Advertisement

Coevolution: Plant-herbivore interactions and secondary metabolites of plants

  • Eunice Kariñho-BetancourtEmail author
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Plant-herbivore interaction has long been a central model to explain the evolutionary success of vascular plants and insects, and the extraordinary diversity of secondary compounds produced by plants. Coevolutionary theory proposes that herbivorism has spur diversification and speciation of host-plants and phytophagous animals through an arms race, which results in a general concordance on their phylogenies, and the evolution of diverse (mostly defensive) chemical compounds by plants and counter-defenses by herbivores. Main assumptions of the micro- and macroevolutionary postulates of the coevolutionary model have been extensively tested within populations and along phylogenies. Common patterns found indicate that plants and herbivores constitute a selective context for each other, and that plant secondary metabolites are adaptations that constraint phytophagous insects to use a plant as a host or as a food source. Herbivorism is strongly implicated in the evolution of specialized associations that are usually mediated by a conserved biochemical machinery of host-plants. The evolution of specialism appears to be correlated to speciation events and even with adaptive radiations. However, there is little evidence that these correlations reflect a causal relationship. Perhaps the most compelling evidence linking macroevolutionary patterns and mechanisms that produce new species is the matching of the genetic machinery responsible for the evolution of chemical novelty on plants and major emergency events of plants and herbivore lineages. This body of work developed from the study of the antagonistic association of plants and herbivores in more than 60 years has evince the great potential of adaptive evolution to generate much of the Earths’ biodiversity.

Keywords

Adaptive evolution Plant defense Coevolution Herbivory Secondary metabolites Antagonistic interactions Diversification 

Notes

Acknowledgments

This research is supported by postdoctoral fellowship by the General Directorate for Academic Development Matters (DGAPA, UNAM).

References

  1. 1.
    Abrahamson WG, Blair CP, Eubanks MD, Morehead SA (2003) Sequential radiation of unrelated organisms: the gall fly Eurosta solidaginis and the tumbling flower beetle Mordellistena convicta. J Evol Biol 16:781–789PubMedCrossRefGoogle Scholar
  2. 2.
    Adeboye PT, Bettiga M, Olsson L (2014) The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates. AMB Express 4:46PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Agrawal AA (2005) Natural selection on common milkweed (Asclepias syriaca) by a community of specialized insect herbivores. Evol Ecol Res 7:651–667Google Scholar
  4. 4.
    Agrawal AA (2006) Macroevolution of plant defense strategies. Trends Ecol Evol 22:103–109PubMedCrossRefGoogle Scholar
  5. 5.
    Agrawal AA, Conner JK, Johnson MT, Wallsgrove R (2002) Ecological genetics of an induced plant defense against herbivores: additive genetic variance and costs of phenotypic plasticity. Evolution 56:2206–2213PubMedCrossRefGoogle Scholar
  6. 6.
    Agrawal AA, Fishbein M (2006) Plant defense syndromes. Ecology 87:132–149CrossRefGoogle Scholar
  7. 7.
    Agrawal AA, Kurashige NS (2003) A role for isothiocyanates in plant resistance against the specialist herbivore. J Chem Ecol 29:1403–1415PubMedCrossRefGoogle Scholar
  8. 8.
    Agrawal AA, Lau JA, Hamba PA (2006) Community heterogeneity and the evolution of interactions between plants and insect herbivores. Q Rev Biol 81:349–376PubMedCrossRefGoogle Scholar
  9. 9.
    Ahuja I, Rohloff J, Bones AM (2010) Defence mechanisms of Brassicaceae: implications for plant-insect interactions and potential for integrated pest management. A review. Agron Sustain Dev 30:311–348CrossRefGoogle Scholar
  10. 10.
    Ali J, Agrawal AA (2017) Trade-offs and tritrophic consequences of host shifts in specialized root herbivores. Funct Ecol 31:153–160CrossRefGoogle Scholar
  11. 11.
    Ali JG, Agrawal AA (2012) Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci 17:293–302PubMedCrossRefGoogle Scholar
  12. 12.
    Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622PubMedCrossRefGoogle Scholar
  13. 13.
    Ballabeni P, Rahier M (2001) A quantitative genetic analysis of leaf beetle larval performance on two natural hosts: including a mixed diet. J Evol Biol 13:98–106CrossRefGoogle Scholar
  14. 14.
    Barbehenn RV, Constabel PC (2011) Tannins in plant-herbivore interactions. Phytochemistry 72:1551–1565PubMedCrossRefGoogle Scholar
  15. 15.
    Basri DF, Tan LS, Shafiei Z, Zin NM (2012) In vitro antibacterial activity of galls of Quercus infectoria Olivier against oral pathogens. Evid Based Complement Altern Med 2012:1–6Google Scholar
  16. 16.
    Becerra JX (1997) Insects on plants: chemical trends in host use. Science 276:253–256PubMedCrossRefGoogle Scholar
  17. 17.
    Benderoth M, Textor S, Windsor AJ et al (2006) Positive selection driving diversification in plant secondary metabolism. Proc Natl Acad Sci 103:9118–9123PubMedCrossRefGoogle Scholar
  18. 18.
