Advertisement

Endophytism in Zingiberaceae: Elucidation of Beneficial Impact

  • Avijit Chakraborty
  • Subrata Kundu
  • Swapna Mukherjee
  • Biswajit GhoshEmail author
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Endophytism is a unique relationship between plant and endosymbiotic microorganism wherein the microbes colonize within plant tissues without producing any disease etiology. Various groups of endophytes isolated from different medicinal plants are extremely significant in this respect for their ability to synthesize novel bioactive compounds as well as for the modulation of productivity. Endophytes also play various crucial roles in growth, biotic and abiotic stress tolerance, and adaptation. With the implementation of “state-of-the-art” technologies in molecular biology, the specific identification of associated microorganism as well as their relationship with corresponding host plants has been explicitly deciphered in recent years. Zingiberaceae, generally recognized as ginger family, comprises of rhizomatous medicinal and aromatic plants and is characterized by the presence of plethora of bioactive compounds along with volatile oils. They are widely cultivated in tropical and subtropical regions of Asia. This chapter aims to explore the endophytic relationship between medicinally important species of Zingiberaceae and the corresponding microbes, for improved production of imminent natural products and their role in protection of host plants from pathogens as well as in stress tolerance, thus helping the plants, indirectly, to grow better.

Keywords

Endophytism Zingiberaceae Plant natural products Antimicrobial activity Plant growth-promoting bacteria Medicinal plants 

Notes

Acknowledgments

The authors are thankful to Swami Kamalasthananda, Principal, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata (India), for the facilities provided during the present study and acknowledge DST-FIST program for infrastructural facilities.

References

  1. 1.
    Bary A (1866) Morphologie und Physiologie Pilze, Flechten, und myxomyceten, Hofmeister’s Handbook of Physiological Botany. Engelmann, LeipzigCrossRefGoogle Scholar
  2. 2.
    Galippe V (1887) Note sur la pr é sence de micro-organismes dans les tissus végétaux. C R Hebd Sci Mem Soc Biol 39:410–416Google Scholar
  3. 3.
    Di Vestea A (1888) De l’absence des microbes dans les tissus végétaux. Annales de l’lnstitut Pasteur 670e671Google Scholar
  4. 4.
    Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678.  https://doi.org/10.1016/j.soilbio.2009.11.024CrossRefGoogle Scholar
  5. 5.
    Bacon CW, White JFJ (2000) Physiological adaptations in the evolution of endophytism in the Clavicipitaceae. In: Bacon CW, White JFJ (eds) Microbial endophytes. Marcel Dekker Inc, New York, pp 237–263Google Scholar
  6. 6.
    Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837CrossRefGoogle Scholar
  7. 7.
    Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471CrossRefGoogle Scholar
  8. 8.
    Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9CrossRefGoogle Scholar
  9. 9.
    Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914CrossRefGoogle Scholar
  10. 10.
    Coombs JT, Franco CMM (2003) Isolation and identification of Actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608CrossRefGoogle Scholar
  11. 11.
    Wong KC, Ong KS, Lim CL (1992) Composition of the essential oil of rhizomes of Kaempferia galanga L. Flavour Fragr J 7:263–266CrossRefGoogle Scholar
  12. 12.
    Pandji C, Grimm C, Wray V, Witte L, Proksch P (1993) Insecticidal constituents from four species of Zingiberaceae. Phytochemistry 34:415–419CrossRefGoogle Scholar
  13. 13.
    Orasa P, Yenhatai N, Pittaya T, Taylor W (1994) Cyclohexane oxide derivatives and diterpenes from the genus Kaempferia. ASOMPS, VIII, MalaysiaGoogle Scholar
  14. 14.
    Parwat U, Tuntiwachwuttikul P, Taylor WC, Engelhardt LM, Skelton BW, White AH (1993) Diterpenes from Kaempferia species. Phytochemistry 32:991–997CrossRefGoogle Scholar
  15. 15.
    Singh UP, Srivsastava BP, Singh KP, Pandey VB (1992) Antifungal activity of steroid saponins and sapogenins from Avena sativa and Costus speciosus. Nat Sao Paulo 17:71–77Google Scholar
  16. 16.
