody plants. In: Fokkema NJ, van den Heuvel J (eds) Microbiology of the phyllosphere. Cambridge University Press, Cambridge, pp 205–222Google Scholar
  8. 8.
    Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 179–197CrossRefGoogle Scholar
  9. 9.
    Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66CrossRefGoogle Scholar
  10. 10.
    Petrini O (1986) Taxonomy of endophytic fungi of aerial plant tissues. In: Fokkema NJ, van den Huevel J (eds) Microbiology of the phyllosphere. Cambridge University Press, Cambridge, pp 175–187Google Scholar
  11. 11.
    Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459CrossRefGoogle Scholar
  12. 12.
    Ryan RP, Germaine K, Franks A et al (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9CrossRefGoogle Scholar
  13. 13.
    Eaton CJ, Cox MP, Scott B (2011) What triggers grass endophytes to switch from mutualism to pathogenism? Plant Sci 180:190–195CrossRefGoogle Scholar
  14. 14.
    Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbiosis. Nat Rev Microbiol 6:763–775CrossRefGoogle Scholar
  15. 15.
    Weiß M, Waller F, Zuccaro A, Selosse M-A (2016) Sebacinales – one thousand and one interactions with land plants. New Phytol 211:20–40CrossRefGoogle Scholar
  16. 16.
    Weiß M, Sýkorová Z, Garnica S et al (2011) Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. PLoS One 6:e16793CrossRefGoogle Scholar
  17. 17.
    Root RB (1967) The niche exploitation pattern of the blue-gray gnatcatcher. Ecol Monogr 37:317e350CrossRefGoogle Scholar
  18. 18.
    Nguyen NH, Song Z, Bates ST et al (2015) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248CrossRefGoogle Scholar
  19. 19.
    Rodriguez RJ, Henson J, Van Volkenburgh E et al (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416CrossRefGoogle Scholar
  20. 20.
    Bischoff JF, White JF Jr (2005) Evolutionary development of the Clavicipitaceae. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organization and role in the ecosystem. Taylor & Francis, Boca Raton, pp 505–518Google Scholar
  21. 21.
    Arnold AE, Mejía LC, Kyllo D et al (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci 100:15649–15654CrossRefGoogle Scholar
  22. 22.
    Jumpponen A (2001) Dark septate endophytes - are they mycorrhizal? Mycorrhiza 11:207–211CrossRefGoogle Scholar
  23. 23.
    Stierle A, Strobel GA, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–244CrossRefGoogle Scholar
  24. 24.
    Hoffman MT, Arnold AE (2008) Geographic locality and host identity shape fungal endophyte communities in cupressaceous trees. Mycol Res 112:331–344CrossRefGoogle Scholar
  25. 25.
    Nisa H, Kamili AN, Nawchoo IA et al (2015) Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microb Pathog 82:50–59CrossRefGoogle Scholar
  26. 26.
    Sandberg DC, Battista LJ, Arnold AE (2014) Fungal endophytes of aquatic macrophytes: diverse host-generalists characterized by tissue preferences and geographic structure. Microb Ecol 67:735–747CrossRefGoogle Scholar
  27. 27.
    Sun X, Guo L-D (2012) Endophytic fungal diversity: review of traditional and molecular techniques. Mycology 3:65–76Google Scholar
  28. 28.
    Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549CrossRefGoogle Scholar
  29. 29.
    Suryanarayanan TS (2011) Diversity of fungal endophytes in tropical trees. In: Prittilä AM, Carolin FA (eds) Endophytes of tropical trees, Forestry sciences series # 80. Springer, Amsterdam, pp 67–80CrossRefGoogle Scholar
  30. 30.
    Taylor JE, Hyde KD, Jones EBG (1999) Endophytic fungi associated with the temperate palm Trachycarpus fortunei within and outside its natural geographic range. New Phytol 142:335–346CrossRefGoogle Scholar
  31. 31.
    Frohlich J, Hyde KD, Petrini O (2000) Endophytic fungi associated with palms. Mycol Res 104:1202–1212CrossRefGoogle Scholar
  32. 32.
    Suryanarayanan TS, Vinkatesan G, Murali TS (2003) Endophytic fungal communities in leaves of tropical forest trees: diversity and distribution patterns. Curr Sci 85:489–493Google Scholar
  33. 33.
    Wang Y, Guo L (2007) A comparative study of endophytic fungi in needles, bark and xylem of Pinus tabulaeformis. Can J Bot 85:911–917CrossRefGoogle Scholar
  34. 34.
    Guo LD, Huang GR, Wang Y (2008) Seasonal and tissue age influences on endophytic fungi of Pinus tabulaeformis (Pinaceae) in the Dongling Mountains, Beijing. J Integr Plant Biol 50:997–1003CrossRefGoogle Scholar
  35. 35.
    Rojas-Jimenez K, Hernandez M, Blanco J et al (2016) Richness of cultivable endophytic fungi along an altitudinal gradient in wet forests of Costa Rica. Fungal Ecol 20:124–131CrossRefGoogle Scholar
  36. 36.
    Gherbawy Y, Elhariry H (2014) Endophytic fungi associated with high-altitude Juniperus trees and their antimicrobial activities. Plant Biosyst 1:1–10Google Scholar
  37. 37.
    Murali TS, Thirunavukkarasu N, Govindarajulu MB, Suryanarayanan TS (2013) Fungal communities of symptomless barks of tropical trees. Mycosphere 4:635–645CrossRefGoogle Scholar
  38. 38.
    Singh DK, Sharma VK, Kumar J et al (2017) Diversity of endophytic mycobiota of tropical tree Tectona grandis Linn f: Spatiotemporal and tissue type effects. Sci Rep 7.  https://doi.org/10.1038/s41598-017-03933-0
  39. 39.
    Huang Y-L, Zimmerman NB, Arnold AE (2018) Observations on the early establishment of foliar endophytic fungi in leaf discs and living leaves of a model woody angiosperm, Populus trichocarpa (Salicaceae). J Fungi 4.  https://doi.org/10.3390/jof4020058CrossRefGoogle Scholar
  40. 40.
    Peterson RLL, Wagg C, Pautler M (2008) Associations between microfungal endophytes and roots: do structural features indicate function? Botany 86:445–456CrossRefGoogle Scholar
  41. 41.
    Sieber TN, Grünig CR (2013) Fungal root endophytes. In: Eshel A, Beeckman T (eds) Plant roots: the hidden half. CRC Press, Boca Raton, pp 1–49Google Scholar
  42. 42.
    Andrade-Linares DR, Franken P (2013) Fungal endophytes in plant roots: taxonomy, colonization patterns and functions. In: Aroca R (ed) Symbiotic endophytes. Springer-Verlag, Berlin, pp 311–334CrossRefGoogle Scholar
  43. 43.
    Knapp DG, Németh JB, Barry K et al (2018) Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi. Sci Rep 8.  https://doi.org/10.1038/s41598-018-24686-4
  44. 44.
    Bonfim JA, Vasconcellos RLF, Baldesin LF et al (2017) Dark septate endophytic fungi of native plants along an altitudinal gradient in the Brazilian Atlantic forest. Fungal Ecol 20:202–210CrossRefGoogle Scholar
  45. 45.
    Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, LondonGoogle Scholar
  46. 46.
    Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793CrossRefGoogle Scholar
  47. 47.
    Bothe H, Turnau K, Regvar M (2010) The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza 20:445–457CrossRefGoogle Scholar
  48. 48.
    Zubek S, Błaszkowski J, Mleczko P (2011) Arbuscular mycorrhizal and dark septate endophyte associations of medicinal plants. Acta Soc Bot Pol 80:285–292CrossRefGoogle Scholar
  49. 49.
