Advertisement

Sugar and Polyphenolic Diversity in Floral Nectar of Cherry

  • Milica Fotirić AkšićEmail author
  • Slavica Čolić
  • Mekjell Meland
  • Maja Natić
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Cherries (Prunus avium L. and Prunus cerasus L.) are economically important fruit species in the temperate region. Both are entomophilous fruit species, thus need pollinators to give high yields. Since cherry’s flower is easy-to-reach, bees and other pollinators can smoothly collect nectar as a reward for doing transfer of pollen to receptive stigma. Nectar in cherry is usually attractive for insects, especially to honey bee (Apis melifera) who is the most common pollinator. Nectar is predominantly an aqueous solution of sugars, proteins, and free amino acids among which sugars are the most dominant. Trace amounts of lipids, organic acids, iridoid glycosides, minerals, vitamins, alkaloids, plant hormones, non-protein amino, terpenoids, glucosinolates, and cardenolides can be found in nectar too. Cherry flower may secrete nectar for 2–4 days and, depending on the cultivar, produces up to 10 mg nectar with sugar concentration from 28% to 55%. Detailed chemical analysis of cherry nectar described in this chapter is focused on sugar and phenolic profile in sour cherry. The most abounded sugars in cherry nectar was fructose, glucose, and sucrose, while arabinose, rhamnose, maltose, isomaltose, trehalose, gentiobiose, turanose, panose, melezitose, maltotriose, isomaltotriose, as well as the sugar alcohols glycerol, erythritol, arabitol, galactitol, and mannitol are present as minor constituents. Regarding polyphenolics, rutin was the most abundant phenolic compound followed by naringenin and chrysin. Cherry cultivars showed different chemical composition of nectar which implies that its content is cultivar dependent.

Keywords

Prunus avium L. Prunus cerasus L. Flower LC/MS HPAEC Polyphenolic profile Sugars 

References

  1. 1.
    Webster AD (1996) The taxonomic classification of sweet and sour cherries and a brief history of their cultivation. In: Webster AD, Looney NE (eds) Cherries: crop physiology, production and uses, 1st edn. CAB International, WallingfordGoogle Scholar
  2. 2.
    Faust N, Surányi D (2010) Origin and dissemination of cherry. In: Janick J (ed) Horticultural reviews, vol 19. Wiley, New YorkGoogle Scholar
  3. 3.
    Rehder A (1974) Manual of cultivated treesand shurbs. Hardy in North America. Macmillan, New YorkGoogle Scholar
  4. 4.
    Hedrick UP (1915) The history of cultivated cherries. In: Hedrick UP, Howe GH, Taylor OM, Tubergen CB, Wellington R (eds) The cherries of New York, 1st edn. JB Lyon Company, New YorkGoogle Scholar
  5. 5.
    De Candolle A (1886) Origin of cultivated plants. Hafner, New YorkCrossRefGoogle Scholar
  6. 6.
    FAOSTAT (2018) FAO Statistical data base. http://www.fao.org/faostat/en/#data/QC. Accessed 1 Sept 2018
  7. 7.
    McCune LM, Kubota C, Stendell-Hollis NR, Thomson CA (2011) Cherries and health: a review. Crit Rev Food Sci Nutr 51:1–12.  https://doi.org/10.1080/10408390903001719CrossRefPubMedGoogle Scholar
  8. 8.
    Bujdosó G, Hrotkó K (2017) Cherry production. In: Quero-Garcia J, Iezzoni A, Pulawska J, Lang G (eds) Cherries: botany, production and uses, 1st edn. CAB International, WallingfordGoogle Scholar
  9. 9.
    Mahmoodi M, Arzani K, Bouzari N (2008) Pollination, pollen tube growth and determination of the best pollinizer for sweet cherry (Prunus avium L.) cv. Red rezaeieh. Acta Hortic 769:207–210.  https://doi.org/10.17660/ActaHortic.2008.769.28CrossRefGoogle Scholar
  10. 10.
    Raj H, Mattu VK (2014) Diversity and distribution of insect pollinators on various temperate fruit crops in Himachal Himalaya, India. Int J Sci Nat 5:626–631. http://scienceandnature.org/IJSN_Vol5(4)D2014/IJSN-VOL5(3)14-7.pdf. Accessed 3 Sept 2018Google Scholar
  11. 11.
    Free JB (1993) Insect pollination of crops, 2nd edn. Academic, LondonGoogle Scholar
  12. 12.