    Bennett RN, Wallsgrove RM (1994) Metabolites in plant defense mechanisms. New Phytol 127:617–633CrossRefGoogle Scholar
  19. 19.
    Bernays EA (1998) Evolution of feeding behavior in insect herbivores. Bioscience 48:35–44CrossRefGoogle Scholar
  20. 20.
    Bernays EA, Graham M (1988) On the evolution of host specificity in phytophagous arthropods. Ecology 69:886–892CrossRefGoogle Scholar
  21. 21.
    Bernays EA, Minkenberg OPJM (1997) Insect herbivores: different reason for being a generalist. Ecology 78:1157–1169CrossRefGoogle Scholar
  22. 22.
    Blomberg SP, Garland T (2002) Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J Evol Biol 15:899–910CrossRefGoogle Scholar
  23. 23.
    Boberg E, Alexandersson R, Jonsson M et al (2014) Pollinator shifts and the evolution of spur length in the moth-pollinated orchid Platanthera bifolia. Ann Bot 113:267–275PubMedCrossRefGoogle Scholar
  24. 24.
    Bohm BA (1998) Introduction to flavonoids. Harwood Academic Publishers, AmsterdamGoogle Scholar
  25. 25.
    Bottger GT, Sheehan ET, Lukefahr MJ (1964) Relation of gossypol content of cotton plants to insect resistance. J Econ Entomol 57:283–285CrossRefGoogle Scholar
  26. 26.
    Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851CrossRefGoogle Scholar
  27. 27.
    Brues CT (1924) The specificity of food-plants in the evolution of phytophagous insects. Am Nat 58:127–144CrossRefGoogle Scholar
  28. 28.
    Brooks DR (1979) Testing the context of host-parasite coevolution. Syst Biol 28:299–307CrossRefGoogle Scholar
  29. 29.
    Buick R (1992) The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate- deficient Archaean lakes. Science (80-) 255:74–77CrossRefGoogle Scholar
  30. 30.
    Carmona D, Lajeunesse MJ, Johnson MTJ (2011) Plant traits that predict resistance to herbivores. Funct Ecol 25:358–367CrossRefGoogle Scholar
  31. 31.
    Carruthers NJ, Dowd MK, Stemmer PM (2007) Gossypol inhibits calcineurin phosphatase activity at multiple sites. Eur J Pharmacol 555:106–114PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Castillo G, Cruz LL, Tapia-López R et al (2014) Selection mosaic exerted by specialist and generalist herbivores on chemical and physical defense of Datura stramonium. PLoS One 9:e102478.  https://doi.org/10.1371/journal.pone.0102478CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Christenhusz MJM, Byng JW (2016) The number of known plants species in the world and its annual increase. Phytotaxa 261:201–217CrossRefGoogle Scholar
  34. 34.
    Colegate SM, Dorling PR, Huxtable CR (1979) A spectroscopic investigation of swainsonine: an a-Mannosidase Inhibitor isolated from Swainsona canescens. Aust J Chem 32:2257–2264CrossRefGoogle Scholar
  35. 35.
    Colwell RK (1986) Population structure and sexual selection for host fidelity in the speciation of hummingbird flower mites. In: Samuel K, Eviatar N (eds) Evolutionary processes and theory. Academic, Orlando, pp 475–495CrossRefGoogle Scholar
  36. 36.
    Cornell HV (1983) The secondary chemistry and complex morphology of galls formed by the Cynipinae (Hymenoptera): why and how? Am Midl Nat 110:225–234CrossRefGoogle Scholar
  37. 37.
    Cronquist A (1977) On the taxonomic significance of secondary metabolites in Angiosperms. Plant Syst Evol Suppl 1:179–189Google Scholar
  38. 38.
    Dawkins R, Krebs JR (1979) Arms races between and within species. Proc R Soc Lond B Biol Sci 205:489–511PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Dethier VG (1941) Chemical factors determining the choice of food plant by Papilio larvae. Am Nat 75:61–73CrossRefGoogle Scholar
  40. 40.
    Dethier VG (1954) Evolution of feeding preferences in phytophagous insects. Evolution 8:33–54CrossRefGoogle Scholar
  41. 41.
    Dewick PM (2002) Medicinal natural products: a biosynthetic approach. Wiley, ChichesterGoogle Scholar
  42. 42.
    Dieckmann U, Doebeli M (1999) On the origin of species by sympatric speciation. Nature 400:354–357PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Dodou K (2005) Investigations on gossypol: past and present developments. Expert Opin Investig Drugs 14:1419–1434PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Dorland WAN (2011) Dorland’s illustrated medical dictionary, 32nd edn. Elsevier Health Sciences, LondonGoogle Scholar
  45. 45.
    Duda TF, Palumbi SR (1999) Molecular genetics of ecological diversification: duplication and rapid evolution of toxin genes of the venomous gastropod Conus. Proc Natl Acad Sci 96:6820–6823PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Durbin ML, McCaig B, Clegg MT (2000) Molecular evolution of the chalcone synthase multigene family in the morning glory genome. In: Doyle JJ, Gaut BS (eds) Plant molecular evolution. Springer, Dordrecht, pp 79–92CrossRefGoogle Scholar
  47. 47.