    Tejesvi MV, Pirttilä AM (2011) Potential of tree endophytes as sources for new drug compounds. In: Pirttilä AM, Frank AC (eds) Endophytes of forest trees: biology and applications. Springer, Berlin, pp 295–311CrossRefGoogle Scholar
  50. 50.
    Bagyalakshmi G, Muthukumar T, Sathiyadash K, Muniappa V (2009) Mycorrhizal and dark septate fungal associations in shola species of Western Ghats, southern India. Mycoscience 51:44–52CrossRefGoogle Scholar
  51. 51.
    Newman DJ, Cragg GM (2010) Natural products as drugs and leads to drugs: the historical perspective. In: Buss AD, Butler MS (eds) Natural product chemistry for drug discovery. Royal Society of Chemistry, Cambridge, UK, pp 3–27Google Scholar
  52. 52.
    Zhao J, Shan T, Mou Y, Zhou L (2011) Plant-derived bioactive compounds produced by endophytic fungi. Mini-Rev Med Chem 11:159–168CrossRefGoogle Scholar
  53. 53.
    Venieraki A, Dimou M, Katinakis P (2017) Endophytic fungi residing in medicinal plants have the ability to produce the same or similar pharmacologically active secondary metabolites as their hosts. Hallenic Plant Protect J 10:51–66CrossRefGoogle Scholar
  54. 54.
    Puri SC, Nazir A, Chawla R et al (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122:494–510CrossRefGoogle Scholar
  55. 55.
    Puri SC, Verma V, Amna T et al (2005) An endophytic fungus from Nothapodytes foetida that produces Camptothecin. J Nat Prod 68:1717–1719CrossRefGoogle Scholar
  56. 56.
    Gurudatt PS, Priti V, Shweta S et al (2010) Attenuation of camptothecin production and negative relation between hyphal biomass and camptothecin content in endophytic fungal strains isolated from Nothapodytes nimmoniana Grahm (Icacinaceae). Curr Sci 98:1006–1010Google Scholar
  57. 57.
    Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294CrossRefGoogle Scholar
  58. 58.
    Bömke C, Tudzynski B (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70:1876–1893CrossRefGoogle Scholar
  59. 59.
    Mahobiya D, Gupta AK (2017) Diversity of endophytic fungi associated with some medicinal herbs and shrubs. Kavaka 49:38–44Google Scholar
  60. 60.
    Raviraja NS (2005) Fungal endophytes in five medicinal plant species from Kudremukh range, Western Ghats of India. J Basic Microbiol 45:230–235CrossRefGoogle Scholar
  61. 61.
    Zhao J, Li C, Wang W et al (2013) Hypocrea lixii, novel endophytic fungi producing anticancer agent cajanol, isolated from pigeon pea (Cajanus cajan L Millsp). J Appl Microbiol 115:102–113CrossRefGoogle Scholar
  62. 62.
    Bhalkar BN, Patil SM, Govindwar SP (2016) Camptothecine production by mixed fermentation of two endophytic fungi from Nothapodytes nimmoniana. Fungal Biol 120:873–883CrossRefGoogle Scholar
  63. 63.
    Devari S, Jaglan S, Kumar M et al (2014) Capsaicin production by Alternaria alternata, an endophytic fungus from Capsicum annum – LC–ESI–MS/MS analysis. Phytochemistry 98:183–189CrossRefGoogle Scholar
  64. 64.
    Kuriakose GC, Palem PP, Jayabaskaran C (2016) Fungal vincristine from Eutypella spp-CrP14 isolated from Catharanthus roseus induces apoptosis in human squamous carcinoma cell line-A431. BMC Complement Altern Med 16.  https://doi.org/10.1186/s12906-016-1299-2
  65. 65.
    Hu X, Li W, Yuan M et al (2016) Homoharringtonine production by endophytic fungus isolated from Cephalotaxus hainanensis li. World J Microbiol Biotechnol 32:110.  https://doi.org/10.1007/s11274-016-2073-9CrossRefGoogle Scholar
  66. 66.
    Maehara S, Simanjuntak P, Maetani Y et al (2013) Ability of endophytic filamentous fungi associated with Cinchona ledgeriana to produce Cinchona alkaloids. J Nat Med 67:421–423CrossRefGoogle Scholar
  67. 67.
    Mir RA, Kaushik SP, Chowdery RA, Anuradha M (2015) Elicitation of forskolin in cultures of Rhizactonia bataticola – a phytochemical synthesizing endophytic fungi. Int J Pharm Pharm Sci 7:185–189Google Scholar
  68. 68.
    Kaul S, Ahmed M, Zargar K et al (2013) Prospecting endophytic fungal assemblage of Digitalis lanata Ehrh (foxglove) as a novel source of digoxin: a cardiac glycoside. 3 Biotech 3:335–340CrossRefGoogle Scholar
  69. 69.
    Zhang Q, Wei X, Wang J (2012) Phillyrin produced by Colletotrichum gloeosporioides, an endophytic fungus isolated from Forsythia suspensa. Fitoterapia 83:1500–1505CrossRefGoogle Scholar
  70. 70.
    Pan F, Su X, Hu B et al (2015) Fusarium redolens 6WBY3, an endophytic fungus isolated from Fritillaria unibracteata var. wabuensis, produces peimisine and imperialine-3β-d-glucoside. Fitoterapia 103:213–221CrossRefGoogle Scholar
  71. 71.
    Cui Y, Yi D, Bai X et al (2012) Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba. Fitoterapia 83:913–920CrossRefGoogle Scholar
  72. 72.
    Qian YX, Kang JC, Luo YK et al (2016) A bilobalide-producing endophytic fungus, Pestalotiopsis uvicola. Curr Microbiol 73:280–286CrossRefGoogle Scholar
  73. 73.
    Su J, Liu H, Guo K et al (2017) Research advances and detection methodologies for microbe-derived acetylcholinesterase inhibitors: a systemic review. Molecules 22.  https://doi.org/10.3390/molecules22010176CrossRefGoogle Scholar
  74. 74.
    Wang XJ, Min CL, Ge M, Zuo RH (2014) An endophytic sanguinarine-producing fungus from Macleaya cordata and Fusarium proliferatum BLH51. Curr Microbiol 68:336–341CrossRefGoogle Scholar
  75. 75.
    Shweta S, Bindu JH, Raghu J et al (2013) Isolation of endophytic bacteria producing the anti-cancer alkaloid camptothecine from Miquelia dentata Bedd (Icacinaceae). Phytomed 20:913–917CrossRefGoogle Scholar
  76. 76.
    Na R, Jiajia L, Dongliang Y et al (2016) Indentification of vincamine indole alkaloids producing endophytic fungi isolated from Nerium indicum Apocynaceae. Microbiol Res 192:114–121CrossRefGoogle Scholar
  77. 77.
    Seetharaman P, Gnanasekar S, Chandrasekaran R et al (2017) Isolation and characterization of anticancer flavone chrysin (5,7-dihydroxyflavone)-producing endophytic fungi from Passiflora incarnata L. leaves. Ann Microbiol 67:321–331CrossRefGoogle Scholar
  78. 78.
    Chithra S, Jasim B, Anisha C et al (2014) LC-MS/MS based identification of piperine production by endophytic Mycosphaerella sp PF13 from Piper nigrum. Appl Biochem Biotechnol 173:30–35CrossRefGoogle Scholar
  79. 79.
    You X, Feng S, Luo S et al (2013) Studies on a rhein-producing endophytic fungus isolated from Rheum palmatum L. Fitoterapia 85:161–168CrossRefGoogle Scholar
  80. 80.