    Benedek P (1996) Insect pollination of fruit crops. In: Nyeki J, Soltesz M (eds) Floral biology of temperate zone fruit trees and small fruits, 1st edn. Akademiai Kiado, BudapestGoogle Scholar
  13. 13.
    Soltesz M (1996) Requirements for successful fruit set in orchards. In: Nyeki J, Soltesz M (eds) Floral biology of temperate zone fruit trees and small fruits, 1st edn. Akademiai Kiado, BudapestGoogle Scholar
  14. 14.
    Delaplane KS, Mayer DR (2000) Crop pollination by bees. CABI Publishing, WallingfordCrossRefGoogle Scholar
  15. 15.
    Stern RA, Eisikowitch D, Dag A (2001) Sequential introduction of honeybee colonies and doubling their density increase cross-pollination, fruit set and yield in ‘Red Delicious’ apple. J Hortic Sci Biotechnol 76:17–23.  https://doi.org/10.1080/14620316.2001.11511320CrossRefGoogle Scholar
  16. 16.
    Stern RA, Goldway M, Zisovich AH, Shafir S, Dag A (2004) Sequential intro-duction of honeybee colonies increases cross-pollination, fruit set and yield of Spadona pear (Pyrus communis). J Hortic Sci Biotechnol 79:652–658.  https://doi.org/10.1080/14620316.2004.11511821CrossRefGoogle Scholar
  17. 17.
    Güler Y, Dikmen F (2013) Potential bee pollinators of sweet cherry in inclement weather conditions. J Entomol Res Soc 15:9–19. http://www.entomol.org/journal/index.php?journal=JERS&page=article&op=view&path%5B%5D=519&path%5B%5D=290. Accessed 1 Sept 2018Google Scholar
  18. 18.
    Holzschuh A, Dudenhoffer JH, Tscharntke T (2012) Landscapes with wild bee habitats enhance pollination, fruit set and yield of sweet cherry. Biol Conserv 15:101–107.  https://doi.org/10.1016/j.biocon.2012.04.032CrossRefGoogle Scholar
  19. 19.
    Nores MJ, López HA, Rudall PJ, Anton AM, Galetto L (2013) Four o’clock pollination biology: nectaries, nectar and flower visitors in Nyctaginaceae from southern South America. Bot J Linn Soc 171:551–567.  https://doi.org/10.1111/boj.12009CrossRefGoogle Scholar
  20. 20.
    Baker HG, Baker I (1983) Floral nectar sugar constituents in relation to pollinator type. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology, 1st edn. Van Nostrand Reinhold, New YorkGoogle Scholar
  21. 21.
    Vissche PK, Seeley TD (1982) Foraging strategy of honeybee colonies in a temperate deciduous forest. Ecology 63:1790–1801.  https://doi.org/10.2307/1940121CrossRefGoogle Scholar
  22. 22.
    Petanidou T (2005) Sugars in Mediterranean floral nectars: an ecological and evolutionary approach. J Chem Ecol 31:1065–1088.  https://doi.org/10.1007/s10886-005-4248-yCrossRefPubMedGoogle Scholar
  23. 23.
    Pacini E, Nepi M (2007) Nectar production and presentation. In: Nicolson S, Nepi M, Pacini E (eds) Nectaries and nectar, 1st edn. Springer, DordrechtGoogle Scholar
  24. 24.
    Mačukanović M, Duletić S, Jocić G (2004) Nectar production in three melliferous species of Lamiaceae in natural and experimental conditions. Acta Vet Brno 54:475–487. https://scindeks-clanci.ceon.rs/data/pdf/0567-8315/2004/0567-83150406475M.pdf. Accessed 10 Sept 2018CrossRefGoogle Scholar
  25. 25.
    Kaczorowski RL, Gardener MC, Holtsford TP (2005) Nectar traits in Nicotiana section Alatae (Solanaceae) in relation to floral traits, pollinators, and mating system. Am J Bot 92: 1270–1283.  https://doi.org/10.3732/ajb.92.8.1270CrossRefPubMedGoogle Scholar
  26. 26.
    Rodríguez-Riaño T, Ortega-Olivencia A, López J, Pérez-Bote JL, Navarro-Pérez ML (2014) Main sugar composition of floral nectar in three species groups of Scrophularia (Scrophulariaceae) with different principal pollinators. Plant Biol 16:1075–1086.  https://doi.org/10.1111/plb.12159CrossRefPubMedGoogle Scholar
  27. 27.