    Edger PP, Heidel-Fischer HM, Bekaert M et al (2015) The butterfly plant arms-race escalated by gene and genome duplications. Proc Natl Acad Sci 112:8362PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608CrossRefGoogle Scholar
  49. 49.
    Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Fairbairn DJ, Reeve JP (2001) Natural selection. In: Fox CW, Roff DA, Fairbairn DJ (eds) Evolutionary ecology: concepts and case studies. Oxford University Press, New York, pp 29–43Google Scholar
  51. 51.
    Falconer DS, Mackay TF (1996) Introduction to quantitative genetics, 4th edn. Logman Group Ltd, EssexGoogle Scholar
  52. 52.
    Farmer EE, Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4:129–134PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Farrell B, Mitter C (1990) Phylogenesis of insect/plant interactions: have Phyllobrotica leaf beetles (Chrysomelidae) and the Lamiales diversified in parallel? Evolution 44:1389–1403PubMedCrossRefGoogle Scholar
  54. 54.
    Farrell BD (1998) “Inordinate Fondness” explained: why are there so many beetles? Science (80–) 281:555–559CrossRefGoogle Scholar
  55. 55.
    Farrell BD (2001) Evolutionary assembly of the milkweed fauna: cytochrome oxidase I and the age of Tetraopes beetles. Mol Phylogenet Evol 18:467–478PubMedCrossRefGoogle Scholar
  56. 56.
    Farrell BD, Mitter C (1998) The timing of insect/plant diversification: might Tetraopes (Coleoptera: Cerambycidae) and Asclepias (Asclepiadaceae) have co-evolved? Biol J Linn Soc 63:553–577Google Scholar
  57. 57.
    Fattorusso E, Taglialatela-Scafati O (2008) Modern Alkaloids: Structure, Isolation, Synthesis and Biology. Wiley-VCh PressGoogle Scholar
  58. 58.
    Feeny P (1970) Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51:565–581CrossRefGoogle Scholar
  59. 59.
    Feeny P (1976) Plant apparency and chemical defence. In: Wallace JW, Mansel RL (eds) Biochemical interactions between plants and insects. Plenum Press, New York, pp 1–40Google Scholar
  60. 60.
    Fordyce JA (2010) Host shifts and evolutionary radiations of butterflies. Proc R Soc Lond B Biol Sci 277:3735–3743CrossRefGoogle Scholar
  61. 61.
    Fox LR (1981) Defense and dynamics in plant-herbivore systems. Am Zool 21:853–864CrossRefGoogle Scholar
  62. 62.
    Fraenkel G (1959) The raison d’être of secondary plant substances. Science (80-) 129: 1466–14770CrossRefGoogle Scholar
  63. 63.
    Fritz C, Palacios-rojas N, Feil R, Stitt M (2006) Regulation of secondary metabolism by the carbon – nitrogen status in tobacco: nitrate inhibits large sectors of phenylpropanoid metabolism. Plant J 46:533–548PubMedCrossRefGoogle Scholar
  64. 64.
    Fry JD, Url S, Fry D (1996) The evolution of host specialization: are trade-offs overrated? Am Nat 148:S84–S107CrossRefGoogle Scholar
  65. 65.
    Futuyma DJ (1983) Evolutionary interactions among herbivorous insects and plants. In: Futuyma JD, Slatkin M (eds) Coevolution. Sinauer Associates, Sunderland, pp 207–231Google Scholar
  66. 66.
    Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol Syst 19:207–233CrossRefGoogle Scholar
  67. 67.
    Futuyma DJ, Slatkin M (1983) Coevolution. Sinauer Associates, SunderlandGoogle Scholar
  68. 68.
    Gershenzov J, Croteau R (1991) Terpenoids. In: Rosenthal GA, Berembaum MR (eds) Their interactions with secondary plant metabolites: the chemical participants. Academic, San Diego, pp 165–209CrossRefGoogle Scholar
  69. 69.
    Giarman NJ, Pepeu G (1964) The influence of centrally acting cholinolytic drugs on brain acetylcholine levels. J Pharm Chem 23:123–130Google Scholar
  70. 70.
    Gifford EM, Foster AS (1988) Morphology and evolution of vascular plants, 3er edn. W. H. Freeman, New YorkGoogle Scholar
  71. 71.
    Gómez-Zurita J, Hunt T, Kopliku F, Vogler AP (2007) Recalibrated tree of leaf beetles (Chrysomelidae) indicates independent diversification of angiosperms and their insect herbivores. PLoS One 2:e360PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Gorelick J, Bernstein N (2017) Chemical and physical elicitation for enhanced cannabinoid production in cannabis. In: Chandra S, Lata H, ElSohly MA (eds) Cannabis sativa L.-Botany and Biotechnology. Springer, Cham, pp 439–456CrossRefGoogle Scholar
  73. 73.
    Griffin WJ, Lin GD (2000) Chemotaxonomy and geographical distribution of tropane alkaloids. Phytochemistry 53:623–637PubMedCrossRefGoogle Scholar
  74. 74.