    Cui J, Guo T, Chao J et al (2016) Potential of the endophytic fungus Phialocephala fortinii Rac56 found in Rhodiola plants to produce salidroside and p-tyrosol. Molecules 21.  https://doi.org/10.3390/molecules21040502CrossRefGoogle Scholar
  81. 81.
    Li X, Zhai X, Shu Z et al (2016) Phoma glomerata D14: an endophytic fungus from Salvia miltiorrhiza. Curr Microbiol 73:31–37CrossRefGoogle Scholar
  82. 82.
    El-Elimat T, Raja HA, Graf TN et al (2014) Flavonolignans from Aspergillus iizukae, a fungal endophyte of milk thistle (Silybum marianum). J Nat Prod 77:193–199CrossRefGoogle Scholar
  83. 83.
    El-Hawary SS, Mohammed R, AbouZid SF et al (2016) Solamargine production by a fungal endophyte of Solanum nigrum. J Appl Microbiol 1201:143–150Google Scholar
  84. 84.
    Yin H, Sun YH (2011) Vincamine-producing endophytic fungus isolated from Vinca minor. Phytomed 18:802–805CrossRefGoogle Scholar
  85. 85.
    Taghavi S, Barac T, Greenberg B et al (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improved phyto-remediation of toluene. Appl Environ Microbiol 71:8500–8505CrossRefGoogle Scholar
  86. 86.
    Staniek A, Bouwmeester H, Fraser PD et al (2014) Natural products – learning chemistry from plants. Biotechnol J 9:326–336CrossRefGoogle Scholar
  87. 87.
    Chen SL, Yu H, Luo HM et al (2016) Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chin Med 11:37.  https://doi.org/10.1186/s13020-016-0108-7CrossRefGoogle Scholar
  88. 88.
    Sachin N, Manjunatha BL, Kumara PM et al (2013) Do endophytic fungi possess pathway genes for plant secondary metabolites? Curr Sci 104:178–182Google Scholar
  89. 89.
    Patel DK, Prasad SK, Kumar R, Hemalatha D (2012) An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed 2:320–330CrossRefGoogle Scholar
  90. 90.
    Rao RV, Descamps O, John V, Bredesen DE (2012) Ayurvedic medicinal plants for Alzheimer's disease: a review. Alz Res Ther 4.  https://doi.org/10.1186/alzrt125CrossRefGoogle Scholar
  91. 91.
    Shankar R, Deb S, Shama BK (2012) Antimalarial plants of Northeast India: an overview. J Ayurveda Int Med 3:10–17CrossRefGoogle Scholar
  92. 92.
    Greenwell M, Rahman PKSM (2015) Medicinal plants: their use in anticancer treatment. Int J Pharm Sci Res 6:4103–4112Google Scholar
  93. 93.
    Ranade AM, Vignesh A, Gayathri M (2017) A brief review on medicinal plants from South India, endophytes and their antidiabetic properties. Int J Cur Res Rev 9:1–4Google Scholar
  94. 94.
    Jones SB, Luchsinger AE (1986) Pteridophyta. In: Plant systematics, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  95. 95.
    Lehnert M, Krug M, Kessler M (2016) A review of symbiotic fungal endophytes in lycophytes and ferns – a global phylogenetic and ecological perspective. Symbiosis 71:77–89CrossRefGoogle Scholar
  96. 96.
    Petrini O, Fisher PJ, Petrini LE (1992) Fungal endophyte of bracken (Pteridium aquilinum), with some reflections on their use in biological control. Sydowia 44:282–293Google Scholar
  97. 97.
    Raviraja NS, Sridhar KR, Bäerlocher F (1996) Endophytic aquatic hyphomycetes of roots of plantation crops and ferns from India. Sydowia 48:152–160Google Scholar
  98. 98.
    Kumaresan V, Ganesan T, Rajarajan D, Nirmal KK (2006) Fungal endophytes of Psilotum nudum – a first report. Geobios 33:200–202Google Scholar
  99. 99.
    Kumaresan V, Veeramohan R, Bhat MM, Sruthi K, Ravindran CP (2013) Fungal endophyte assemblages of some pteridophytes from Mahe, India. World J Sci Technol 3:7–10Google Scholar
  100. 100.
    Sati SC, Pargaein N, Belwal M (2009b) Diversity of aquatic hyphomycetes as root endophytes on pteridophytic plants in Kumaun Himalaya. J Am Sci 5:179–182Google Scholar
  101. 101.
    Sati SC, Belwal M (2005) Aquatic hyphomycetes as endophytes of riparian plant roots. Mycologia 97:45–49CrossRefGoogle Scholar
  102. 102.
    Udayaprakash NK, Ashwinkarthick N, Poomagal D et al (2018) Fungal endophytes of an aquatic weed Marsilea minuta Linn. Cur Res Environ Appl Mycol 8:86–95CrossRefGoogle Scholar
  103. 103.
    Rasmussen HN (2002) Recent developments in the study of orchid mycorrhiza. Plant Soil 244:149–163CrossRefGoogle Scholar
  104. 104.
    Govindarajulu MB, Suryanarayanan TS, Tangjang S (2016) Endophytic fungi of orchids of Arunachal Pradesh, north eastern India. Cur Res Environ Appl Mycol 6:293–299CrossRefGoogle Scholar
  105. 105.
    Ma X, Kang J, Nonachaiyapoom S, Wen T, Hyde KD (2015) Nonmycorrhizal endophytic fungi from orchids. Curr Sci 108:1–16Google Scholar
  106. 106.
    Gezin Y, Eltem R (2009) Diversity of endophytic fungi from various Aegean and Mediterranean orchids (saleps). Turk J Bot 33:439–445Google Scholar
  107. 107.
    Herrera P, Suárez JP, Kottke I (2010) Orchids keep the ascomycetes outside: a highly diverse group of ascomycetes colonizing the velamen of epiphytic orchids from a tropical mountain rainforest in southern Ecuador. Mycology 1:262–268CrossRefGoogle Scholar
  108. 108.
    Chen J, Hu KX, Hou XQ, Guo SX (2011) Endophytic fungi assemblages from 10 Dendrobium medicinal plants (Orchidaceae). World J Microbiol Biotechnol 27:1009–1016CrossRefGoogle Scholar
  109. 109.
    Singh SK, Strobel GA, Knighton B et al (2011a) An endophytic Phomopsis sp possessing bioactivity and fuel potential with its volatile organic compounds. Microb Ecol 61:729–739CrossRefGoogle Scholar
  110. 110.
    Sudheep NM, Sridhar KR (2012) Non-mycorrhizal endophytic fungi in two orchids of Kaiga forest (Western Ghats), India. J For Res 23:453–460CrossRefGoogle Scholar
  111. 111.
    Oliveira SF, Bocayuva MF, Veloso TGR et al (2014) Endophytic and mycorrhizal fungi associated with roots of endangered native orchids from the Atlantic Forest, Brazil. Mycorrhiza 24:55–64CrossRefGoogle Scholar
  112. 112.
    Ratnaweera PB, Williams DEE, Silva DD et al (2014) Helvolic acid, an antibacterial nortriterpenoid from a fungal endophyte, Xylaria sp. of orchid Anoectochilus setaceus endemic to Sri Lanka. Mycology 5:23–28CrossRefGoogle Scholar
  113. 113.
    Yu Y, Cui Y-H, Hsiang T et al (2015) Isolation and identification of endophytes from roots of Cymbidium goeringii and Cymbidium faberi (Orchidaceae). Nova Hedwigia 101:57–64CrossRefGoogle Scholar
  114. 114.