    González A, Rowe CL, Weeks PJ, Whittle D, Gilbert FS, Barnard CJ (1995) Flower choice by honey bees (Apis mellifera L.): sex-phase of flowers and preferences among nectar and pollen foragers. Oecologia 101:258–264.  https://doi.org/10.1007/BF00317292CrossRefPubMedGoogle Scholar
  28. 28.
    Nicolson SW (2007) Nectar consumers. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and nectar, 1st edn. Springer, DordrechtCrossRefGoogle Scholar
  29. 29.
    Adler LS (2000) The ecological significance of toxic nectar. Oikos 91:409–420.  https://doi.org/10.1034/j.1600-0706.2000.910301.xCrossRefGoogle Scholar
  30. 30.
    Raguso RA (2004) Why are some floral nectars scented. Ecology 85:1486–1494.  https://doi.org/10.1890/03-0410CrossRefGoogle Scholar
  31. 31.
    Thorp RW, Briggs DL, Esters JR, Erickson EH (1975) Nectar fluorescence under ultraviolet irradiation. Science 189:476–478.  https://doi.org/10.1126/science.189.4201.476CrossRefPubMedGoogle Scholar
  32. 32.
    Baker HG, Baker I, Hodges SA (1998) Sugar composition of nectar and fruits consumed by birds and bats in the tropics and subtropics. Biotropica 30:559–586.  https://doi.org/10.1111/j.1744-7429.1998.tb00097.xCrossRefGoogle Scholar
  33. 33.
    Nicolson SW, Fleming PA (2003) Nectar as food for birds: the physiological consequences of drinking dilute sugar solutions. Plant Syst Evol 238:139–153.  https://doi.org/10.1007/s00606-003-0276-7CrossRefGoogle Scholar
  34. 34.
    Petanidou T, van Laere A, Ellis WN, Smets E (2006) What shapes amino acid and sugar composition in Mediterranean floral nectars. Oikos 115:155–169.  https://doi.org/10.1111/j.2006.0030-1299.14487.xCrossRefGoogle Scholar
  35. 35.
    Reinhard J, Srinivasan MV, Guez D, Zhang WS (2004) Floral scents induce recall of navigational and visual memories in honey bees. J Exp Biol 207:4371–4381.  https://doi.org/10.1242/jeb.01306CrossRefPubMedGoogle Scholar
  36. 36.
    Rathcke BJ (1992) Nectar distributions, pollinator behavior, and plant reproductive success. In: Hunter MD, Ohgushi T, Price PW (eds) Effects of resource distribution on animal–plant interactions, 1st edn. Academic, New YorkGoogle Scholar
  37. 37.
    Cushnie Canto A, Herrera CM, García IM, Pérez R, Vaz M (2011) Intraplant variation in nectar traits in Helleborus foetidus (Ranunculaceae) as related to floral phase, environmental conditions and pollinator exposure. Flora 206:668–675.  https://doi.org/10.1016/j.flora.2011.02.003CrossRefGoogle Scholar
  38. 38.
    Herrera CM, Pérez R, Alonso C (2006) Extreme intra-plant variation in nectar sugar composition in an insect-pollinated perennial herb. Am J Bot 93:575–581.  https://doi.org/10.3732/ajb.93.4.575CrossRefPubMedGoogle Scholar
  39. 39.
    Canto A, Pérez R, Medrano M, Castellanos MC, Herrera CM (2007) Intra-plant variation in nectar sugar composition in two Aguilegia species (Ranunculaceae): contrasting patterns under field and glasshouse conditions. Ann Bot 99:653–660.  https://doi.org/10.1093/aob/mcl291CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rodrigues LC, Morales MR, Fernandes AJB, Ortiz JM (2008) Morphological characterization of sweet and sour cherry cultivars in a germplasm bank at Portugal. Genet Resour Crop Evol 55:593–601.  https://doi.org/10.1007/s10722-007-9263-0CrossRefGoogle Scholar
  41. 41.
    Bukovics P, Szabó LG, Orosz-Kovács Z, Farkas Á (2006) Nectar composition in ‘Újfehértói Fürtös’and ‘Pándy 48’ sour cherry cultivars. Acta Bot Hung 48:271–277.  https://doi.org/10.1556/ABot.48.2006.3-4.3CrossRefGoogle Scholar
  42. 42.
    Orosz-Kovács Zs (1991) A cseresznye és a meggy nektáriumstruktúrája és nektárprodukciója. Dissertation, University of PécsGoogle Scholar
  43. 43.
