Advertisement

Molecular Interactions as Drivers of Changes in Marine Ecosystems

  • Fanny Defranoux
  • Ernesto MolloEmail author
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Among the factors affecting community dynamics, bioactive natural products act as mediators of key biological processes, including competition, predation, defense, and reproduction. Their chemical diversity thus critically contributes to the stability of ecological systems. Accordingly, research in chemical ecology provides useful information for a better understanding of ecosystem functioning and biodiversity. On the other hand, the potential of bioactive molecules produced by invasive species to become disruptive to native communities has been recently emphasized in the literature, raising novel and urgent questions about the interactions of invasive metabolites with macromolecular counterparts of ecological and ecotoxicological interest. Relevant issues strongly emerged in the Mediterranean Sea where the green alga Caulerpa cylindracea and the seagrass Halophila stipulacea, both exotic macrophytes containing peculiar bioactive compounds, have become invasive. In particular, the study of these two species has led to the production of a recent literature focusing on “alien biomolecules” and their potential impact on the native community. The present article summarizes the obtained results by giving special emphasis to the urgent need for individuating molecular interactions that are likely to exert cascade effects at all levels of biological organization, from molecules to ecosystems.

Keywords

Biological invasions Alien biomolecules Caulerpa cylindracea Halophila stipulacea Mediterranean Sea 

References

  1. 1.
    Slade EM, Kirwan L, Bell T, Philipson CD, Lewis OT, Roslin T (2017) The importance of species identity and interactions for multifunctionality depends on how ecosystem functions are valued. Ecology 98:2626–2639.  https://doi.org/10.1002/ecy.1954CrossRefPubMedGoogle Scholar
  2. 2.
    Meinwald J, Eisner T (2008) Chemical ecology in retrospect and prospect. Proc Natl Acad Sci 105:4539–4540.  https://doi.org/10.1073/pnas.0800649105CrossRefPubMedGoogle Scholar
  3. 3.
    Zimmer RK, Zimmer CA (2008) Dynamic scaling in chemical ecology. J Chem Ecol 34:822–836.  https://doi.org/10.1007/s10886-008-9486-3CrossRefPubMedGoogle Scholar
  4. 4.
    Eisner T, Meinwald J (1995) Chemical ecology. Proc Natl Acad Sci 92:1.  https://doi.org/10.1073/pnas.92.1.1CrossRefPubMedGoogle Scholar
  5. 5.
    Peñuelas J, Llusià J (2004) Plant VOC emissions: making use of the unavoidable. Trends Ecol Evol 19:402–404.  https://doi.org/10.1016/j.tree.2004.06.002CrossRefPubMedGoogle Scholar
  6. 6.
    Penuelas J, Llusia J, Estiarte M (1995) Terpenoids: a plant language. Trends Ecol Evol 10:289.  https://doi.org/10.1016/0169-5347(95)90025-XCrossRefPubMedGoogle Scholar
  7. 7.
    Giordano G, Carbone M, Ciavatta ML, Silvano E, Gavagnin M, Garson MJ, Cheney KL, Mudianta IW, Russo GF, Villani G, Magliozzi L, Polese G, Zidorn C, Cutignano A, Fontana A, Ghiselin MT, Mollo E (2017) Volatile secondary metabolites as aposematic olfactory signals and defensive weapons in aquatic environments. Proc Natl Acad Sci 114:3451–3456.  https://doi.org/10.1073/pnas.1614655114CrossRefPubMedGoogle Scholar
  8. 8.
    Huey RB, Gilchrist GW, Hendry AP (2005) Using invasive species to study evolution: case studies with Drosophila and Salmon. In: Sax DF, Stachowicz JJ, Gaines SD (eds) Species invasions: insights into ecology, evolution and biogeography. Sinauer Associates, Inc, Sunderland, pp 139–164. 01375Google Scholar
  9. 9.
    Mollo E, Cimino G, Ghiselin MT (2015) Alien biomolecules: a new challenge for natural product chemists. Biol Invasions 17:941–950.  https://doi.org/10.1007/s10530-014-0835-6CrossRefGoogle Scholar
  10. 10.