    Sour V, Phonpho S, Soytong K (2015) Isolation of endophytic fungi from some orchid varieties. J Agric Technol 11:1243–1254Google Scholar
  115. 115.
    Parthibhan S, Rao MV, Kumar TS (2017) Culturable fungal endophytes in shoots of Dendrobium aqueum Lindley – an imperiled orchid. Ecol Gen Genom 3-5:18–24Google Scholar
  116. 116.
    Sahoo HR, Gupta N (2018) Diversity of endophytic phosphate solubilising fungi associated with Pomatocalpa decipiens (Lindl.) JJ smith – an endangered orchid in Barbara forest of Odisha, India. Stud Fungi 3:84–99CrossRefGoogle Scholar
  117. 117.
    Sridhar KR, Bärlocher F (1992a) Endophytic aquatic hyphomycetes of roots of spruce, birch and maple. Mycol Res 96:305–308CrossRefGoogle Scholar
  118. 118.
    Sridhar KR, Bärlocher F (1992b) Aquatic hyphomycetes in spruce roots. Mycologia 84:580–584CrossRefGoogle Scholar
  119. 119.
    Bärlocher (1992) Research on aquatic hyphomycetes: historical background and overview. In: Bärlocher F (ed) The ecology of aquatic hyphomycetes. Springer-Verlag, Berlin, pp 1–15CrossRefGoogle Scholar
  120. 120.
    Rajagopal K, Meenashree B, Binika D et al (2018) Mycodiversity and biotechnological potential of endophytic fungi isolated from hydrophytes. Cur Res Environ Appl Mycol 8:172–182CrossRefGoogle Scholar
  121. 121.
    Bärlocher F (2006) Fungal endophytes in submerged roots. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes, Soil biology, vol 9. Springer-Verlag, Berlin/Heidelberg, pp 179–190CrossRefGoogle Scholar
  122. 122.
    Sokolski S, Piché Y, Chauvet E, Bérubé J (2006) A fungal endophyte of black spruce (Picea mariana) needles is also an aquatic hyphomycete. Mol Ecol 15:1955–1962CrossRefGoogle Scholar
  123. 123.
    Chauvet E, Cornut J, Sridhar KR, Selosse M-A, Bärlocher F (2016) Beyond the water column: aquatic hyphomycetes outside their preferred habitat. Fungal Ecol 19:112–127CrossRefGoogle Scholar
  124. 124.
    Fisher PJ, Petrini O (1989) Two aquatic hyphomycetes as endophytes in Alnus glutinosa roots. Mycol Res 92:367–368CrossRefGoogle Scholar
  125. 125.
    Fisher PJ, Petrini O, Webster J (1991) Aquatic hyphomycetes and other fungi in living aquatic and terrestrial roots of Alnus glutinosa. Mycol Res 95:543–547CrossRefGoogle Scholar
  126. 126.
    Nemec S (1969) Sproulation and identification of fungi isolated form root-rot in diseased strawberry plants. Phytopathology 59:1552–1553Google Scholar
  127. 127.
    Watanabe T (1975) Tetracladium setigerum, an aquatic hyphomycete associated with gentian and strawberry roots. Trans Mycol Soc Japan 16:348–350Google Scholar
  128. 128.
    Selosse M-A, Vohník M, Chauvet E (2008) Out of the rivers: are some aquatic hyphomycetes plant endophytes. New Phytol 178:3–7CrossRefGoogle Scholar
  129. 129.
    Ghate SD, Sridhar KR (2017) Endophytic aquatic hyphomycetes in roots of riparian tree species of two Western Ghats streams. Symbiosis 71:233–240CrossRefGoogle Scholar
  130. 130.
    Raviraja NS, Sridhar KR, Barlocher F (1998) Fungal species richness in Western Ghats streams (southern India): is it related to pH, temperature or altitude? Fungal Divers 1:179–191Google Scholar
  131. 131.
    Li H-Y, Zhao C-A, Liu C-J, Xu X-F (2010) Endophytic fungi diversity of aquatic/riparian plants and their antifungal activity in vitro. J Microbiol 48:1–6CrossRefGoogle Scholar
  132. 132.
    Marvanová L, Fisher F (1991) A new endophytic hyphomycetes from alder roots. Nova Hedwigia 52:33–37Google Scholar
  133. 133.
    Marvanová L, Fisher PJ, Aimer R, Segedin B (1992) A new Filosporella from alder roots and from water. Nova Hedwigia 54:151–158Google Scholar
  134. 134.
    Marvanová L, Fisher PJ, Descals E, Bäerlocher F (1997) Fontanospora sp nov, a hyphomycete from live tree roots and from stream foam. Czech Mycol 50:3–11Google Scholar
  135. 135.
    Sati SC, Arya P, Belwal M (2009a) Tetracladium nainitalense sp. nov, a root endophyte from Kumaun Himalaya, India. Mycologia 101:692–695CrossRefGoogle Scholar
  136. 136.
    Webster J (1992) Anamorph-teleomorph relationships. In: Bäerlocher F (ed) The ecology of aquatic hyphomycetes, Ecological studies # 94. Springer, Berlin, pp 99–117CrossRefGoogle Scholar
  137. 137.
    Sivichai S, Jones EBG (2003) Teleomorphic-anamorphic connections of freshwater fungi. In: CKM T, Hyde KD (eds) Freshwater mycology. Fungal Diversity Press, Hong Kong, pp 259–272Google Scholar
  138. 138.
    Sati SC, Belwal M, Pargaein N (2008) Diversity of water borne conidial fungi as root endophytes in temperate forest plants of western Himalaya. Nat Sci 6:59–65Google Scholar
  139. 139.
    Suryanarayanan TS, Kumaresan V (2000) Endophytic fungi of some halophytes from an estuarine mangrove forest. Mycol Res 104:1465–1467CrossRefGoogle Scholar
  140. 140.
    Cheng Z-S, Tang W-C, Xu S-L et al (2008) First report of an endophyte (Diaporthe phaseolorum var. sojae) from Kandelia candel. J Forest Res 19:277–282CrossRefGoogle Scholar
  141. 141.
    Li J-L, Sun X, Chen L, Guo L-D (2016) Community structure of endophytic fungi of four mangrove species in southern China. Mycology 7:180–190CrossRefGoogle Scholar
  142. 142.
    Sakayaroj J, Preedanon S, Phongpaichit S et al (2012) Diversity of endophytic and marine-derived fungi associated with marine plans an animals. In: Jones EBG, Pang K-L (eds) Marine fungi and fungal-like organisms. Walter De Gruyter, Berlin, pp 291–328Google Scholar
  143. 143.
    Thorati M, Mishra JK, Kumar S (2016) Isolation, identification of endophytic Fungi from mangrove roots along the coast of south Andaman Sea, Andaman and Nicobar Islands, India. J Mar Biol Oceanogr 5.  https://doi.org/10.4172/2324-8661.1000157
  144. 144.
    Maria GL, Sridhar KR (2003) Endophytic fungal assemblage of two halophytes from west coast mangrove habitats, India. Czech Mycol 55:241–251Google Scholar
  145. 145.
    Ananda K, Sridhar KR (2002) Diversity of endophytic fungi in the roots of mangrove species on the west coast of India. Can J Microbiol 48:871–878CrossRefGoogle Scholar
  146. 146.
    Anita DD, Sridhar KR, Bhat R (2009) Diversity of fungi associated with mangrove legume Sesbania bispinosa (Jacq.) W. Wight (Fabaceae). Livest Res Rural Dev 21 Article # 67; http://www.lrrd.org/lrrd21/5/cont2105.htm
  147. 147.