    Orosz-Kovács Z, Gulyás S, Halászi Z (1989) Periodicity of nectar production of sour cherry cv. Pándy Acta Bot Hungar 35:237–244. https://www.researchgate.net/profile/Agnes_Farkas/publication/228856362_Nectar_production_for_the_Hungarian_honey_industry/links/0912f50ebe8aa6ab10000000/Nectar-production-for-the-Hungarian-honey-industry.pdf. Accessed 4 Sept 2018Google Scholar
  44. 44.
    Orosz Kovács Z, Gulyás S, Kaposvári F (1992) Pollination biology of sour cherry varieties of protogyn blossoming. Acta Biol Szeged 38:47–55. http://acta.bibl.u-szeged.hu/22180/1/biologica_038_047-055.pdf. Accessed 4 Sept 2018Google Scholar
  45. 45.
    Farkas A, Zajacz E (2007) Nectar production for the Hungarian honey industry. Eur J Plant Sci Biotechnol 1:125–151. http://www.globalsciencebooks.info/Online/GSBOnline/images/0712/EJPSB_1(2)/EJPSB_1(2)125-151o.pdf. Accessed 3 Sept 2018Google Scholar
  46. 46.
    Bukovics P, Orosz-Kovács Z, Szabó LG, Farkas Á, Bubán T (2003) Composition of floral nectar and its seasonal variability in sour cherry cultivars. Acta Bot Hungar 45:259–271.  https://doi.org/10.1556/ABot.45.2003.3-4.2CrossRefGoogle Scholar
  47. 47.
    Orosz-Kovács Z, Szabó LG, Bubán T, Farkas Á, Bukovics P (2000) Sugar composition of floral nectar in sour cherry cultivars. Int J Hortic Sci 6:109–114. https://www.cabdirect.org/cabdirect/abstract/20000314329Google Scholar
  48. 48.
    Zhang FP, Yang QY, Zhang SB (2016) Dual effect of phenolic nectar on three floral visitors of Elsholtzia rugulosa (Lamiaceae) in SW China. PLoS One 11:e0154381.  https://doi.org/10.1371/journal.pone.0154381CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Nicolson SW, Thornburg RW (2007) Nectar chemistry. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and nectar, 1st edn. Springer, DordrechtCrossRefGoogle Scholar
  50. 50.
    Nepi M, Selvi F, Pacini E (2010) Variation in nectar-sugar profile of Anchusa and allied genera (Boraginaceae). Bot J Linn Soc 162:616–627.  https://doi.org/10.1111/j.1095-8339.2010.01036.xCrossRefGoogle Scholar
  51. 51.
    Temeles EJ, Kress WJ (2003) Adaptation in a plant – hummingbird association. Science 300:630–633.  https://doi.org/10.1126/science.1080003CrossRefPubMedGoogle Scholar
  52. 52.
    Gonzalez-Teuber M, Heil M (2009) Nectar chemistry is tailored for both attraction of mutualists and protection from exploiters. Plant Signal Behav 4:809–813. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2802787/pdf/psb0409_0809.pdf. Accessed 20 Aug 2018CrossRefGoogle Scholar
  53. 53.
    Liu F, Chen J, Chai J, Zhang X, Bai X, He D, Roubik DW (2007) Adaptive functions of defensive plant phenolics and a non-linear bee response to nectar components. Funct Ecol 21:96–100.  https://doi.org/10.1111/j.1365-2435.2006.01200.xCrossRefGoogle Scholar
  54. 54.
    Manson JS, Otterstatter MC, Thomson JD (2010) Consumption of a nectar alkaloid reduces pathogen load in bumble bees. Oecologia 162:81–89.  https://doi.org/10.1007/s00442-009-1431-9CrossRefPubMedGoogle Scholar
  55. 55.
    Cushnie TP, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356.  https://doi.org/10.1016/j.ijantimicag.2005.09.002CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Taiz L, Zeiger E (1991) Plant physiology. The Bejamin/Cummings Publishing, Redwood CityGoogle Scholar
  57. 57.
    Radhika V, Kost C, Boland W, Heil M (2010) The role of jasmonate signalling in floral nectar secretion. PLoS One 5:e9265.  https://doi.org/10.1371/journal.pone.0009265CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697.  https://doi.org/10.1093/aob/mcm079CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Knudsen JT, Tollsten L, Bergström G (1993) Floral scents, a checklist of volatile compounds isolated by headspace techniques. Phytochemistry 33:253–280.  https://doi.org/10.1016/0031-9422(93)85502-ICrossRefGoogle Scholar
  60. 60.