    Mollo E, Gavagnin M, Carbone M, Castelluccio F, Pozone F, Roussis V, Templado J, Ghiselin MT, Cimino G (2008) Factors promoting marine invasions: a chemoecological approach. Proc Natl Acad Sci U S A 105:4582–4586.  https://doi.org/10.1073/pnas.0709355105CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Boudouresque CF, Verlaque M (2002) Biological pollution in the Mediterranean Sea: invasive versus introduced macrophytes. Mar Pollut Bull 44:32–38.  https://doi.org/10.1016/S0025-326X(01)00150-3CrossRefPubMedGoogle Scholar
  12. 12.
    Máximo P, Ferreira L, Branco P, Lima P, Lourenço A (2018) Secondary metabolites and biological activity of invasive macroalgae of Southern Europe. Mar Drugs 16:265.  https://doi.org/10.3390/md16080265CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Raniello R, Mollo E, Lorenti M, Gavagnin M, Buia MC (2007) Phytotoxic activity of caulerpenyne from the Mediterranean invasive variety of Caulerpa racemosa: a potential allelochemical. Biol Invasions 9:361–368.  https://doi.org/10.1007/s10530-006-9044-2CrossRefGoogle Scholar
  14. 14.
    Ruíz JM, Boudouresque CF, Enríquez S (2009) Mediterranean seagrasses. Bot Mar 52.  https://doi.org/10.1515/BOT.2009.058
  15. 15.
    Amico V, Oriente G, Piattelli M, Tringali C, Fattorusso E, Magno S, Mayol L (1978) Caulerpenyne, an unusual sequiterpenoid from the green alga Caulerpa prolifera. Tetrahedron Lett 19:3593–3596.  https://doi.org/10.1016/S0040-4039(01)95003-8CrossRefGoogle Scholar
  16. 16.
    Sfecci E, Le Quemener C, Lacour T, Massi L, Amade P, Audo G, Mehiri M (2017) Caulerpenyne from Caulerpa taxifolia: a comparative study between CPC and classical chromatographic techniques. Phytochem Lett 20:406–409.  https://doi.org/10.1016/j.phytol.2017.01.014CrossRefGoogle Scholar
  17. 17.
    Brunelli M, Garcia-Gil M, Mozzachiodi R, Scuri MRR, Traina G, Zaccardi ML (2000) Neurotoxic effects of caulerpenyne. Prog Neuro-Psychopharmacology Biol Psychiatry.  https://doi.org/10.1016/S0278-5846(00)00112-3CrossRefGoogle Scholar
  18. 18.
    Commeiras L, Bourdron J, Douillard S, Barbier P, Vanthuyne N, Peyrot V, Parrain J-L (2006) Total synthesis of terpenoids isolated from caulerpale algae and their inhibition­ of tubulin assembly. Synthesis-Stuttgart 2006:166–181.  https://doi.org/10.1055/s-2005-921760CrossRefGoogle Scholar
  19. 19.
    Cavas L, Baskin Y, Yurdakoc K, Olgun N (2006) Antiproliferative and newly attributed apoptotic activities from an invasive marine alga: Caulerpa racemosa var. cylindracea. J Exp Mar Biol Ecol 339:111–119.  https://doi.org/10.1016/j.jembe.2006.07.019CrossRefGoogle Scholar
  20. 20.
    Barbier P, Guise S, Huitorel P, Amade P, Pesando D, Briand C, Peyrot V (2001) Caulerpenyne from Caulerpa taxifolia has an antiproliferative activity on tumor cell line SK-N-SH and modifies the microtubule network. Life Sci 70:415–429.  https://doi.org/10.1016/S0024-3205(01)01396-0CrossRefPubMedGoogle Scholar
  21. 21.
    Cengiz S, Cavas L, Yurdakoc K (2010) Alpha-amylase inhibition kinetics by caulerpenyne. Mediterr Mar Sci 11:93–103.  https://doi.org/10.12681/mms.93CrossRefGoogle Scholar
  22. 22.