    Shreelalitha SJ, Sridhar KR (2015) Endophytic fungi of wild legume Sesbania bispinosa in coastal sand dunes and mangroves of the southwest coast of India. J For Res 26:1003–1011CrossRefGoogle Scholar
  148. 148.
    Anita DD, Sridhar KR (2009) Assemblage and diversity of fungi associated with mangrove wild legume Canavalia cathartica. Trop Subtrop Agroecosys 10:225–235Google Scholar
  149. 149.
    Karamchand KS, Sridhar KR, Bhat R (2009) Diversity of fungi associated with estuarine sedge Cyperus malaccensis lam. J Agric Technol 5:111–127Google Scholar
  150. 150.
    Sridhar KR (2011) On the sedge Cyperus malaccensis in mangroves and estuaries of tropical habitats. In: Sridhar KR (ed) Aquatic plants and plant diseases. Nova Science Publishers, New York, pp 227–247Google Scholar
  151. 151.
    Vega FE, Posada F, MC A (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82CrossRefGoogle Scholar
  152. 152.
    Suryanarayanan TS, Kumaresan V, Johnson JA (1998) Foliar fungal endophytes from two species of the mangrove Rhizophora. Can J Microbiol 44:1003–1006CrossRefGoogle Scholar
  153. 153.
    Kumaresan V, Suryanarayanan TS (2001) Occurrence and distribution of endophytic fungi in a mangrove community. Mycol Res 105:1388–1391CrossRefGoogle Scholar
  154. 154.
    Beena KR, Ananda K, Sridhar KR (2000) Fungal endophytes of three sand dune plant species of west coast of India. Sydowia 52:1–9Google Scholar
  155. 155.
    Seena S, Sridhar KR (2004) Endophytic fungal diversity of 2 sand dune wild legumes from the southwest coast of India. Can J Microbiol 50:1015–1021CrossRefGoogle Scholar
  156. 156.
    Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Divers 31:19–35Google Scholar
  157. 157.
    Schulz B, Draeger S, Dela Cruz TE et al (2008) Screening strategies for obtaining novel, biologically active, fungal secondary metabolites from marine habitats. Bot Mar 51:219–234CrossRefGoogle Scholar
  158. 158.
    Ariffin S, Davis P, Ramasamy K (2011) Cytotoxic and antimicrobial activities of Malaysian marine endophytic fungi. Bot Mar 54:95–100CrossRefGoogle Scholar
  159. 159.
    Flewelling AJ, Johnson JA, Gray CA (2013b) Isolation and bioassay screening of fungal endophytes from North Atlantic marine macroalgae. Bot Mar 56:287–297CrossRefGoogle Scholar
  160. 160.
    Singh VK, Dwivedy AK, Singh A et al (2018) Fungal endophytes from seaweeds: an overview. In: Patra JK, Vishnuprasad CN, Das G (eds) Microbial biotechnology, Vol 1, applications in agriculture and environment. Springer, Singapore, pp 483–498Google Scholar
  161. 161.
    Zuccaro A, Schulz B, Mitchell JI (2003) Molecular detection of ascomycetes associated with Fucus serratus. Mycol Res 107:1451–1466CrossRefGoogle Scholar
  162. 162.
    Suryanarayanan TS, Venkatachalam A, Thirunavukkarasu N et al (2010) Internal mycobiota of marine macroalgae from the Tamilnadu coast: distribution, diversity and biotechnological potential. Bot Mar 53:457–468CrossRefGoogle Scholar
  163. 163.
    Sridhar KR (2012) Aspect and prospect of endophytic fungi. In: Sati SC, Belwal M (eds) Microbes: diversity and biotechnology. Daya Publishing House, New Delhi, pp 43–62Google Scholar
  164. 164.
    Suryanarayanan TS (2012) Fungal endosymbionts of seaweeds. In: Raghukumar C (ed) Biology of marine fungi. Springer-Verlag, Berlin, pp 53–69CrossRefGoogle Scholar
  165. 165.
    Sarasan M, Puthumana J, Job N et al (2017) Marine algicolous endophytic fungi – a promising drug resource of the era. J Microbiol Biotechnol 27:1039–1052Google Scholar
  166. 166.
    Kohlmeyer J, Kohlmeyer E (1979) Marine mycology – the higher fungi. Academic Press, New YorkGoogle Scholar
  167. 167.
    Kohlmeyer J, Volkmann-Kohlmeyer B (1998) Mycophycias, a new genus for the mycobiont of Apophlaea, Ascophyllum and Pelvetia. Syst Ascomycet 16:1–7Google Scholar
  168. 168.
    Ainsworth GC, Bisby GR, Cannon PF et al (2001) Ainsworth and Bisby’s dictionary of the fungi, 9th edn. CAB International, WallingfordGoogle Scholar
  169. 169.
    Mathan S, Subramanian V, Nagamony S, Ganapathy K (2013) Isolation of endophytic fungi from marine algae and its bioactivity. Int J Res Pharm Sci 4:45–49Google Scholar
  170. 170.
    König GM, Kehraus S, Seibert SF et al (2006) Natural products from marine organisms and their associated microbes. Chembiochem 7:229–238CrossRefGoogle Scholar
  171. 171.
    Zuccaro A, Schoch C, Spatafora J et al (2008) Detection and identification of fungi intimately associated with the brown seaweed Fucus serratus. Appl Environ Microbiol 74:931–941CrossRefGoogle Scholar
  172. 172.
    Devarajan PT, Suryanarayanan TS, Geetha V (2002) Endophytic fungi associated with the tropical seagrass Halophila ovalis (Hydrocharitaceae). Ind J Mar Sci 31:73–74Google Scholar
  173. 173.
    Venkatalachalam A, Thirunavukkarasu N, Suryanarayanan TS (2015) Distribution and diversity of endophytes in seagrasses. Fungal Ecol 13:60–65CrossRefGoogle Scholar
  174. 174.
    Raja S, Subhashini P, Thangaradjou T (2016) Differential methods of localisation of fungal endophytes in the seagrasses. Mycology 7:112–123CrossRefGoogle Scholar
  175. 175.
    Subramaniyan R, Ponnambalam S, Thirunavukkarasu T (2016) Inter species variations in cultivable endophytic fungal diversity among the tropical seagrasses. Proc Natl Acad Sci 88(3):849–857.  https://doi.org/10.1007/s40011-016-0817-9CrossRefGoogle Scholar
  176. 176.
    Alva P, McKenzie EHC, Pointing SB et al (2002) Do seagrasses harbour endophytes? In: Hyde KD (ed) Fungi in marine environment, Fungal diversity research series, vol 7. Fungal Diversity Press, Hong Kong, pp 167–178Google Scholar
  177. 177.
    Supaphon P, Phongpaichit S, Rukachaisirikul V, Sakayoroj J (2014) Diversity and antimicrobial activity of endophytic fungi isolated from the seagrass Enhalus acoroides. Ind J Geo-Mar Sci 43:785–797Google Scholar
  178. 178.
    Supaphon P, Phongpaichit S, Sakayoroj J et al (2017) Phylogenetic community structure of fungal endophytes in seagrass species. Bot Mar 60:489–501CrossRefGoogle Scholar
  179. 179.
    Reddy MS, Murali TS, Suryanarayanan TS et al (2016) Pestalotiopsis species occur as generalist endophytes in trees of Western Ghats forests of southern India. Fungal Ecol 24:70–75CrossRefGoogle Scholar
  180. 180.
    Zhou J, Li X, Huang P-W, Dai C-C (2018) Endophytism or saprophytism: decoding the lifestyle transition of the generalist fungus Phomopsis liquidambari. Microbiol Res 206:99–112CrossRefGoogle Scholar
  181. 181.