    Nepi M, von Aderkas P, Wagner R, Mugnaini S, Coulter A, Ettore P (2009) Nectar and pollination drops: how different are they? Ann Bot 104:205–219.  https://doi.org/10.1093/aob/mcp124CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    von Frisch K (1950) Bees. Cornell University Press, IthacaGoogle Scholar
  62. 62.
    Ruhlmann JM, Kram BW, Carter CJ (2010) Cell wall invertase 4 is required for nectar production in Arabidopsis. J Exp Bot 61:395–404.  https://doi.org/10.1093/jxb/erp309CrossRefPubMedGoogle Scholar
  63. 63.
    Nicolson SW, Nepi M, Pacini E (2007) Nectaries and nectar. Springer, New YorkCrossRefGoogle Scholar
  64. 64.
    Guffa B, Nedić N, Dabić Zagorac DČ, Tosti TB, Gašić UM, Natić MM, Fotirić Akšić MM (2017) Characterization of sugar and polyphenolic diversity in floral nectar of different ‘Oblačinska’ sour cherry clones. Chem Biodivers 14:e1700061.  https://doi.org/10.1002/cbdv.201700061CrossRefGoogle Scholar
  65. 65.
    De La Barrera E, Nobel PS (2004) Nectar: properties, floral aspects, and speculations on origin. Trends Plant Sci 9:65–69.  https://doi.org/10.1016/j.tplants.2003.12.003CrossRefPubMedGoogle Scholar
  66. 66.
    Heil M (2011) Nectar: generation, regulation and ecological functions. Trends Plant Sci 16:191–200.  https://doi.org/10.1016/j.tplants.2011.01.003CrossRefPubMedGoogle Scholar
  67. 67.
    Bertazzini M, Forlani G (2016) Intraspecific variability of floral nectar volume and composition in rapeseed (Brassica napus L. var. oleifera). Front Plant Sci 7:art. 288.  https://doi.org/10.3389/fpls.2016.00288CrossRefGoogle Scholar
  68. 68.
    Frey-Wyssling A (1955) The phloem supply to the nectaries. Acta Bot Neerl 4:358–369.  https://doi.org/10.1111/j.1438-8677.1955.tb00337.xCrossRefGoogle Scholar
  69. 69.
    Galetto L, Bernardello G (2005) Nectar. In: Dafni A, Kevan P, Husband BC (eds) Practical pollination biology, 1st edn. Enviroquest, CambridgeGoogle Scholar
  70. 70.
    Antoñ S, Denisow B (2014) Nectar production and carbohydrate composition across floral sexual phases: contrasting patterns in two protandrous Aconitum species (Delphinieae, Ranunculaceae). Flora 209:464–470.  https://doi.org/10.1016/j.flora.2014.07.001CrossRefGoogle Scholar
  71. 71.
    Lu NN, Li XH, Li L, Zhao ZG (2015) Variation of nectar production in relation to plant characteristics in protandrous Aconitum gymnandrum. J Plant Ecol 8:122–129.  https://doi.org/10.1093/jpe/rtv020CrossRefGoogle Scholar
  72. 72.
    Petanidou T, van Laere AJ, Smets E (1996) Change in floral nectar components from fresh to senescent flowers of Capparisspinosa (Capparidaceae), a nocturnally flowering Mediterranean shrub. Plant Syst Evol 199:79–92.  https://doi.org/10.1007/BF00985919CrossRefGoogle Scholar
  73. 73.
    Meier U, Graf H, Hack H, Heß M, Kennel W, Klose R, Mappes D, Seipp D, Stauß R, Streif J, van den Boom T (1994) Phänologische Entwick-lungsstadien des Kernobstes (Malus domestica Borkh. und Pyrus communis L.), des Steinobstes (Prunus-Arten), der Johannisbeere (Ribes-Arten) und der Erdbeere (Fragaria x ananassa Duch.). Nachrichtenbl Dtsch Pflanzenschutzdienstes (Braunschweig, Ger.) 46:141–153. https://ojs.openagrar.de/index.php/NachrichtenblattDPD/issue/view/1354. Accessed 25 Aug 2018Google Scholar
  74. 74.
    Chalcoff VR, Aizen MA, Galetto L (2006) Nectar concentration and composition of 26 species from the temperate forest of South America. Ann Bot 97:413–421.  https://doi.org/10.1093/aob/mcj043CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Heil M, Rattke J, Boland W (2005) Postsecretory hydrolysis of nectar sucrose and specialization in ant/plant mutualism. Science 308:560–563.  https://doi.org/10.1126/science.1107536CrossRefPubMedGoogle Scholar
  76. 76.