    Husain A (1992) Dictionary of Indian medicinal plants. Central Institute of Medicinal and Aromatic Plants, LucknowGoogle Scholar
  17. 17.
    Warrier PK, Nambiar VPK, Ramankutty C (1993–1995) Indian medicinal plants, vol 1–5. Orient Longman Ltd. MadrasGoogle Scholar
  18. 18.
    Chunekar KC (1982) Bhavaprakashanighantu of Sri Bhavamishra. Commentary, Varanasi (in Hindi)Google Scholar
  19. 19.
    Gurib-Fakim A (2006) Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Asp Med 27:1–93CrossRefGoogle Scholar
  20. 20.
    Denyer CV, Jackson P, Loakes DM, Ellis MR, Young AB (1994) Isolation of antirhinoviral sesquiterpenes from ginger (Zingiber officinale). J Nat Prod 57:658–662CrossRefGoogle Scholar
  21. 21.
    Xiuzhen C, Dejian Q, Hexing D (1992) Studies on the constituents of the essential oil of Zingiber officinale. Guihaia 12:129–132Google Scholar
  22. 22.
    Kirtikar KR, Basu BD (1987) Indian medicinal plants, vol vol I-IV. International Book Distributors, DehradunGoogle Scholar
  23. 23.
    Sukari MA, Neoh BK, Lajis NH, Ee GCL, Rahmani M, Ahmad FH, Yusof UK (2004) Chemical constituents of Kaempferia angustifolia (Zingiberaceae). Orient J Chem 20:451–456Google Scholar
  24. 24.
    Yeap YSY, Kassim NK, Ng RC, Ee GCL, Saiful Yazan L, Musa KH (2017) Antioxidant properties of ginger (Kaempferia angustifolia Rosc.) and its chemical markers. Int J Food Prop 20:1158–1172CrossRefGoogle Scholar
  25. 25.
    Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmüller R (2005) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. J Biol Chem 280:26241–26247CrossRefGoogle Scholar
  26. 26.
    Mathys J, De Cremer K, Timmermans P, Van Kerkhove S, Lievens B, Vanhaecke M, Cammue B, De Coninck B (2012) Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Front Plant Sci 3:108CrossRefGoogle Scholar
  27. 27.
    Straub D, Rothballer M, Hartmann A, Ludewig U (2013) The genome of the endophytic bacterium H. frisingense GSF30T identifies diverse strategies in the Herbaspirillum genus to interact with plants. Front Microbiol 4:168CrossRefGoogle Scholar
  28. 28.
    Gundel PE, Martínez-Ghersa MA, Omacini M, Cuyeu R, Pagano E, Ríos R, Ghersa CM (2012) Mutualism effectiveness and vertical transmission of symbiotic fungal endophytes in response to host genetic background. Evol Appl 5:838–849CrossRefGoogle Scholar
  29. 29.
    Qawasmeh A, Obied HK, Raman A, Wheatley W (2012) Influence of fungal endophyte infection on phenolic content and antioxidant activity in grasses: interaction between Lolium perenne and different strains of Neotyphodium lolii. J Agric Food Chem 60:3381–3388CrossRefGoogle Scholar
  30. 30.
    Boller T (1995) Chemoperception of microbial signals in plant cells. Annu Rev Plant Biol 46:189–214CrossRefGoogle Scholar
  31. 31.
    Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B (2006) Reactive oxygen species play a role in regulating a fungus–perennial ryegrass mutualistic interaction. Plant Cell 18:1052–1066CrossRefGoogle Scholar
  32. 32.
    White JF Jr, Torres MS (2010) Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol Plant 138:440–446CrossRefGoogle Scholar
  33. 33.
    Singh D, Rathod V, Ninganagouda S, Herimath J, Kulkarni P (2013) Biosynthesis of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and its antibacterial activity against pathogenic gram negative bacteria. J Pharm Res 7:448–453Google Scholar
  34. 34.