    Zuccaro A, Lahrmann U, Guldener U et al (2011) Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog 7:e1002290CrossRefGoogle Scholar
  182. 182.
    Lahrmann U, Ding Y, Banhara A et al (2013) Host-related metabolic cues affect colonization strategies of a root endophyte. Proc Natl Acad Sci 110:13965–13970CrossRefGoogle Scholar
  183. 183.
    Promputtha I, Hyde KD, McKenzie EHC et al (2010) Can leaf degrading enzymes provide evidence that endophytic fungi becoming saprobes? Fungal Divers 41:89–99CrossRefGoogle Scholar
  184. 184.
    Leroy CJ, Fischer DG, Halstead K, Pryor M, Bailey JK, Schweitzer JA (2011) A fungal endophyte slows litter decomposition in streams. Freshw Biol 56:1426–1433CrossRefGoogle Scholar
  185. 185.
    Purahong W, Hyde KD (2011) Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers 47:1–7CrossRefGoogle Scholar
  186. 186.
    Chapela IH, Boddy L (1988) Fungal colonization of attached beech branches II. Spatial and temporal organization of communities arising from latent invaders in bark and functional sapwood, under different moisture regimes. New Phytol 110:47–57CrossRefGoogle Scholar
  187. 187.
    Griffith GS, Boddy L (1990) Fungal decomposition of attached angiosperm twigs I. decay community development in ash, beech and oak. New Phytol 116:407–415CrossRefGoogle Scholar
  188. 188.
    Dowson CG, Rayner ADM, Boddy L (1988) Inoculation of mycelial cord-forming basidiomycetes into woodland soil and litter II. Resource capture and persistence. New Phytol 109:343–349CrossRefGoogle Scholar
  189. 189.
    Fukasawa Y, Osono T, Takeda H (2009) Effects of attack of saprobic fungi on twig litter decomposition by endophytic fungi. Ecol Res 24:1067–1073CrossRefGoogle Scholar
  190. 190.
    Osono T (2006) Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Can J Microbiol 52:701–716CrossRefGoogle Scholar
  191. 191.
    Addy HD, Piercey MM, Currah RS (2005) Microfungal endophytes in roots. Can J Bot 83:1–13CrossRefGoogle Scholar
  192. 192.
    Knapp DG, Kovács GM (2016) Interspecific metabolic diversity of root-colonizing endophytic fungi revealed by enzyme activity tests. FEMS Microbiol Ecol 92.  https://doi.org/10.1093/femsec/fiw190CrossRefGoogle Scholar
  193. 193.
    Raman A, Suryanarayanan TS (2017) Fungus-plant interaction influences plant-feeding insects. Fungal Ecol 29:123–132CrossRefGoogle Scholar
  194. 194.
    Fernandes GW, Oki Y, Belmiro MS, Resende FM, Junior AC, Azevedo JL (2018) Multitrophic interactions among fungal endophytes, bees, and Baccharis dracunculifolia: resin tapering for propolis production leads to endophyte infection. Arthropod Plant Interact 12(3):329–337.  https://doi.org/10.1007/s11829-018-9597-xCrossRefGoogle Scholar
  195. 195.
    Mishra Y, Singh A, Batra A, Sharma MM (2014) Understanding the biodiversity and biological applications of endophytic fungi: a review. J Microbial Biochemical Technol S8.  https://doi.org/10.4172/1948-5948.S8-004
  196. 196.
    Sieber TN (2002) Fungal root endophytes. In: Waisel Y, Eshel A, Kafkafi U (eds) The hidden half. Dekker, New York, pp 887–917CrossRefGoogle Scholar
  197. 197.
    Greenfield M, Pareja R, Ortiz V et al (2015) A novel method to scale up fungal endophyte isolation. Biocon Sci Technol 25:1208–1212CrossRefGoogle Scholar
  198. 198.
    Newell SY (1992) Estimating fungal biomass and productivity in decomposing litter. In: Carroll GC, Wicklow DT (eds) The fungal community. Marcel Dekker, New York, pp 521–561Google Scholar
  199. 199.
    Newell SY, Arsuffi TL, Fallon RD (1988) Fundamental procedures for determining ergosterol content of decaying plant material by liquid chromatography. Appl Environ Microbiol 54:1876–1879Google Scholar
  200. 200.
    Savage SD, Sall MA (1981) Radioimmunosorbent assay for Botrytis cinerea. Phytopathology 71:411–415CrossRefGoogle Scholar
  201. 201.
    Duong LM, McKenzie EHC, Lumyong S, Hyde KD (2007) Fungal succession on senescent leaves of Castanopsis diversifolia in Doi Suthep-Pui National Park Thailand. Fungal Divers 30:23–36Google Scholar
  202. 202.
    Tao G, Liu ZY, Hyde KD, Yu ZN (2008) Whole rDNA analysis reveals novel and endophytic fungi in Bletilla ochracea (Orchidaceae). Fungal Divers 33:101–122Google Scholar
  203. 203.
    Nikolcheva L, Bärlocher F (2004) Taxon-specific primers reveal unexpectedly high diversity during leaf decomposition in a stream. Mycol Prog 3:41–50CrossRefGoogle Scholar
  204. 204.
    Nikolcheva L, Bärlocher F (2005) Seasonal and substrate preferences of fungi colonizing leaves in streams: traditional versus molecular evidence. Environ Microbiol 7:270–280CrossRefGoogle Scholar
  205. 205.
    Guo LD, Hyde KD, Liew ECY (2000) Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytol 147:617–630CrossRefGoogle Scholar
  206. 206.
    Guo LD, Hyde KD, Liew ECY (2001) Detection of taxonomic placement of endophytic fungi within frond tissues of Livistona chinensis based on rDNA sequences. Mol Phylogenet Evol 19:1–13CrossRefGoogle Scholar
  207. 207.
    Seena S, Wynberg N, Bärlocher F (2008) Fungal diversity during leaf decomposition in a stream assessed through clone libraries. Fungal Divers 30:1–14Google Scholar
  208. 208.
    Polonio JC, Polli AD, Azevedo JL, Pamphile JA (2016) RNA applications for endophytic research. Genet Mol Res 15.  https://doi.org/10.4238/gmr.15038879
  209. 209.
    Maciá-Vicente JG, Shi Y-N, Cheikh-Ali Z et al (2018) Metabolomics-based chemotaxonomy of root endophytic fungi for natural products discovery. Environ Microbiol 20:1253–1270CrossRefGoogle Scholar
  210. 210.
    Gamboa MA, Laureano S, Bayman P (2002) Measuring diversity of endophytic fungi in leaf fragments: does size matter? Mycopathologia 156:41–45CrossRefGoogle Scholar
  211. 211.
    Schulz B, Guske S, Dammann U, Boyle C (1998) Endophyte-host interactions II - defining symbiosis of the endophyte-host interaction. Symbiosis 25:213–227Google Scholar
  212. 212.
    Coşoveanu A, Sabina SR, Cabrera R (2018) Fungi as endophytes in Artemisia thuscula: juxtaposed elements of diversity and phylogeny. J Fungi 4.  https://doi.org/10.3390/jof4010017
  213. 213.
    Guo LD, Hyde KD, Liew ECY (1998) A method to promote sporulation in palm endophytic fungi. Fungal Divers 1:109–113Google Scholar
  214. 214.
    Jeewon R, Wanasinghe DN, Rampadaruth S et al (2017) Nomenclatural and identification pitfalls of endophytic mycota based on DNA sequence analyses of ribosomal and protein genes phylogenetic markers: a taxonomic dead end. Mycosphere 8:1802–1817CrossRefGoogle Scholar
  215. 215.