    Cengiz S, Cavas L, Yurdakoc K, Pohnert G (2011) The sesquiterpene caulerpenyne from Caulerpa spp. is a lipoxygenase inhibitor. Mar Biotechnol.  https://doi.org/10.1007/s10126-010-9303-1CrossRefGoogle Scholar
  23. 23.
    Richter P, Schubert G, Schaible AM, Cavas L, Werz O, Pohnert G (2014) Caulerpenyne and related bis-enol esters are novel-type inhibitors of human 5-lipoxygenase. Chem Med Chem 9.  https://doi.org/10.1002/cmdc.201402065
  24. 24.
    Cengiz S, Cavas L, Yurdakoc K, Aksu S (2012) Inhibition of xanthine oxidase by Caulerpenyne from Caulerpa prolifera. Turk J Biochem 37:445–451.  https://doi.org/10.5505/tjb.2012.98698CrossRefGoogle Scholar
  25. 25.
    Uchimara M, Bonfils C, Sandeaux R, Terawaki T, Amade P, Larroque C (1999) Caulerpenyne, the major terpene extracted from the alga Caulerpa taxifolia, is an inhibitor of cytochrome P450 dependent activities. In: 11th international conference on cytochrome P450, SendaiGoogle Scholar
  26. 26.
    Marić P, Ahel M, Senta I, Terzić S, Mikac I, Žuljević A, Smital T (2017) Effect-directed analysis reveals inhibition of zebrafish uptake transporter Oatp1d1 by caulerpenyne, a major secondary metabolite from the invasive marine alga Caulerpa taxifolia. Chemosphere 174:643–654.  https://doi.org/10.1016/j.chemosphere.2017.02.007CrossRefPubMedGoogle Scholar
  27. 27.
    Popovic M, Zaja R, Fent K, Smital T (2013) Molecular characterization of zebrafish Oatp1d1 (Slco1d1), a novel organic anion-transporting polypeptide. J Biol Chem 288:33894–33911.  https://doi.org/10.1074/jbc.M113.518506CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Aguilar-Santos G (1970) Caulerpin, a new red pigment from green algae of the genus Caulerpa. J Chem Soc C 842–843.  https://doi.org/10.1039/J39700000842
  29. 29.
    Maiti BC, Thomson RH (1977) Caulerpin. In: Faulkner DJ, Fenical WH (eds) Marine natural products chemistry. Springer, Boston, pp 159–163CrossRefGoogle Scholar
  30. 30.
    Cavalcante-Silva L, de Carvalho Correia A, Barbosa-Filho J, da Silva B, de Oliveira Santos B, de Lira D, Sousa J, de Miranda G, de Andrade Cavalcante F, Alexandre-Moreira M (2013) Spasmolytic effect of Caulerpine involves blockade of Ca2+ influx on guinea pig ileum. Mar Drugs 11:1553–1564.  https://doi.org/10.3390/md11051553CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kamal C, Sethuraman MG (2012) Caulerpin – a bis-indole alkaloid as a green inhibitor for the corrosion of mild steel in 1 M HCl solution from the marine alga Caulerpa racemosa. Ind Eng Chem Res 51:10399–10407.  https://doi.org/10.1021/ie3010379CrossRefGoogle Scholar
  32. 32.
    Macedo NRPV, Ribeiro MS, Villaça RC, Ferreira W, Pinto AM, Teixeira VL, Cirne-Santos C, Paixão ICNP, Giongo V (2012) Caulerpin as a potential antiviral drug against herpes simplex virus type 1. Rev Bras 22:861–867.  https://doi.org/10.1590/S0102-695X2012005000072CrossRefGoogle Scholar
  33. 33.