    Perret M, Chautems A, Spichiger R, Peixoto M, Savolainen V (2001) Nectar sugar composition in relation to pollination syndromes in Sinningieae (Gesneriaceae). Ann Bot 87:267–273.  https://doi.org/10.1006/anbo.2000.1331CrossRefGoogle Scholar
  77. 77.
    Lammers TG, Freeman CE (1986) Ornithophily among the Hawaiian Lobelioideae (Campanulaceae): evidence from floral nectar sugar composition. Am J Bot 73:1613–1619.  https://doi.org/10.2307/2443929CrossRefGoogle Scholar
  78. 78.
    Elisens WJ, Freeman CE (1988) Floral nectar sugar composition and pollinator type among New World genera in tribe Antirrhineae (Scrophulariaceae). Am J Bot 75:971–978.  https://doi.org/10.2307/2443763CrossRefGoogle Scholar
  79. 79.
    Stiles FG, Freeman CE (1993) Patterns in floral nectar characteristics of some bird-visited plant species from Costa Rica. Biotropica 25:191–205.  https://doi.org/10.2307/2389183CrossRefGoogle Scholar
  80. 80.
    Galetto L, Bernardello G, Sosa CA (1998) The relationship between floral nectar composition and visitors in Lycium (Solanaceae) from Argentina and Chile: what does it reflect. Flora 193:303–314.  https://doi.org/10.1016/S0367-2530(17)30851-4CrossRefGoogle Scholar
  81. 81.
    Roy R, Schmitt AJ, Thomas JB, Carter CJ (2017) Review: nectar biology: from molecules to ecosystems. Plant Sci 262:148–164.  https://doi.org/10.1016/j.plantsci.2017.04.012CrossRefPubMedGoogle Scholar
  82. 82.
    Baker H, Baker I (1983) A brief historical review of chemistry of floral nectar. In: Bentley BL (ed) The biology of nectaries, 1st edn. Columbia University Press, New YorkGoogle Scholar
  83. 83.
    Barker RJ (1977) Some carbohydrates found in pollen and pollen substitutes are toxic to honey bees. J Nutr 107:1859–1862.  https://doi.org/10.1093/jn/107.10.1859CrossRefPubMedGoogle Scholar
  84. 84.
    Sols A, Cadenas E, Alvarado F (1960) Enzymatic basis of mannose toxicity in honey bees. Science 131:297–298.  https://doi.org/10.1126/science.131.3396.297CrossRefPubMedGoogle Scholar
  85. 85.
    Liu D, Ni J, Wu R, Teng Y (2013) High temperature alters sorbitol metabolism in Pyrus pyrifolia leaves and fruit flesh during late stages of fruit enlargement. J Am Soc Hortic Sci 138:443–451. http://journal.ashspublications.org/content/138/6/443.full.pdf+html. Accessed 27 Aug 2018Google Scholar
  86. 86.
    Skrzyński J, Leja M, Gonkiewicz A, Banach P (2016) Cultivar effect on the sweet cherry antioxidant and some chemical attributes. Folia Hortic 28:95–102.  https://doi.org/10.1515/fhort-2016-0011CrossRefGoogle Scholar
  87. 87.
    Escobar Gutierrez AJ, Gaudillere JP (1996) Distribution, metabolisme et roˆle du sorbitol chez les plantes superieures. Synth Agronomie 16:281–298.  https://doi.org/10.1051/agro:19960502CrossRefGoogle Scholar
  88. 88.
    Tinti JM, Nofre C (2001) Responses of the ant Lasiusniger to various compounds perceived as sweet in humans: a structure-activity relationship study. Chem Senses 26:231–237.  https://doi.org/10.1093/chemse/26.3.231CrossRefPubMedGoogle Scholar
  89. 89.
    Rowley FA (1976) The sugars of some common Philippine nectars. J Apic Res 15:19–22.  https://doi.org/10.1080/00218839.1976.11099828CrossRefGoogle Scholar
  90. 90.
    Lu Y, Sharkey TD (2006) The importance of maltose in transitory starch breakdown. Plant Cell Environ 29:353–366.  https://doi.org/10.1111/j.1365-3040.2005.01480.xCrossRefPubMedGoogle Scholar
  91. 91.
    Ritte G, Raschke K (2003) Metabolite export of isolated guard cell chloroplasts of Vicia faba. New Phytol 159:195–202.  https://doi.org/10.1046/j.1469-8137.2003.00789.xCrossRefGoogle Scholar
  92. 92.