    Guo Q, Strauss H, Kaufman AJ et al (2009) Reconstructing Earth’ s surface oxidation across the Archean- proterozoic transition. Geology 37:399–402CrossRefGoogle Scholar
  75. 75.
    Hagerman AE, Butler LG (1991) Tannins and lignins. In: Rosenthal GA, Berembaum MR (eds) Herbivores: their interactions with secondary plant metabolites. Academic, New York, pp 355–383CrossRefGoogle Scholar
  76. 76.
    Hammond PM (1994) Practical approaches to the estimation of the extent of biodiversity in speciose groups. Philos Trans R Soc B Biol Sci 345:119–136CrossRefGoogle Scholar
  77. 77.
    Harborne JB (2014) Introduction to biochemical ecology. Academic Press, San Diego, CAGoogle Scholar
  78. 78.
    Harrison E, Brockhurst MA (2012) Plasmid-mediated horizontal gene transfer is a coevolutionary process. Trends Microbiol 20:262–267.  https://doi.org/10.1016/j.tim.2012.04.003CrossRefPubMedGoogle Scholar
  79. 79.
    Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831–2846PubMedCrossRefGoogle Scholar
  80. 80.
    Heinemann JA, Sprague GF (1989) Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 340:250CrossRefGoogle Scholar
  81. 81.
    Herrmann KM (1995) The shikimate pathway: early steps in the biosynthesis of aromatic compounds. Plant 7:907–919Google Scholar
  82. 82.
    Holland HD (2002) Volcanic gases, black smokers, and the Great Oxidation Event. Geochim Cosmochim Acta 66:3811–3826CrossRefGoogle Scholar
  83. 83.
    Howe GA (2004) Jasmonates as signals in the wound response. J Plant Growth Regul 23:223–237CrossRefGoogle Scholar
  84. 84.
    Iannuzzi R, Labandeira CC (2008) The oldest record of external foliage feeding and the expansion of insect folivory on land. Ann Entomol Soc Am 101:79–94CrossRefGoogle Scholar
  85. 85.
    Iwashina T (2000) The structure and distribution of the flavonoids in plants. J Plant Res 113:287–299CrossRefGoogle Scholar
  86. 86.
    Izhaki I (2002) Emodin – a secondary metabolite with multiple ecological functions in higher plants. New Phytol 155:205–217CrossRefGoogle Scholar
  87. 87.
    Jablonka E, Lamb MJ (2014) Evolution in four dimensions: genetic, epigenetic, behavioral, and symbolic variation in the history of life, 2nd edn. MIT Press, Cambridge, MACrossRefGoogle Scholar
  88. 88.
    Jaenike J (1990) Host specialization in phytophagous insects. Annu Rev Ecol Syst 21:243–273CrossRefGoogle Scholar
  89. 89.
    Janz N (2011) Ehrlich and Raven revisited: mechanisms underlying codiversification of plants and enemies. Annu Rev Ecol Evol Syst 42:71–89CrossRefGoogle Scholar
  90. 90.
    Janz N, Nylin S (2008) The oscillation hypothesis of host-plant range and speciation. In: Tilmon K (ed) Specialization, speciation, and radiation: the evolutionary biology of herbivorous insects. University of California Press, Berkley, pp 203–215Google Scholar
  91. 91.
    Janz N, Thompson JN (2002) Plant polyploidy and host expansion in an insect herbivore. Oecologia 130:570–575PubMedCrossRefGoogle Scholar
  92. 92.
    Janzen DH (1980) When is it coevolution. Evolution 34:611–612PubMedCrossRefGoogle Scholar
  93. 93.
    Jermy T (1976) Insect-host-plant relationship-co-evolution or sequential evolution? Symp Biol Hungarica 16:109–113Google Scholar
  94. 94.
    Jermy T (1984) The University of Chicago. Am Midl Nat 124:609–630CrossRefGoogle Scholar
  95. 95.
    Jermy T, Szentesi A (2003) Evolutionary aspects of host plant specialisation – a study on bruchids (Coleoptera: Bruchidae). Oikos 101:196–204CrossRefGoogle Scholar
  96. 96.
    Jones DA (1972) Cyanogenic glycosides and their function. In: Harborne JB (ed) Phytochemical ecology. Academic, LondonGoogle Scholar
  97. 97.
    Jones PL, Agrawal AA (2017) Learning in insect pollinators and herbivores. Annu Rev Ecol Evol Syst 62:53–71Google Scholar
  98. 98.
    Joshi A, Thompson JN (1995) Trade-offs and the evolution of host specialization. Evol Ecol 9:82–92CrossRefGoogle Scholar
  99. 99.
    Joslyn MA, Click Z (1969) Comparative effects of gallotannic acid and related phenolics on the growth of rats. J Nutr 98:119–126PubMedCrossRefGoogle Scholar
  100. 100.
    Jurado-Rivera JA, Vogler AP, Reid CAM et al (2009) DNA barcoding insect − host plant associations DNA barcoding insect – host plant associations. Proc R Soc Lond B Biol Sci 276:639–648.  https://doi.org/10.1098/rspb.2008.1264CrossRefGoogle Scholar
  101. 101.