    De Souza ÉT, Pereira de Lira D, Cavalcanti de Queiroz A, Costa da Silva DJ, Bezerra de Aquino A, Campessato Mella E, Prates Lorenzo V, De Miranda GE, De Araújo-Júnior JX, De Oliveira Chaves MC, Barbosa-Filho JM, Filgueiras de Athayde-Filho P, De Oliveira Santos BV, Alexandre-Moreira MS (2009) The antinociceptive and anti-inflammatory activities of caulerpin, a bisindole alkaloid isolated from seaweeds of the genus Caulerpa. Mar Drugs 7:689–704.  https://doi.org/10.3390/md7040689CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Alarif WM, Abou-Elnaga ZS, Ayyad S-EN, Al-lihaibi SS (2010) Insecticidal metabolites from the green alga Caulerpa racemosa. Clean Soil Air Water 38:548–557.  https://doi.org/10.1002/clen.201000033CrossRefGoogle Scholar
  35. 35.
    Raub MF, Cardellina JH, Schwede JG (1987) The green algal pigment caulerpin as a plant growth regulator. Phytochemistry 26:619–620.  https://doi.org/10.1016/S0031-9422(00)84752-4CrossRefGoogle Scholar
  36. 36.
    Liu Y, Morgan JB, Coothankandaswamy V, Liu R, Jekabsons MB, Mahdi F, Nagle DG, Zhou Y-D (2009) The Caulerpa pigment caulerpin inhibits HIF-1 activation and mitochondrial respiration. J Nat Prod 72:2104–2109.  https://doi.org/10.1021/np9005794CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ferramosca A, Conte A, Guerra F, Felline S, Rimoli MG, Mollo E, Zara V, Terlizzi A (2016) Metabolites from invasive pests inhibit mitochondrial complex II: a potential strategy for the treatment of human ovarian carcinoma? Biochem Biophys Res Commun 473:1133–1138.  https://doi.org/10.1016/j.bbrc.2016.04.028CrossRefPubMedGoogle Scholar
  38. 38.
    Mao S-C, Guo Y-W, Shen X (2006) Two novel aromatic valerenane-type sesquiterpenes from the Chinese green alga Caulerpa taxifolia. Bioorg Med Chem Lett 16:2947–2950.  https://doi.org/10.1016/j.bmcl.2006.02.074CrossRefPubMedGoogle Scholar
  39. 39.
    Vottero E, Balgi A, Woods K, Tugendreich S, Melese T, Andersen RJ, Mauk AG, Roberge M (2006) Inhibitors of human indoleamine 2,3-dioxygenase identified with a target-based screen in yeast. Biotechnol J 1:282–288.  https://doi.org/10.1002/biot.200600001CrossRefPubMedGoogle Scholar
  40. 40.
    Schröder HC, Badria FA, Ayyad SN, Batel R, Wiens M, Hassanein HMA, Kurelec B, Müller WEG (1998) Inhibitory effects of extracts from the marine alga Caulerpa taxifolia and of toxin from Caulerpa racemosa on multixenobiotic resistance in the marine sponge Geodia cydonium. Environ Toxicol Pharmacol 5:119–126.  https://doi.org/10.1016/S1382-6689(97)10067-9CrossRefPubMedGoogle Scholar
  41. 41.
    Guidetti P (2006) Marine reserves reestablish lost predatory interactions. Ecol Appl 16:963–976.  https://doi.org/10.1890/1051-0761(2006)016[0963:MRRLPI]2.0.CO;2CrossRefPubMedGoogle Scholar
  42. 42.
    Sala E, Zabala M (1996) Fish predation and the structure of the sea urchin Paracentrotus lividus populations in the NW Mediterranean. Mar Ecol Prog Ser 140:71–81.  https://doi.org/10.3354/meps140071CrossRefGoogle Scholar
  43. 43.
    Terlizzi A, Felline S, Lionetto MG, Caricato R, Perfetti V, Cutignano A, Mollo E (2011) Detrimental physiological effects of the invasive alga Caulerpa racemosa on the Mediterranean white seabream Diplodus sargus. Aquat Biol 12:109–117.  https://doi.org/10.3354/ab00330CrossRefGoogle Scholar
  44. 44.
    Felline S, Caricato R, Cutignano A, Gorbi S, Lionetto MG, Mollo E, Regoli F, Terlizzi A (2012) Subtle effects of biological invasions: cellular and physiological responses of fish eating the exotic pest Caulerpa racemosa. PLoS One 7:e38763.  https://doi.org/10.1371/journal.pone.0038763CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Gorbi S, Giuliani ME, Pittura L, D’Errico G, Terlizzi A, Felline S, Grauso L, Mollo E, Cutignano A, Regoli F (2014) Could molecular effects of Caulerpa racemosa metabolites modulate the impact on fish populations of Diplodus sargus? Mar Environ Res 96:2–11.  https://doi.org/10.1016/j.marenvres.2014.01.010CrossRefPubMedGoogle Scholar
  46. 46.
    Felline S, Mollo E, Ferramosca A, Zara V, Regoli F, Gorbi S, Terlizzi A (2014) Can a marine pest reduce the nutritional value of Mediterranean fish flesh? Mar Biol 161:1275–1283.  https://doi.org/10.1007/s00227-014-2417-7CrossRefGoogle Scholar
  47. 47.
    Del Coco L, Felline S, Girelli C, Angilè F, Magliozzi L, Almada F, D’Aniello B, Mollo E, Terlizzi A, Fanizzi F (2018) 1H NMR spectroscopy and MVA to evaluate the effects of caulerpin-based diet on Diplodus sargus lipid profiles. Mar Drugs 16:390.  https://doi.org/10.3390/md16100390CrossRefPubMedCentralGoogle Scholar
  48. 48.
    Felline S, Mollo E, Cutignano A, Grauso L, Andaloro F, Castriota L, Consoli P, Falautano M, Sinopoli M, Terlizzi A (2017) Preliminary observations of caulerpin accumulation from the invasive Caulerpa cylindracea in native Mediterranean fish species. Aquat Biol 26:27–31.  https://doi.org/10.3354/ab00671CrossRefGoogle Scholar
  49. 49.
    Magliozzi L, Almada F, Robalo J, Mollo E, Polese G, Gonçalves EJ, Felline S, Terlizzi A, D’Aniello B (2017) Cryptic effects of biological invasions: reduction of the aggressive behaviour of a native fish under the influence of an “invasive” biomolecule. PLoS One 12:e0185620.  https://doi.org/10.1371/journal.pone.0185620CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Magliozzi L, Maselli V, Almada F, Di Cosmo A, Mollo E, Polese G (2019) Effect of the algal alkaloid caulerpin on neuropeptide Y (NPY) expression in the central nervous system (CNS) of Diplodus sargus. J Comp Physiol A 205:203–210.  https://doi.org/10.1007/s00359-019-01322-8CrossRefGoogle Scholar
  51. 51.
    Vitale R, D’Aniello E, Gorbi S, Martella A, Silvestri C, Giuliani M, Fellous T, Gentile A, Carbone M, Cutignano A, Grauso L, Magliozzi L, Polese G, D’Aniello B, Defranoux F, Felline S, Terlizzi A, Calignano A, Regoli F, Di Marzo V, Amodeo P, Mollo E (2018) Fishing for targets of alien metabolites: a novel peroxisome proliferator-activated receptor (PPAR) agonist from a marine pest. Mar Drugs 16:431.  https://doi.org/10.3390/md16110431CrossRefPubMedCentralGoogle Scholar
  52. 52.
    Gavagnin M, Carbone M, Nappo M, Mollo E, Roussis V, Cimino G (2005) First chemical study of anaspidean Syphonota geographica: structure of degraded sterols aplykurodinone-1 and -2. Tetrahedron 61:617–621.  https://doi.org/10.1016/j.tet.2004.10.093CrossRefGoogle Scholar
  53. 53.
    Carbone M, Gavagnin M, Mollo E, Bidello M, Roussis V, Cimino G (2008) Further syphonosides from the sea hare Syphonota geographica and the sea-grass Halophila stipulacea. Tetrahedron 64:191–196.  https://doi.org/10.1016/j.tet.2007.10.071CrossRefGoogle Scholar
  54. 54.
    Bitam F, Ciavatta ML, Carbone M, Manzo E, Mollo E, Gavagnin M (2010) Chemical analysis of flavonoid constituents of the seagrass Halophila stipulacea: first finding of malonylated derivatives in marine phanerogams. Biochem Syst Ecol 38:686–690.  https://doi.org/10.1016/j.bse.2010.04.007CrossRefGoogle Scholar
  55. 55.
    Zidorn C (2016) Secondary metabolites of seagrasses (Alismatales and Potamogetonales; Alismatidae): chemical diversity, bioactivity, and ecological function. Phytochemistry 124:5–28.  https://doi.org/10.1016/j.phytochem.2016.02.004CrossRefPubMedGoogle Scholar
  56. 56.
    Salehi B, Venditti A, Sharifi-Rad M, Kręgiel D, Sharifi-Rad J, Durazzo A, Lucarini M, Santini A, Souto E, Novellino E, Antolak H, Azzini E, Setzer W, Martins N (2019) The therapeutic potential of apigenin. Int J Mol Sci 20:1305.  https://doi.org/10.3390/ijms20061305CrossRefPubMedCentralGoogle Scholar
  57. 57.
    Ali F, Rahul NF, Jyoti S, Siddique YH (2017) Health functionality of apigenin: a review. Int J Food Prop 20:1197–1238.  https://doi.org/10.1080/10942912.2016.1207188CrossRefGoogle Scholar
  58. 58.
    Cirmi S, Ferlazzo N, Lombardo G, Ventura-Spagnolo E, Gangemi S, Calapai G, Navarra M (2016) Neurodegenerative diseases: might citrus flavonoids play a protective role? Molecules 21:1312.  https://doi.org/10.3390/molecules21101312CrossRefPubMedCentralGoogle Scholar
  59. 59.
    Kavutcu M, Melzig MF (1999) In vitro effects of selected flavonoids on the 5′-nucleotidase activity. Pharmazie 54:457–459PubMedGoogle Scholar
  60. 60.
    Sanderson JT, Hordijk J, Denison MS, Springsteel MF, Nantz MH, van den Berg M (2004) Induction and inhibition of aromatase (CYP19) activity by natural and synthetic flavonoid compounds in H295R human adrenocortical carcinoma cells. Toxicol Sci.  https://doi.org/10.1093/toxsci/kfh257CrossRefGoogle Scholar
  61. 61.
    Lindahl M, Tagesson C (1997) Flavonoids as phospholipase A2 inhibitors: importance of their structure for selective inhibition of group II phospholipase A2. Inflammation 21:347–356.  https://doi.org/10.1023/A:1027306118026CrossRefPubMedGoogle Scholar
  62. 62.
    Lamy S, Bedard V, Labbe D, Sartelet H, Barthomeuf C, Gingras D, Beliveau R (2008) The dietary flavones apigenin and luteolin impair smooth muscle cell migration and VEGF expression through inhibition of PDGFR-phosphorylation. Cancer Prev Res 1:452–459.  https://doi.org/10.1158/1940-6207.CAPR-08-0072CrossRefGoogle Scholar
  63. 63.
    Guerrero L, Castillo J, Quiñones M, Garcia-Vallvé S, Arola L, Pujadas G, Muguerza B (2012) Inhibition of angiotensin-converting enzyme activity by flavonoids: structure-activity relationship studies. PLoS One 7:e49493.  https://doi.org/10.1371/journal.pone.0049493CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Si D, Wang Y, Zhou YH, Guo Y, Wang J, Zhou H, Li ZS, Fawcett JP (2009) Mechanism of CYP2C9 inhibition by flavones and flavonols. Drug Metab Dispos 37:629–634.  https://doi.org/10.1124/dmd.108.023416CrossRefPubMedGoogle Scholar
  65. 65.
    Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19:16240–16265.  https://doi.org/10.3390/molecules191016240CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Biomolecular ChemistryNational Research Council of ItalyPozzuoliItaly

Personalised recommendations