    Nayik GA, Dar BN, Nanda V (2016) Physico-chemical, rheological and sugar profile of different unifloral honeys from Kashmir valley of India. Arab J Chem (in press).  https://doi.org/10.1016/j.arabjc.2015.08.017. https://ac.els-cdn.com/S1878535215002579/1-s2.0-S1878535215002579-main.pdf?
  93. 93.
    Forcone A, Galetto L, Bernardello L (1997) Floral nectar chemical composition of some species from Patagonia. Biochem Syst Ecol 25(5):95–402.  https://doi.org/10.1016/S0305-1978(97)00030-6CrossRefGoogle Scholar
  94. 94.
    Gil MI, Ferreres F, Ortiz A, Subra E, Tomás-Barberán FA (1995) Plant phenolic metabolites and floral origin of rosemary honey. J Agric Food Chem 43:2833–2838.  https://doi.org/10.1021/jf00059a012CrossRefGoogle Scholar
  95. 95.
    Ferreres F, Andrade P, Gil MI, Tomás-Barberán FA (1996) Floral nectar phenolics as biochemical markers for the botanical origin of heather honey. Z Lebensmittelunters Forsch 202:40–44.  https://doi.org/10.1007/BF01229682CrossRefGoogle Scholar
  96. 96.
    Thompson WR, Meinwald J, Aneshansley D, Eisner T (1972) Flavonols: pigments responsible for ultraviolet absorption in nectar guide of flower. Science 177:528–530.  https://doi.org/10.1126/science.177.4048.528CrossRefPubMedGoogle Scholar
  97. 97.
    Pollastri S, Tattini M (2011) Flavonols: old compounds for old roles. Ann Bot 108:1225–1233.  https://doi.org/10.1093/aob/mcr234CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    De Boer G, Hanson FE (1987) Feeding responses to solanaceous allelochemicals by larvae of the tobacco hornworm Manduca sexta. Entomol Exp Appl 45:123–131.  https://doi.org/10.1111/j.1570-7458.1987.tb01071.xCrossRefGoogle Scholar
  99. 99.
    Pimentel RB, da Costa CA, Alburquerque PM, Junior SD (2013) Antimicrobial activity and rutin identification of honey produced by the stingless bee Melipona compressipes manaosensis and commercial honey. BMC Complement Altern Med 13:151.  https://doi.org/10.1186/1472-6882-13-151CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Vandeputte OM, Kiendrebeogo M, Rasamiravaka T, Stévigny C, Duez P, Rajaonson S, Diallo B, Mol A, Baucher M, El Jazir M (2011) The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology 157:2120–2132.  https://doi.org/10.1099/mic.0.049338-0CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Ataç U, Kadriye S, Özant Ö, Dilşah Ç, Ömür G, Bekir S (2005) Chemical compositions and antimicrobial activities of four different Anatolian propolis samples. Microbiol Res 160:189–195.  https://doi.org/10.1016/j.micres.2005.01.002CrossRefGoogle Scholar
  102. 102.
    Levy EC, Ishaaya I, Gurevitz E, Cooper R, Lavie D (1974) Isolation and identification of host compounds eliciting attraction and bite stimuli in the fruit tree bark beetle, Scolytus mediterraneus. J Agric Food Chem 22:376–379.  https://doi.org/10.1021/jf60193a042CrossRefGoogle Scholar
  103. 103.
    Verónica CS, de los Ángeles FM, Claudio RG, Fernanda SM (2014) Analysis of phenolic compounds in onion nectar by miniaturized off-line solid phase extraction-capillary zone electrophoresis. Anal Methods 6:4878–4884.  https://doi.org/10.1039/c4ay00240gCrossRefGoogle Scholar
  104. 104.
    Rakonjac V, Fotirić Akšić M, Nikolić D, Milatović D, Čolić S (2010) Morphological characterization of ‘Oblačinska’ sour cherry by multivariate analysis. Sci Hortic 125:679–684.  https://doi.org/10.1016/j.scienta.2010.05.029CrossRefGoogle Scholar
  105. 105.
    Negri P, Maggi MD, Ramirez L, De Feudis L, Szwarski N, Quintana S, Eguaras MJ, Lamattina L (2015) Abscisic acid enhances the immune response in Apis mellifera and contributes to the colony fitness. Apidologie 46:542–557.  https://doi.org/10.1007/s13592-014-0345-7CrossRefGoogle Scholar
  106. 106.