    Kõljalg U, Nilsson RH, Abarenkov K et al (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277CrossRefGoogle Scholar
  216. 216.
    Haelewaters D, Dirks AC, Kappler LA et al (2018) A preliminary checklist of fungi at the Boston Harbor islands. Northeast Nat 25:45–76CrossRefGoogle Scholar
  217. 217.
    Doilom M, Manawasinghe IS, Jeewon R et al (2017) Can ITS sequence data identify fungal endophytes from cultures? A case study from Rhizophora apiculata. Mycosphere 8:1869–1892CrossRefGoogle Scholar
  218. 218.
    Priti V, Ramesha BT, Singh S et al (2009) How promising are endophytic fungi as alternative sources of plant secondary metabolites? Curr Sci 97:477–478Google Scholar
  219. 219.
    Gokhale M, Gupta D, Gupta U et al (2017) Patents on endophytic fungi. Recent Pat Biotechnol 11:120–140CrossRefGoogle Scholar
  220. 220.
    Deka D, Tayung K, Jha DK (2017) Harnessing fungal endophytes for plant and human health. In: Maheshwari DK (ed) Endophytes: biology and biotechnology, sustainable development and biodiversity. Springer, Cham, pp 59–98CrossRefGoogle Scholar
  221. 221.
    Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477CrossRefGoogle Scholar
  222. 222.
    Deshmukh SK, Prakash V, Rajan N (2018b) Marine fungi: a source of potential anticancer compounds. Front Microbiol 8:2536.  https://doi.org/10.3389/fmicb.2017.02536CrossRefGoogle Scholar
  223. 223.
    Sebastianes FLS, Cabedo N, El Aouad N et al (2012) 3-Hydroxypropionic acid as an antibacterial agent from endophytic fungus Diaporthe phaseolorum. Curr Microbiol 65:622–632CrossRefGoogle Scholar
  224. 224.
    Silva-Hughes AF, Carvalho CR, Wedge DE et al (2015) Diversity and antifungal activity of the endophytic fungi associated with the native medicinal cactus Opuntia humifusa (Cactaceae) from the United States. Microbiol Res 175:67–77CrossRefGoogle Scholar
  225. 225.
    Tanney JB, Mcmullin DR, Green BD et al (2016) Production of antifungal and antiinsectan metabolites by the Picea endophyte Diaporthe maritima sp nov. Fungal Biol 120:1448–1457CrossRefGoogle Scholar
  226. 226.
    Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28:1208–1228CrossRefGoogle Scholar
  227. 227.
    Uzma F, Mohan CD, Hashem A et al (2018) Endophytic fungi - alternative sources of cytotoxic compounds: a review. Front Pharmacol 9:309.  https://doi.org/10.3389/fphar.2018.00309CrossRefGoogle Scholar
  228. 228.
    Cheng M-J, Wu M-D, Yuan G-F et al (2012) Secondary metabolites and cytotoxic activities from the endophytic fungus Annulohypoxylon squamulosum. Phytochem Lett 5:219–223CrossRefGoogle Scholar
  229. 229.
    Lin T, Wang G, Zeng D, Chen H (2015) Cytotoxic metabolites from Botryotinia fuckeliana A-S-3: an endophytic fungus from Ajuga decumbens. Phytochem Lett 13:206–211CrossRefGoogle Scholar
  230. 230.
    Miller JD, Mackenzie S, Foto M et al (2002) Needles of white spruce inoculated with rugulosin-producing endophytes contain rugulosin reducing spruce budworm growth rate. Mycol Res 106:471–479CrossRefGoogle Scholar
  231. 231.
    Sumarah MW, Puniani E, Sørensen D et al (2010) Secondary metabolites from anti-insect extracts of endophytic fungi isolated from Picea rubens. Phytochemistry 71:760–765CrossRefGoogle Scholar
  232. 232.
    Sumarah MW, Miller JD (2009) Anti-insect secondary metabolites from fungal endophytes of conifer trees. Nat Prod Commun 4:1497–1504Google Scholar
  233. 233.
    Fatima N, Muhammad SA, Khan I et al (2016) Chaetomium endophytes: a repository of pharmacologically active metabolites. Acta Physiol Plant 38:1–18CrossRefGoogle Scholar
  234. 234.
    Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB et al (2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19CrossRefGoogle Scholar
  235. 235.
    Krishnamurthy YL, Naik BS (2017) Endophytic fungi bioremediation. In: Maheshwari DK, Annapurna K (eds) Endophytes: crop productivity and protection, sustainable development and biodiversity, vol 16. Springer International Publishing, Cham, pp 47–60CrossRefGoogle Scholar
  236. 236.
    Helaly SE, Thongbai B, Stadler M (2018) Diversity of biologically active secondary metabolites from endophytic and saprotrophic fungi of the ascomycete order Xylariales. Nat Prod Rep 35(9):992–1014.  https://doi.org/10.1039/c8np00010gCrossRefGoogle Scholar
  237. 237.
    McMullin DR, Green BD, Prince NC (2017) Natural products of Picea endophytes from the Acadian forest. J Nat Prod 80:1475–1483CrossRefGoogle Scholar
  238. 238.
    Deshmukh SK, Gupta MK, Prakash V, Saxena S (2018a) Endophytic fungi: a source of potential antifungal compounds. J Fungi 4.  https://doi.org/10.3390/jof4030077CrossRefGoogle Scholar
  239. 239.
    Strobel G (2006) Harnessing endophytes for industrial microbiology. Curr Opin Microbiol 9:240–244CrossRefGoogle Scholar
  240. 240.
    Wang Y, Harper KK (2018) Restoring waning production of volatile organic compounds in the endophytic fungus Hypoxylon sp. (BS15). J Fungi 4.  https://doi.org/10.3390/jof4020069CrossRefGoogle Scholar
  241. 241.
    Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Gopalan V (2012) Fungal endophytes: an untapped source of biocatalysts. Fungal Divers 54:19–30CrossRefGoogle Scholar
  242. 242.
    Suryanarayanan TS, Gopalan V, Shaanker RU et al (2017) Translating endophyte research to applications: prospects and challenges. In: De Azevedo JL, Quecine MC (eds) Diversity and benefits of microorganisms from the tropics, vol 343. Springer, Cham, p 365Google Scholar
  243. 243.
    Thirunavukkarasu N, Jahnes B, Broadstock A et al (2015) Screening marine-derived endophytic fungi for xylan-degrading enzymes. Curr Sci 109:112–120Google Scholar
  244. 244.
    Debbab A, Aly AH, Proksch P (2012) Endophytes and associated marine derived fungi-ecological and chemical perspectives. Fungal Divers 57:45–83CrossRefGoogle Scholar
  245. 245.
    Kaushik NK, Murali TS, Sahal D, Suryanarayanan TS (2014) A search for antiplasmodial metabolites among fungal endophytes of terrestrial and marine plants of southern India. Acta Parasitol 59:745–757CrossRefGoogle Scholar
  246. 246.
    Wang XN, Zhang XL, Liu L et al (2015) Genomic and transcriptomic analysis of the endophytic fungus Pestalotiopsis fici reveals its lifestyle and high potential for synthesis of natural products. BMC Genomics 16:28.  https://doi.org/10.1186/s12864-014-1190-9CrossRefGoogle Scholar
  247. 247.
    Deshmukh SK, Verekar SA, Bhave SV (2015) Endophytic fungi: a reservoir of antibacterials. Front Microbiol 5:1–43CrossRefGoogle Scholar
  248. 248.
    Zhang P, Li X, Wang B-G (2016) Secondary metabolites from the marine algal-derived endophytic fungi: chemical diversity and biological activity. Planta Med 82:832–842CrossRefGoogle Scholar
  249. 249.
    Gangadevi V, Muthumary J (2009) A novel endophytic taxol-producing fungus Chaetomella raphigera isolated from a medicinal plant Terminalia arjuna. Appl Biochem Biotechnol 158:675–684CrossRefGoogle Scholar
  250. 250.
    Zuccaro A, Mitchell JI (2005) Fungal communities of seaweeds. In: Dighton J, White JF, Oudeman P (eds) The fungal community: its organization and role in the ecosystem, 3rd edn. CRC Press, Boca Raton, pp 533–579CrossRefGoogle Scholar
  251. 251.
    Hulikere MM, Joshi CG, Ananda D, Poyya J, Nivya T (2016) Antiangiogenic, wound healing and antioxidant activity of Cladosporium cladosporioides (endophytic fungus) isolated from seaweed (Sargassum wightii). Mycology 7:203–211CrossRefGoogle Scholar
  252. 252.
    Maria GL, Sridhar KR, Raviraja NS (2005) Antimicrobial and enzyme activity of mangrove endophytic fungi of southwest coast of India. J Agric Technol 1:67–80Google Scholar
  253. 253.
    Lugtenberg JJ, Caradus JR, Johnson LJ (2016) Fungal endophytes for sustainable crop production. FEMS Microbiol Ecol 92.  https://doi.org/10.1093/femsec/fiw194CrossRefGoogle Scholar
  254. 254.
    Murphy BR, Doohan FM, Hodkinson TR (2018) From concept to commerce: developing a successful fungal endophyte inoculant for agricultural crops. J Fungi 4.  https://doi.org/10.3390/jof4010024CrossRefGoogle Scholar
  255. 255.
    Azevedo JL, Maccheroni W Jr, Pereira JO et al (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3:40–65CrossRefGoogle Scholar
  256. 256.
    Suryanarayanan TS, Rajulu G, Vidal S (2016) Biological control through fungal endophytes: gaps in knowledge hindering success. Cur Biotechnol 7:185–198Google Scholar
  257. 257.
    Vidal S, Jaber LR (2015) Entomopathogenic fungi as endophytes: plant-endophyte-herbivore interactions and prospects for use in biological control. Curr Sci 109:46–54Google Scholar
  258. 258.
    Navada KK, Sanjeev G, Kulal A (2018) Enhanced biodegradation and kinetics of anthraquinone dye by laccase from an electron beam irradiated endophytic fungus. Int Biodeterior Biodegrad 132:241–250CrossRefGoogle Scholar
  259. 259.
    Li HY, Wei DQ, Shen M, Zhou ZP (2012) Endophytes and their role in phytoremediation. Fungal Divers 54:11–18CrossRefGoogle Scholar
  260. 260.
    Singh LP, Gill SS, Tuteja N (2011b) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6:175–191CrossRefGoogle Scholar
  261. 261.
    Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:1–14CrossRefGoogle Scholar
  262. 262.
    Waqas M, Khan AL, Kamran N et al (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773CrossRefGoogle Scholar
  263. 263.
    Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee IJ (2015) Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Crit Rev Biotechnol 35:62–74CrossRefGoogle Scholar
  264. 264.
    Mejía LC, Herre EA, Sparks JP et al (2014) Pervasive effects of a dominant foliar endophytic fungus on host genetic phenotypic expression in a tropical tree. Front Microbiol 5:479.  https://doi.org/10.3389/fmicb.2014.00479CrossRefGoogle Scholar
  265. 265.
    Waqas M, Khan AL, Muhammad H et al (2015) Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J Plant Interact 10:280–287CrossRefGoogle Scholar
  266. 266.
    Yadav V, Kumar M, Deep DK et al (2010) A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. J Biol Chem 285:26532–26544CrossRefGoogle Scholar
  267. 267.
    Usuki F, Narisawa K (2007) A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a non-mycorrhizal plant, Chinese cabbage. Mycologia 99:175–184CrossRefGoogle Scholar
  268. 268.
    Nagarajan A, Thirunavukkarasu N, Suryanarayanan TS, Gummadi SN (2014) Screening and isolation of novel glutaminase free l-asparaginase from fungal endophytes. Res J Microbiol 9:163–176CrossRefGoogle Scholar
  269. 269.
    Paranetharan MS, Thirunavukkarasu N, Rajamani T et al (2018) Salt-tolerant chitin and chitosan modifying enzymes from Talaromyces stipitatus, a mangrove endophyte. Mycosphere 9:215–226CrossRefGoogle Scholar
  270. 270.
    Ling OM, Teen LP, Mujahid A et al (2016) Initial screening of mangrove endophytic fungi for antimicrobial compounds and heavy metal biosorption potential. Sains Malaysiana 45:1063–1071Google Scholar
  271. 271.
    Govindarajulu MB, Lai LB, Murali TS et al (2014) Several fungi from fire-prone forests of southern India can utilize furaldehydes. Mycol Prog 13:1049–1056Google Scholar
  272. 272.
    Verma SK, Gond SK, Mishra A et al (2016) Biofabrication of antibacterial and antioxidant silver nanoparticles (agnps) by an endophytic fungus Pestalotia sp. isolated from Madhuca Longifolia. J Nanomater Mol Nanotechnol 5.  https://doi.org/10.4172/2324-8777.1000189
  273. 273.
    Claydon N, Grove JF, Pople M (1985) Elm bark beetle boring and feeding deterrents from Phomopsis oblonga. Phytochemistry 24:937–943CrossRefGoogle Scholar
  274. 274.
    Vega FE (2008) Insect pathology and fungal endophytes. J Invertebr Pathol 98:277–279CrossRefGoogle Scholar
  275. 275.
    Ganley RJ, Brunsfeld SJ, Newcombe G (2004) A community of unknown, endophytic fungi in western white pine. Proc Natl Acad Sci 101:10107–10112CrossRefGoogle Scholar
  276. 276.
    Jones EBG (2011) Are there more marine fungi to be described? Bot Mar 54:343–354CrossRefGoogle Scholar
  277. 277.
    Blackwell M (2011) The fungi: 1, 2, 3… 5.1 million species? Am J Bot 98:426–438CrossRefGoogle Scholar
  278. 278.
    Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2-3.8 million species. Microbiol Spectr 5.  https://doi.org/10.1128/microbiolspec.FUNK-0052-2016
  279. 279.
    Selosse M-A, Strullu-Derrien C (2015) Origins of the terrestrial flora: a symbiosis with fungi? BIO Web Conference 4.  https://doi.org/10.1051/bioconf/20150400009CrossRefGoogle Scholar
  280. 280.
    Taylor TN, Remy W, Hass A, Kerp H (1995) Fossil arbuscular mycorrhizae from the early Devonian. Mycologia 87:560–573CrossRefGoogle Scholar
  281. 281.
    Strullu-Derrien C, Selosse M-A, Kenrick P, Martin FM (2018) The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phytol.  https://doi.org/10.1111/nph.15076CrossRefGoogle Scholar
  282. 282.
    Suryanarayanan TS, Thirunavukkarasu N (2017) Endolichenic fungi: the lesser known fungal associates of lichens. Mycology 8:189–196CrossRefGoogle Scholar
  283. 283.
    Suryanarayanan TS (2013) Endophyte research: going beyond isolation and metabolite documentation. Fungal Ecol 6:561–568CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BiosciencesMangalore UniversityMangaloreIndia

Personalised recommendations