    Conn VM, Walker AR, Franco CMM (2008) Endophytic Actinobacteria induce defense pathways in Arabidopsis thaliana. Mol Plant-Microbe Interact 21:208–218CrossRefGoogle Scholar
  35. 35.
    Nair DN, Padmavathy S (2014) Impact of endophytic microorganisms on plants, environment and humans. Sci World J 2014:e250693CrossRefGoogle Scholar
  36. 36.
    Xin G, Zhang G, Kang JW, Staley JT, Doty SL (2009) A diazotrophic, indole-3-acetic acid-producing endophyte from wild cottonwood. Biol Fertil Soils 45:669–674CrossRefGoogle Scholar
  37. 37.
    Joseph B, Mini Priya R (2011) Bioactive compounds from endophytes and their potential in pharmaceutical effect: a review. Am J Biochem Mol Biol 1:291–309CrossRefGoogle Scholar
  38. 38.
    Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dun field KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750CrossRefGoogle Scholar
  39. 39.
    Nair DN, Padmavathy S (2014) Impact of endophytic microorganisms on plants, environment and humans. Sci World J 2014:1–11CrossRefGoogle Scholar
  40. 40.
    Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459CrossRefGoogle Scholar
  41. 41.
    Pimentel MR, Molina G, Dionisio AP, Maróstica MR, Pastore GM (2011) Use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int 2011:1–11.  https://doi.org/10.4061/2011/576286CrossRefGoogle Scholar
  42. 42.
    Schulz B, Boyle C, Draeger S, Rommert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004CrossRefGoogle Scholar
  43. 43.
    Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544CrossRefGoogle Scholar
  44. 44.
    Prado S, Buisson D, Ndoye I, Vallet M, Nay B (2013) One-step enantioselective synthesis of (4S)-isosclerone through biotransformation of juglone by an endophytic fungus. Tetrahedron Lett 54:1189–1191CrossRefGoogle Scholar
  45. 45.
    Müller MM, Valjakka R, Suokko A, Hantula J (2001) Diversity of endophytic fungi of single Norway spruce needles and their role as pioneer decomposers. Mol Ecol 10:1801–1810CrossRefGoogle Scholar
  46. 46.
    Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:505–526CrossRefGoogle Scholar
  47. 47.
    Fouda AH, El-Din Hassan S, Eid AM, El-Din Ewais E (2015) Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss). Ann Agric Sci 60:95–104Google Scholar
  48. 48.
    Rai R, Dash PK, Prasanna BM, Singh A (2007) Endophytic bacterial flora in the stem tissue of a tropical maize (Zea mays L.) genotype: isolation, identification and enumeration. World J Microbiol Biotechnol 23:853–858CrossRefGoogle Scholar
  49. 49.
    Hata K, Sone K (2008) Isolation of endophytes from leaves of Neolitsea sericea in broadleaf and conifer stands. Mycoscience 49:229–232CrossRefGoogle Scholar
  50. 50.
    Kumar A, Singh R, Yadav A, Giri DD, Singh PK, Pandey KD (2016) Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotech 6:60.  https://doi.org/10.1007/s13205-016-0393-yCrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Septiana E, Sukarno N, Simanjuntak P (2017) Endophytic fungi associated with turmeric (Curcuma longa L.) can inhibit histamine-forming bacteria in fish. HAYATI J Biosci 24:46–52.  https://doi.org/10.1016/j.hjb.2017.05.004CrossRefGoogle Scholar
  52. 52.
    Ginting RCB, Sukarno N, Widyastuti U, Darusman LK, Kanaya S (2013) Diversity of endophytic fungi from red ginger (Zingiber officinale Rosc.) plant and their inhibitory effect to Fusarium oxysporum plant pathogenic fungi. HAYATI J Biosci 20:127–137.  https://doi.org/10.4308/hjb.20.3.127CrossRefGoogle Scholar
  53. 53.
    Anisha C, Radhakrishnan EK (2017) Metabolite analysis of endophytic fungi from cultivars of Zingiber officinale Rosc. identifies myriad of bioactive compounds including tyrosol. 3 Biotech 7:1–10.  https://doi.org/10.1007/s13205-017-0768-8CrossRefGoogle Scholar
  54. 54.
    Taechowisan T, Lu C, Shen Y, Lumyong S (2005) Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity. Microbiology 151:1691–1695CrossRefGoogle Scholar
  55. 55.
    Taechowisan T, Wanbanjob A, Tuntiwachwuttikul P, Taylor WC (2006) Identification of Streptomyces sp. Tc022, an endophyte in Alpinia galanga, and the isolation of actinomycin D. Ann Microbiol 56:113–117CrossRefGoogle Scholar
  56. 56.
    Taechowisan T, Chuaychot N, Chanaphat S, Wanbanjob A, Shen Y (2008) Biological activity of chemical constituents isolated from Streptomyces sp. Tc052, and endophyte in Alpinia galanga. Int J Pharm 4:95–101CrossRefGoogle Scholar
  57. 57.
    Thongchai T, Srisakul C, Wanwikar R, Waya SP (2012) Antifungal activity of 3- methylcarbazoles from Streptomyces sp. LJK109; an endophyte in Alpinia galanga. J Appl Pharm Sci 02:124–128Google Scholar
  58. 58.
    Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225CrossRefGoogle Scholar
  59. 59.
    Kumar A, Singh M, Singh PP, Singh SK, Singh PK, Pandey KD (2016) Isolation of plant growth promoting rhizobacteria and their impact on growth and curcumin content in Curcuma longa L. Biocatal Agric Biotechnol 8:1–7CrossRefGoogle Scholar
  60. 60.
    Vinayarani G, Prakash HS (2018) Growth promoting rhizospheric and endophytic bacteria from Curcuma longa L. as biocontrol agents against rhizome rot and leaf blight diseases. Plant Pathol J 34:218PubMedPubMedCentralGoogle Scholar
  61. 61.
    Aswathy AJ, Jasim B, Jyothis M, Radhakrishnan EK (2013) Identification of two strains of Paenibacillus sp. as indole 3 acetic acid-producing rhizome-associated endophytic bacteria from Curcuma longa. 3 Biotech 3:219–224CrossRefGoogle Scholar
  62. 62.
    Jasim B, Joseph AA, John CJ, Mathew J, Radhakrishnan EK (2014) Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech 4:197–204CrossRefGoogle Scholar
  63. 63.
    Chen T, Chen Z, Ma GH, Du BH, Shen B, Ding YQ, Xu K (2014) Diversity and potential application of endophytic bacteria in ginger. Genet Mol Res 13:4918–4931CrossRefGoogle Scholar
  64. 64.
    Zhang Y, Kang X, Liu H, Liu Y, Li Y, Yu X, Chen Q (2018) Endophytes isolated from ginger rhizome exhibit growth promoting potential for Zea mays. Arch Agron Soil Sci 64:1302–1314CrossRefGoogle Scholar
  65. 65.
    Anisha C, Mathew J, Radhakrishnan EK (2013) Plant growth promoting properties of endophytic Klebsiella sp. isolated from Curcuma longa. Int J Biol Pharm Allied Sci 2:593–601Google Scholar
  66. 66.
    Aguado-Santacruz GA, Moreno-Gomez B, Jimenez-Francisco B, Garcia-Moya E, Preciado-Ortiz RE (2012) Impact of the microbial siderophores and phytosiderophores on the iron assimilation by plants: a synthesis. Rev Fitotec Mex 35:9–21Google Scholar
  67. 67.
    Bellenger JP, Wichard T, Kustka AB, Kraepiel AML (2008) Uptake of molybdenum and vanadium by a nitrogen-fixing soil bacterium using siderophores. Nat Geosci 1:243CrossRefGoogle Scholar
  68. 68.
    Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr-and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286CrossRefGoogle Scholar
  69. 69.
    Berg G, Hallmann J (2006) Control of plant pathogenic fungi with bacterial endophytes. In: Microbial root endophytes. Springer, Berlin/Heidelberg, pp 53–69CrossRefGoogle Scholar
  70. 70.
    Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. CRC Crit Rev Plant Sci 19:1–30.  https://doi.org/10.1080/07352680091139169CrossRefGoogle Scholar
  71. 71.
    Van Loon LC, Bakker PAHM, van der Heijdt WHW, Wendehenne D, Pugin A (2008) Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance. Mol Plant-Microbe Interact 21:1609–1621CrossRefGoogle Scholar
  72. 72.
    Vinayarani G, Prakash HS (2018) Fungal endophytes of turmeric (Curcuma longa L.) and their biocontrol potential against pathogens Pythium aphanidermatum and Rhizoctonia solani. World J Microbiol Biotechnol 34:1–17.  https://doi.org/10.1007/s11274-018-2431-xCrossRefGoogle Scholar
  73. 73.
    Pandey A, Trivedi P, Kumar B, Palni LMS (2006) Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (BO) isolated from a Sub-Alpine location in Himalaya. Curr Microbiol 53:102–107CrossRefGoogle Scholar
  74. 74.
    Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152CrossRefGoogle Scholar
  75. 75.
    Bussaban B, Lumyong S, Lumyong P, McKenzie EH, Hyde KD (2001) Endophytic fungi from Amomum siamense. Can J Microbiol 47:943–948.  https://doi.org/10.1139/w01-098CrossRefPubMedGoogle Scholar
  76. 76.
    Blaha D, Prigent-Combaret C, Mirza MS, Moënne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470CrossRefGoogle Scholar
  77. 77.
    Alizadeh O, Sharafzadeh S, Firoozabadi AH (2012) The effect of plant growth promoting rhizobacteria in saline condition. Asian J Plant Sci 11:1–8CrossRefGoogle Scholar
  78. 78.
    Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339CrossRefGoogle Scholar
  79. 79.
    Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Meta-bolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37.  https://doi.org/10.1016/j.copbio.2013.09.012CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502.  https://doi.org/10.1128/MMBR.67.4.491-502.2003CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Verma VC, Kharwar RN, Strobel GA (2009) Chemical and functional diversity of natural products from plant associated endophytic fungi. Nat Prod Commun 4:1511–1532PubMedGoogle Scholar
  82. 82.
    Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686.  https://doi.org/10.1017/S095375620500273XCrossRefPubMedGoogle Scholar
  83. 83.
    Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771.  https://doi.org/10.1039/b609472bCrossRefPubMedGoogle Scholar
  84. 84.
    Hastuti US, Asna PMA, Rahmawati D (2018) Histologic observation, identification, and secondary metabolites analysis of endophytic fungi isolated from a medicinal plant, Hedychium accuminatum Roscoe. AIP Conf Proc 2002:0200701-8.  https://doi.org/10.1063/1.5050166CrossRefGoogle Scholar
  85. 85.
    Taechowisan T, Chaisaeng S, Phutdhawong WS (2017) Antibacterial, antioxidant and anticancer activities of biphenyls from Streptomyces sp. BO-07: an endophyte in Boesenbergia rotunda (L.) Mansf A. Food Agric Immunol 28:1330–1346.  https://doi.org/10.1080/09540105.2017.1339669CrossRefGoogle Scholar
  86. 86.
    Taechowisan T, Chanaphat S, Ruensamran W, Phutdhawong WS (2014) Antibacterial activity of new flavonoids from Streptomyces sp. BT01; an endophyte in Boesenbergia rotunda (L.) Mansf. J Appl Pharm Sci 4:8–13.  https://doi.org/10.7324/JAPS.2014.40402CrossRefGoogle Scholar
  87. 87.
    Alshaibani MM, Jalil J, Sidik NM, Edrada-Ebel R, Zin NM (2016) Isolation and characterization of cyclo-(tryptophanyl-prolyl) and chloramphenicol from Streptomyces sp. SUK 25 with antimethicillin-resistant Staphylococcus aureus activity. Drug Des Devel Ther 10:1817–1827.  https://doi.org/10.2147/DDDT.S101212CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Taechowisan T, Chanaphat S, Ruensamran W, Phutdhawong WS (2012) Antifungal activity of 3-methylcarbazoles from Streptomyces sp. LJK109; an endophyte in Alpinia galangal. J Appl Pharm Sci 2:124Google Scholar
  89. 89.
    Sabu R, Soumya KR, Radhakrishnan EK (2017) Endophytic Nocardiopsis sp. from Zingiber officinale with both antiphytopathogenic mechanisms and antibiofilm activity against clinical isolates. 3 Biotech 7:115CrossRefGoogle Scholar
  90. 90.
    Gupta A, Mahajan S, Sharma R (2015) Evaluation of antimicrobial activity of Curcuma longa rhizome extract against Staphylococcus aureus. Biotech Rep 6:51–55CrossRefGoogle Scholar
  91. 91.
    Nandini MLN, Rasool SN, Ruth CH, Gopal K (2018) Antagonistic activity of endophytic microorganisms against rhizome rot disease of turmeric. J Pharmacogn Phytochem 7:3736–3741Google Scholar
  92. 92.
    Shubin L, Juan H, RenChao Z, ShiRu X, YuanXiao J (2014) Fungal endophytes of Alpinia officinarum rhizomes: insights on diversity and variation across growth years, growth sites, and the inner active chemical concentration. PLoS One 9:1–21.  https://doi.org/10.1371/journal.pone.0115289CrossRefGoogle Scholar
  93. 93.
    Uzma F, Konappa NM, Chowdappa S (2016) Diversity and extracellular enzyme activities of fungal endophytes isolated from medicinal plants of Western Ghats, Karnataka. Egypt J Basic Appl Sci 3:335–342.  https://doi.org/10.1016/j.ejbas.2016.08.007CrossRefGoogle Scholar
  94. 94.
    Deshmukh AG, Patil VB, Kale SK, Dudhare MS (2018) Isolation, characterization and identification of endophytes from Curcuma longa. Int J Curr Microbiol App Sci 6:1040–1050Google Scholar
  95. 95.
    Sulistiyani TR, Lisdiyanti P (2016) Diversity of endophytic bacteria associated with (Curcuma heyneana) and their potency for nitrogen fixation. Widyariset 2:106–117.  https://doi.org/10.14203/widyariset.2.2.2016.106–117CrossRefGoogle Scholar
  96. 96.
    Praptiwi KDP, fathoni A, wulansari D, ilyas M, agusta A (2016) Evaluation of antibacterial and antioxidant activity of extracts of endophytic fungi isolated from Indonesian Zingiberaceous plants. Nusant Biosci 8:306–311.  https://doi.org/10.13057/nusbiosci/n080228CrossRefGoogle Scholar
  97. 97.
    Hammerschmidt L, Ola A, Mueller WE, Lin W, Mándi A, Kurtán T et al (2015) Two new metabolites from the endophytic fungus Xylaria sp. isolated from the medicinal plant Curcuma xanthorrhiza. Tetrahedron Lett 56:1193–1197.  https://doi.org/10.1016/j.tetlet.2014.12.120CrossRefGoogle Scholar
  98. 98.
    Niemhom N, Chutrakul C, Suriyachadkun C, Thawai C (2017) Nonomuraea stahlianthi sp. nov., an endophytic Actinomycete isolated from the stem of Stahlianthus campanulatus. Int J Syst Evol Microbiol 67:2879–2884.  https://doi.org/10.1099/ijsem.0.002045CrossRefPubMedGoogle Scholar
  99. 99.
    Nongkhlaw FM, Joshi SR (2015) Investigation on the bioactivity of culturable endophytic and epiphytic bacteria associated with ethnomedicinal plants. J Infect Dev Ctries 9:954–961CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Avijit Chakraborty
    • 1
  • Subrata Kundu
    • 1
  • Swapna Mukherjee
    • 2
  • Biswajit Ghosh
    • 1
    Email author
  1. 1.Plant Biotechnology Laboratory, Department of BotanyRamakrishna Mission Vivekananda Centenary CollegeKolkataIndia
  2. 2.Department of MicrobiologyDinabandhu Andrews CollegeKolkataIndia

Personalised recommendations