    Kariñho-Betancourt E (2018) Plant-herbivore interactions and secondary metabolites of plants: ecological and evolutionary perspectives. Bot Sci 96:35–51CrossRefGoogle Scholar
  102. 102.
    Kawecki TJ (1994) Accumulation of deleterious mutations and the evolutionary cost of being a generalist. Am Nat 144:833–838CrossRefGoogle Scholar
  103. 103.
    Kergoat GJ, Alvarez N, Hossaert-McKey M et al (2005) Parallels in the evolution of the two largest New and Old World seed-beetle genera (Coleoptera, Bruchidae). Mol Ecol 14: 4003–4021PubMedCrossRefGoogle Scholar
  104. 104.
    Kergoat GJ, Silvain J-F, Delobel A et al (2007) Defining the limits of taxonomic conservatism in host – plant use for phytophagous insects: molecular systematics and evolution of host – plant associations in the seed-beetle genus Bruchus Linnaeus (Coleoptera: Chrysomelidae: Bruchinae). Mol Phylogenet Evol 43:251–269PubMedCrossRefGoogle Scholar
  105. 105.
    Kutchan TM (2001) Ecological arsenal and developmental dispatcher. The paradigm of secondary metabolism. Plant Physiol 125:58–60PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Labandeira C (2007) The origin of herbivory on land: initial patterns of plant tissue consumption by arthropods. Insect Sci 14:259–275CrossRefGoogle Scholar
  107. 107.
    Labandeira CC (1998) Early history of arthropod and vascular plant associations. Annu Rev Earth Planet Sci 26:329–377CrossRefGoogle Scholar
  108. 108.
    Lankau A (2007) Specialist selection generalist chemical opposing defense. New Phytol 175:176–184PubMedCrossRefGoogle Scholar
  109. 109.
    Lankau RA, Strauss SY (2008) Community complexity drives patterns of natural selection on a chemical defense of Brassica nigra. Am Nat 171:150–161PubMedCrossRefGoogle Scholar
  110. 110.
    Latta R (2011) Natural selection, variation, adaptation, and evolution: a primer of interrelated concepts author. Int J Plant Sci 171:930–944CrossRefGoogle Scholar
  111. 111.
    Leavesley HB, Li L, Prabhakaran K et al (2008) Interaction of cyanide and nitric oxide with cytochrome c oxidase: implications for acute cyanide toxicity. Toxicol Sci 101:101–111PubMedCrossRefGoogle Scholar
  112. 112.
    Li L, Li C, Lee GI, Howe GA (2002) Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc Natl Acad Sci 99:6416–6421PubMedCrossRefGoogle Scholar
  113. 113.
    Llorente-Bousquets J, Ocegueda S (2008) Estado del conocimiento de la biota. In: Contreras S, Chiang F, Papavero N (eds) Capital Natural de México, vol. I: Conocimiento Actual de la Biodiversidad. Mexico. CONABIO, México, pp 283–322Google Scholar
  114. 114.
    Louda S, Mole S (1991) Glucosinolates: chemistry and ecology. In: Rosenthal GA, Berembaum MR (eds) Herbivores: their interactions with secondary plant metabolites. Academic, New York, pp 125–157Google Scholar
  115. 115.
    Malcolm SB (1991) Cardenolid-mediated interactions between plants and herbivores. In: Rosenthal GA, Berembaum MR (eds) Herbivores: their interactions with secondary plant metabolites. Academic, New York, pp 251–291CrossRefGoogle Scholar
  116. 116.
    Matsuda K, Buckingham SD, Kleier D et al (2001) Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 22:573–580PubMedCrossRefGoogle Scholar
  117. 117.
    Mauricio R, Rausher MD (1997) Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense. Evolution 51:1435–1444PubMedCrossRefGoogle Scholar
  118. 118.
    Mayer B (2014) How much nicotine kills a human? Tracing back the generally accepted lethal dose to dubious self – experiments in the nineteenth century. Arch Toxicol 88:5–7PubMedCrossRefGoogle Scholar
  119. 119.
    Mayhew PJ (2018) Explaining global insect species richness: lessons from a decade of macroevolutionary entomology. Entomol Exp Appl 166:225–250CrossRefGoogle Scholar
  120. 120.
    Mithen R, Raybould AF, Giamoustaris A (1995) Divergent selection for secondary metabolites between wild populations of Brassica oleracea and its implication for plant-herbivore interaction. Heredity (Edinb) 75:472–484CrossRefGoogle Scholar
  121. 121.
    Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450PubMedCrossRefGoogle Scholar
  122. 122.
    Mitter C, Brooks DR (1983) Phylogenetic aspects of coevolution. In: Futuyma DJ, Slatkin M (eds) Coevolution. Sinauer Associates, Sunderland, pp 65–98Google Scholar
  123. 123.
    Mitter C, Farrell B, Futuyma DJ (1991) Phylogenetic studies of insect-plant interactions: insights into the genesis of diversity. Trends Ecol Evol 6:290–293PubMedCrossRefGoogle Scholar
  124. 124.
    Mitter C, Farrell B, Wiegmann B (1988) The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification? Am Nat 132:107–128CrossRefGoogle Scholar
  125. 125.