    Ruggiero B, Koiwa H, Manabe Y, Quist TM, Inan G, Saccardo F, Joly RJ, Hasegawa PM, Bressan RA, Maggio A (2004) Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis. Plant Physiol 136:3134–3147.  https://doi.org/10.1104/pp.104.046169CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Ramirez L, Negri P, Sturla L, Guida L, Vigliarolo T, Maggi M, Eguaras M, Zocchi E, Lamattina L (2017) Abscisic acid enhances cold tolerance in honeybee larvae. Proc Biol Sci 284:pii: 20162140.  https://doi.org/10.1098/rspb.2016.2140CrossRefGoogle Scholar
  108. 108.
    Deiana V, Tuberoso C, Satta A, Pinna C, Camarda I, Spano N, Ciulu M, Floris I (2015) Relationship between markers of botanical origin in nectar and honey of the strawberry tree (Arbutus unedo) throughout flowering periods in different years and in different geographical areas. J Apic Res 54:342–349.  https://doi.org/10.1080/00218839.2016.1164540CrossRefGoogle Scholar
  109. 109.
    Lipp J (1990) Detection and origin of abscisic acid and proline in honey. Apidologie 21:249–259. https://eurekamag.com/research/002/067/002067209.php. Accessed 20 Aug 2018CrossRefGoogle Scholar
  110. 110.
    Harborne JB (1976) Functions of flavonoids in plants. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments, vol 1, 1st edn. Academic, New YorkGoogle Scholar
  111. 111.
    Sasaki K, Takahashi T (2002) A flavonoid from Brassica rapa flower as the UV-absorbing nectar guide. Phytochemistry 61:339–343. https://ezproxy.nb.rs:2129/S0031942202002376/1-s2.0-S0031942202002376-main.pdf?_tid=c123f00f-7101-4a7d-ab86-917b930f9b73&acdnat=1538599302_398f9345813081e30f8b77d3f21a1d86. Accessed 25 Aug 2018CrossRefGoogle Scholar
  112. 112.
    Hansen DM, Olesen JM, Mione T, Johnson SD, Müller CB (2007) Coloured nectar: distribution, ecology, and evolution of an enigmatic floral trait. Biol Rev Camb Philos Soc 82:83–111.  https://doi.org/10.1111/j.1469-185X.2006.00005.xCrossRefPubMedGoogle Scholar
  113. 113.
    Zhang FP, Larson-Rabin Z, Li DZ, Wang H (2012) Colored nectar as an honest signal in plant-animal interactions. Plant Signal Behav 7:811–812.  https://doi.org/10.4161/psb.20645CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Alrgei HOV, Dabić D, Natić M, Rakonjac V, Milojković-Opsenica D, Tešić Ž, Fotirić Akšić M (2016) Chemical profile of major taste- and health-related compounds of Oblačinska sour cherry. J Sci Food Agric 96:1241–1251.  https://doi.org/10.1002/jsfa.7212CrossRefPubMedGoogle Scholar
  115. 115.
    Brandenburg A, dell’Olivo A, Bshary R, Kuhlemeier C (2009) The sweetest thing: advances in nectar research. Curr Opin Plant Biol 12:486–490.  https://doi.org/10.1016/j.pbi.2009.04.002CrossRefPubMedGoogle Scholar
  116. 116.
    Fotirić Akšić M, Tosti T, Nedić N, Marković M, Ličina V, Milojković-Opsenica D, Tešić Ž (2015) Influence of frost damage on the sugars and sugar alcohol composition in quince (Cydoniaoblonga Mill.) floral nectar. Acta Physiol Plant 37:1701.  https://doi.org/10.1007/s11738-014-1701-yCrossRefGoogle Scholar
  117. 117.
    Santos A, Ribeiro RS, Cavalheiro J, Coreiro V, Lousada JL (2006) Initial growth and fruiting of ‘Summit’ sweetcherry (Prunus avium) on five rootstocks. N Z J Crop Hortic Sci 34:269–277.  https://doi.org/10.1080/01140671.2006.9514416CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Milica Fotirić Akšić
    • 1
    Email author
  • Slavica Čolić
    • 2
  • Mekjell Meland
    • 3
  • Maja Natić
    • 4
  1. 1.Department of Pomology, Faculty of AgricultureUniversity of BelgradeBelgradeSerbia
  2. 2.Institute for Science Application in AgricultureBelgradeSerbia
  3. 3.Norwegian Institute of Bioeconomy ResearchAasNorway
  4. 4.Department of Analytical Chemistry, Faculty of ChemistryUniversity of BelgradeBelgradeSerbia

Personalised recommendations