    Moore BD, Andrew RL, Külheim C, Foley WJ (2014) Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytol 201:733–750PubMedCrossRefGoogle Scholar
  126. 126.
    Nathanson J (1984) Caffeine and related methylxanthines: possible naturally occurring pesticides. Science (80-) 226:184–187CrossRefGoogle Scholar
  127. 127.
    Nielsen ES, Mound LA (2000) Global diversity of insects: the problems of estimating numbers. In: Raven PH (ed) Nature and human society: the quest for a sustainable world. National Academic Press, Washington, DC, pp 213–222Google Scholar
  128. 128.
    Nilsson LA, Jonsson L, Rason L, Randrianjohany E (1985) Monophily and pollination mechanisms in Angraecum arachnites Schltr.(Orchidaceae) in a guild of long-tongued hawk-moths (Sphingidae) in Madagascar. Biol J Linn Soc 26:1–19CrossRefGoogle Scholar
  129. 129.
    Nishida T, Takakura K, Iwao K (2015) Host specialization by reproductive interference between closely related herbivorous insects. Popul Ecol 57:273–281CrossRefGoogle Scholar
  130. 130.
    Nyman T (2010) To speciate, or not to speciate? Resource heterogeneity, the subjectivity of similarity, and the macroevolutionary consequences of niche-width shifts in plant-feeding insects. Biol Rev 85:393–411PubMedCrossRefGoogle Scholar
  131. 131.
    Otto A, Simoneit BR (2001) Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany. Geochim Cosmochim Acta 65:3505–3527CrossRefGoogle Scholar
  132. 132.
    Pacher L, Batkai S, Kunos G (2006) The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 58:389–462PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Peccoud J, Simon J-C, Von Dohlen C et al (2010) Evolutionary history of aphid-plant associations and their role in aphid diversification. C R Biol 333:474–487PubMedCrossRefGoogle Scholar
  134. 134.
    Percy DM, Page RDM, Cronk QCB (2004) Plant–insect interactions: double-dating associated insect and plant lineages reveals asynchronous radiations. Syst Biol 53:120–127PubMedCrossRefGoogle Scholar
  135. 135.
    Petschenka G, Agrawal AA (2016) How herbivores coopt plant defenses: natural selection, specialization, and sequestration. Curr Opin Insect Sci 14:17–24PubMedCrossRefGoogle Scholar
  136. 136.
    Piubelli GC, Hoffmann-Campo CB, Moscardi F et al (2005) Are chemical compound importatn for Anticarsia gemmatalis? J Chem Ecol 31:1509–1525PubMedCrossRefGoogle Scholar
  137. 137.
    Pomara C, Cassano T, Errico SD et al (2012) Data available on the extent of cocaine use and dependence: biochemistry, Pharmacologic effects and global burden of disease of cocaine abusers. Curr Med Chem 19:5647–5657PubMedCrossRefGoogle Scholar
  138. 138.
    Price PW (2002) Species interactions and the evolution of biodiversity. In: Herrera CM, Pellmyr O (eds) Plant-animal interactions: an evolutionary approach. Blackwell Scientific, Oxford, pp 3–25Google Scholar
  139. 139.
    Rasmann S, Agrawal AA (2009) Plant defense against herbivory: progress in identifying synergism, redundancy, and antagonism between resistance traits. Curr Opin Plant Biol 12:473–478PubMedCrossRefGoogle Scholar
  140. 140.
    Rausher MD, Miller RE, Tiffin P (1999) Patterns of evolutionary rate variation among genes of the anthocyanin biosynthetic pathway. Mol Biol Evol 16:266–274PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Rhoades DF, Cates RG (1976) Toward a general theory of plant antiherbivore chemistry. In: Wallace JW, Mansell RL (eds) Recent advances in phytochemistry. Plenum Press, New York, pp 168–205Google Scholar
  142. 142.
    Rieseberg LH, Widmer A, Arntz AM, Burke JM (2002) Directional selection is the primary cause of phenotypic diversification. Proc Natl Acad Sci USA 99:12242–12245PubMedCrossRefGoogle Scholar
  143. 143.
    Roddick J (1991) The importance of the Solanceae in medicine and drug therapy. In: Hawkes G, Lester RN, Nee M, Estrada N (eds) Solanaceae III: taxonomy, chemistry, evolution. Royal Botanic Garden Press, Kew, pp 7–23Google Scholar
  144. 144.
    Ronquist F, Liljeblad J (2001) Evolution of the gall wasp–host plant association. Evolution 55:2503–2522PubMedGoogle Scholar
  145. 145.
    Rothschild M, Fairbairn JW (1980) Ovipositing butterfly (Pieris brassicae L.) distinguishes between aqueous extracts of two strains of Cannabis sativa L. and THC and CBD. Nature 286:56–59CrossRefGoogle Scholar
  146. 146.
    Roy B, Dutta BK (2003) In vitro lethal efficacy of leaf extract of Cannabis sativa on the larvae of Chironomous samoensis Edward: an insect of public health concern. Indian J Exp Biol 41:1338–1341PubMedGoogle Scholar
  147. 147.
    Ryan CA (2000) The systemin signaling pathway: differential activation of plant defensive genes. Biochem Biophys Acta 1477:112–121PubMedGoogle Scholar
  148. 148.
    Sánchez-Bayo F (2012) Insecticides mode of action in relation to their toxicity to non-target organisms. J Environ Anal Toxicol S4:e001Google Scholar
  149. 149.
    Schoonhoven LM, van Loon JJ, Dicke M (2005) Insect-plant biology. Oxford University Press, Oxford, UKGoogle Scholar
  150. 150.
    Scott AC, Stephenson J, Chaloner WG (1992) Interaction and coevolution of plants and arthropods during the Palaeozoic and Mesozoic. Philos Trans R Soc B Biol Sci 335:129–165CrossRefGoogle Scholar
  151. 151.
    Seigler DS (1991) Cyanide and Cyanogenic Glycosides. In: Rosentha GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites. Academic, New York, pp 35–70CrossRefGoogle Scholar
  152. 152.
    Shonle I, Bergelson J (2000) Evolutionary ecology of the tropane alkaloids of Datura stramonium. Evolution 54:778–788PubMedCrossRefGoogle Scholar
  153. 153.
    Shroff R, Vergara F, Muck A et al (2008) Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense. Proc Natl Acad Sci 105:6196–6201PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Stahl E (1988) Pflanzen und Schnecken. Eine biologische studie über die schutzmittel der pflanzen gegen schneckenfraß. Jenaische Zeitschrift f Naturwissenschaften 22:557–684Google Scholar
  155. 155.
    Startek JB, Voets T, Talavera K (2019) To flourish or perish: evolutionary TRiPs into the sensory biology of plant-herbivore interactions. Pflügers Arch J Physiol 471:213–236PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Steward JL, Keeler KH (2015) Are there trade-offs among antiherbivore defenses in Ipomoea (Convolvulaceae)? Oikos 53:79–86CrossRefGoogle Scholar
  157. 157.
    Stipanovic RD, Lopez JD, Dowd MK et al (2006) Effect of Racemic and (+) – and (j) -Gossypol on the survival and development of Helicoverpa zea larvae. J Chem Ecol 32:959–968PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Stireman JO, Devlin H, Carr TG, Abbot P (2010) Evolutionary diversification of the gall midge genus Asteromyia (Cecidomyiidae) in a multitrophic ecological context. Mol Phylogenet Evol 54:194–210PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Stone GN, Hernandez-Lopez A, Nicholls JA et al (2009) Extreme host plant conservatism during at least 20 million years of host plant pursuit by oak gallwasps. Evol Int J Org Evol 63:854–869CrossRefGoogle Scholar
  160. 160.
    Strauss SY (1991) Direct, indirect, and cumulative effects of three native herbivores on a shared host plant. Ecology 72:543–558CrossRefGoogle Scholar
  161. 161.
    Strong DR, Lawton JH, Southwood SR (1984) Insects on plants. Community patterns and mechanisms. Blackwell Scientific Publicatons, Oxford, UKGoogle Scholar
  162. 162.
    Taper ML, Case TJ (1987) Oecologia and parasite community structure. Oecologia 71:254–261PubMedCrossRefGoogle Scholar
  163. 163.
    Taylor T, Taylor EL (1993) The biology and evolution of fossil plants. Prentice-Hall, Englewood CliffsGoogle Scholar
  164. 164.
    Theis N, Lerdau M (2003) The Evolution of Function in Plant Secondary Metabolites. Int J Plant Sci 164:S93–S102CrossRefGoogle Scholar
  165. 165.
    Thompson JN (1989) Concepts of coevolution. Trends Ecol Evol 4:179–183PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Thompson JN (1994) The coevolutionary process. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  167. 167.
    Thompson JN (1999) What we know and do not know about coevolution: insect herbivores and plants as a test case. In: Olff H, Brown VK, Drent RH (eds) Herbivores: between plants and predators. Blackwell Science, Oxford, pp 7–30Google Scholar
  168. 168.
    Tikkanen OP, Julkunen-Tiitto R (2003) Phenological variation as protection against defoliating insects: the case of Quercus robur and Operophtera brumata. Oecologia 136:244–251PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Tomizawa M, Casida JE (2003) Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol 48:339–364.  https://doi.org/10.1146/annurev.ento.48.091801.112731CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Traynier RM, Truscott RJ (1991) Potent natural egg-laying stimulant for cabbage butterfly Pieris rapae. J Appl Entomol 17:1371–1380Google Scholar
  171. 171.
    Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147–157CrossRefGoogle Scholar
  172. 172.
    Turcotte MM, Corrin MSC, Johnson MTJ (2012) Adaptive evolution in ecological communities. PLoS Biol 10:e1001332PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    van der Hoek C, Mann DG, Jahs HM (1995) Algae: an introduction to phycology. Cambridge Uiversity Press, CambridgeGoogle Scholar
  174. 174.
    van der Meijden E, Wijn M, Verkaar HJ (1988) Defence and regrowth, alternative plant strategies in the struggle against herbivores. Oikos 51:355–363CrossRefGoogle Scholar
  175. 175.
    Vetter J (2000) Plant cyanogenic glycosides. Toxicon 38:11–36PubMedCrossRefGoogle Scholar
  176. 176.
    Voelckel C, Baldwin IT (2004) Generalist and specialist lepidopteran larvae elicit different transcriptional responses in Nicotiana attenuata, which correlate with larval FAC profiles. Ecol Lett 7:770–775CrossRefGoogle Scholar
  177. 177.
    Walters DR (2011) Plant defense: warding of attack by pathogens, herbivores, and parasitic plants. Blackwell Publishing, ChichesterGoogle Scholar
  178. 178.
    War AR, Paulraj MG, Tariq A et al (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1320PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Waterman PG (2005) Diversity in secondary metabolism in plants. In: Publishing C (ed) Plant diversity and evolution: genotypic and phenotypic variation in higher plants. CABI, Oxon, pp 229–247CrossRefGoogle Scholar
  180. 180.
    Waterman PG, Dey PM, Harborne JB (1993) Alkaloids: general observations. In: Waterman PG (ed) Methods in plant biochemistry. vol. 8. Alkaloids and sulphur compounds. Academic, London, pp 1–16Google Scholar
  181. 181.
    Weissing FJ, Edelaar P, Van Doorn GS (2011) Adaptive speciation theory: a conceptual review. Behav Ecol Sociobiol 65:461–480PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Weng J-K, Chapple C (2010) Tansley review The origin and evolution of lignin biosynthesis. New Phytol 187:273–285PubMedCrossRefGoogle Scholar
  183. 183.
    Wheat CW, Vogel H, Wittstock U et al (2007) The genetic basis of a plant-insect coevolutionary key innovation. Proc Natl Acad Sci 104:20427–20431PubMedCrossRefGoogle Scholar
  184. 184.
    Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19PubMedCrossRefGoogle Scholar
  185. 185.
    Wink M (2010) Biochemistry of plant secondary metabolism, 2nd edn. Wiley-Blackwell Publising, Oxford, UKCrossRefGoogle Scholar
  186. 186.
    Wink M, Mohamed GIA (2003) Evolution of chemical defense traits in the Leguminosae: mapping of distribution patterns of secondary metabolites on a molecular phylogeny inferred from nucleotide sequences of the rbc L gene. Biochem Syst Ecol 31:897–917CrossRefGoogle Scholar
  187. 187.
    Winkler IS, Mitter C (2008) The phylogenetic dimension of insect/plant interactions: a review of recent evidence. In: Tilmon K (ed) Specialization, speciation, and radiation: the evolutionary biology of herbivorous Insects. University of California Press, Berkley, pp 240–263Google Scholar
  188. 188.
    Young MR, Towers GHN, Neish AC (1966) Taxonomic distribution of ammonia-lyases for L-phenylalanine and L-tyrosine in relation to lignification. Can J Bot 44:341–349CrossRefGoogle Scholar
  189. 189.
    Zalucki MP, Brower LP, Alonso-M A (2001) Detrimental effects of latex and cardiac glycosides on survival and growth of first-instar monarch butterfly larvae Danaus plexippus feeding on the sandhill milkweed Asclepias humistrata. Ecol Entomol 26:212–224CrossRefGoogle Scholar
  190. 200.
    Codd GA (1995) Cyanobacterial toxins: occurrence, properties and biological significance. Water Sci Technol 32:149–156.  https://doi.org/10.1016/0273-1223(95)00692-3
  191. 201.
    Goksøyr J (1967) Evolution of eukaryotic cells. Nature 214:1161PubMedCrossRefPubMedCentralGoogle Scholar
  192. 203.
    Lowry B, Lee D, Hébant C (1980) The origin of land plants: a new look at an old problem. Taxon 29:183–197CrossRefGoogle Scholar
  193. 204.
    Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci 99:12246–12251PubMedCrossRefPubMedCentralGoogle Scholar
  194. 205.
    McClintock JB, Baker BJ (2001) Marine chemical ecology. CRC press, Boca RatonCrossRefGoogle Scholar
  195. 206.
    Schopf JW (2012) The fossil record of cyanobacteria. In: Whitton B (ed) Ecology of cyanobacteria II. Springer, Dordrecht, pp 15–36CrossRefGoogle Scholar
  196. 207.
    Strother PK, Battison L, Brasier MD, Wellman CH (2011) Earth’s earliest non-marine eukaryotes. Nature 473:505–509.  https://doi.org/10.1038/nature09943PubMedCrossRefPubMedCentralGoogle Scholar
  197. 208.
    Yoon HS, Hackett JD, Ciniglia C et al (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818.  https://doi.org/10.1093/molbev/msh075PubMedCrossRefPubMedCentralGoogle Scholar
  198. 209.
    Roskov Y, Abucay L, Orrell T, Nicolson D, Bailly N, Kirk PM, Bourgoin T, DeWalt RE, Decock W, De Wever A, Nieukerken E. van, Zarucchi J, Penev L, eds. (2018) Species 2000 & ITIS Catalogue of Life, 2018 Annual Checklist. Digital resource at www.catalogueoflife.org/annual-checklist/2018. Species 2000: Naturalis, Leiden, the Netherlands

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Escuela Nacional de Estudios SuperioresUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations