Advertisement

Interactions of Trichoderma with Plants, Insects, and Plant Pathogen Microorganisms: Chemical and Molecular Bases

  • Hexon Angel Contreras-Cornejo
  • Lourdes Macías-Rodríguez
  • Ek del-Val
  • John Larsen
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Trichoderma spp. are free-living fungi common in soils from different ecosystems, but can also establish endophytic associations with plants, roots, and seeds. Trichoderma are economically important due to their production of secondary metabolites of great interest in medicine, biotechnology, and agriculture. Fungal metabolites comprise nonvolatile and volatile compounds that include alcohols, aldehydes, organic acids, esters, hydrocarbonated compounds, ketones, and nitrogen- and sulfur-containing metabolites as the cyclic molecules indole-3-acetic acid and gliovirin, respectively. Fungal metabolites have been identified as natural products, and consequently, some compounds of interest have been obtained by chemical syntheses. In a natural scenario, a number of Trichoderma secondary metabolites have key roles regulating plant growth and development or affecting the proliferation of plant pathogenic microorganisms in the soil due to their production of antibiotics or siderophores. In this work, we consider the chemical basis for how Trichoderma spp. exert directly or indirectly beneficial effects on plants and control plant pathogenic microorganisms.

Keywords

Trichoderma Secondary metabolites Plant-microbe interactions Biocontrol 

Notes

Acknowledgments

We thank Carlos Cortés-Penagos (UMSNH) for kindly providing us with T. virens Gv29-8. We apologize to colleagues whose relevant work we were unable to cite owing to space limitations. The authors declare that they have no conflict of interest.

References

  1. 1.
    Zeilinger S, Gruber S, Bansal R, Mukherjee PK (2016) Secondary metabolism in Trichoderma-Chemistry meets genomics. Fungal Biol Rev 30:74–90.  https://doi.org/10.1016/j.fbr.2016.05.001CrossRefGoogle Scholar
  2. 2.
    Harman GE (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96:190–194.  https://doi.org/10.1094/PHYTO-96-0190CrossRefPubMedGoogle Scholar
  3. 3.
    Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, Mukherjee M, Kredics L, Alcaraz LD, Aerts A, Antal Z, Atanasova L, Cervantes-Badillo MG, Challacombe J, Chertkov O, McCluskey K, Coulpier F, Deshpande N, von Döhren H, Ebbole DJ, Esquivel-Naranjo EU, Fekete E, Flipphi M, Glaser F, Gómez-Rodríguez EY, Gruber S, Han C, Henrissat B, Hermosa R, Hernández-Oñate M, Karaffa L, Kosti I, Le Crom S, Lindquist E, Lucas S, Lübeck M, Lübeck PS, Margeot A, Metz B, Misra M, Nevalainen H, Omann M, Packer N, Perrone G, Uresti-Rivera EE, Salamov A, Schmoll M, Seiboth B, Shapiro H, Sukno S, Tamayo-Ramos JA, Tisch D, Wiest A, Wilkinson HH, Zhang M, Coutinho PM, Kenerley CM, Monte E, Baker SE, Grigoriev IV (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40.  https://doi.org/10.1186/gb-2011-12-4-r40CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87:787–799.  https://doi.org/10.1007/s00253-010-2632-1CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley CM (2013) Trichoderma research in the genome era. Annu Rev Phytopathol 51:105–129.  https://doi.org/10.1146/annurev-phyto-082712-102353CrossRefPubMedGoogle Scholar
  6. 6.
    Crutcher FK, Parich A, Schuhmacher R, Mukherjee PS, Zeilinger S, Kenerley CM (2013) A putative terpene cyclase, vir4, is responsible for the biosynthesis of volatile terpene compounds in the biocontrol fungus Trichoderma virens. Fungal Genet Biol 56:67–77.  https://doi.org/10.1016/j.fgb.2013.05.003CrossRefPubMedGoogle Scholar
  7. 7.
    Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J (2016) Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Ecol 92.  https://doi.org/10.1093/femsec/fiw036CrossRefPubMedGoogle Scholar
  8. 8.
    Carreras-Villaseñor N, Sánchez-Arreguín JA, Herrera-Estrella AH (2012) Trichoderma: sensing the environment for survival and dispersal. Microbiology 158:3–16.  https://doi.org/10.1099/mic.0.052688-0CrossRefPubMedGoogle Scholar
  9. 9.
    Lamdan NL, Shalaby S, Ziv T, Kenerley CM, Horwitz BA (2015) Secretome of Trichoderma interacting with maize roots: role in induced systemic resistance. Mol Cell Proteomics 14:1054–1063.  https://doi.org/10.1074/mcp.M114.046607CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma-plant-pathogen interactions. Soil Biol Biochem 40:1–10.  https://doi.org/10.1016/j.soilbio.2007.07.002CrossRefGoogle Scholar
  11. 11.
    Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus enhances biomass production and promotes lateral root growth through an auxin dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592.  https://doi.org/10.1104/pp.108.130369CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Velázquez-Robledo R, Contreras-Cornejo HA, Macías-Rodríguez L, Hernàndez-Morales A, Aguirre J, Casas-Flores S, López-Bucio J, Herrera-Estrella A (2011) Role of the 4-phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism, and induction of plant defense responses. Mol Plant-Microbe Interact 24:1459–1471.  https://doi.org/10.1094/MPMI-02-11-0045CrossRefPubMedGoogle Scholar
  13. 13.
    Müller A, Faubert P, Hagen M, Zu Castell W, Polle A, Schnitzler JP, Rosenkranz M (2013) Volatile profiles of fungi-chemotyping of species and ecological functions. Fungal Genet Biol 54:25–33.  https://doi.org/10.1016/j.fgb.2013.02.005CrossRefPubMedGoogle Scholar
  14. 14.
    Mukherjee PK, Horwitz BA, Kenerley CM (2012) Secondary metabolism in Trichoderma-a genomic perspective. Microbiology 158:35–45.  https://doi.org/10.1099/mic.0.053629-0CrossRefPubMedGoogle Scholar
  15. 15.
    Zachow C, Berg C, Müller H, Monk J, Berg G (2016) Endemic plants harbour specific Trichoderma communities with an exceptional potential for biocontrol of phytopathogens. J Biotechnol 235:162–170.  https://doi.org/10.1016/j.jbiotec.2016.03.049CrossRefPubMedGoogle Scholar
  16. 16.
    Reino JL, Guerrero RF, Hernández-Galán R, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7:89–123CrossRefGoogle Scholar
  17. 17.
    Ramírez-Valdespino CA, Porras-Troncoso MD, Corrales-Escobosa AR, Wrobel K, Martínez-Hernández P, Olmedo-Monfil V (2018) Functional characterization of TvCyt2, a member of the p450 monooxygenases from Trichoderma virens relevant during the association with plants and mycoparasitism. Mol Plant-Microbe Interact 31:289–298.  https://doi.org/10.1094/MPMI-01-17-0015-RCrossRefPubMedGoogle Scholar
  18. 18.
    Shoresh M, Harman GE (2008) The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol 147:2147–2163.  https://doi.org/10.1104/pp.108.123810CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Contreras-Cornejo HA, Macías-Rodríguez LI, Alfaro-Cuevas R, López-Bucio J (2014) Trichoderma improves growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production and Na+ elimination through root exudates. Mol Plant-Microbe Interact 27:503–514.  https://doi.org/10.1094/MPMI-09-13-0265-RCrossRefPubMedGoogle Scholar
  20. 20.
    Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2014) Enhanced plant immunity using Trichoderma. In: Gupta VK (ed) Biotechnology and biology of Trichoderma. Elsevier, Oxford, pp 495–504CrossRefGoogle Scholar
  21. 21.
    Fiorini L, Guglielminetti L, Mariotti L, Curadi M, Picciarelli P, Scartazza A, Sarrocco S, Vannacci G (2016) Trichoderma harzianum T6776 modulates a complex metabolic network to stimulate tomato cv. Micro-Tom growth. Plant Soil 400:351–366.  https://doi.org/10.1007/s11104-015-2736-6CrossRefGoogle Scholar
  22. 22.
    Segarra G, Casanova E, Bellido D, Odena MA, Oliveira E, Trillas I (2007) Proteome, salicylic acid and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7:3943–3952.  https://doi.org/10.1002/pmic.200700173CrossRefPubMedGoogle Scholar
  23. 23.
    Contreras-Cornejo HA, Macías-Rodríguez L, Beltrán-Peña E, Herrera-Estrella A, López-Bucio J (2011) Trichoderma-induced plant immunity likely involves both hormonal and camalexin dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signal Behav 6:1554–1563.  https://doi.org/10.4161/psb.6.10.17443CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Martínez-Medina A, Roldán A, Albacete A, Pascual JA (2011) The interaction with arbuscular mycorrhizal fungi or Trichoderma harzianum alters the shoot hormonal profile in melon plants. Phytochemistry 72:223–229.  https://doi.org/10.1016/j.phytochem.2010.11.008CrossRefPubMedGoogle Scholar
  25. 25.
    Martínez-Medina A, Del Mar Alguacil M, Pascual JA, Van Wees SC (2014) Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants. J Chem Ecol 40:804–815.  https://doi.org/10.1007/s10886-014-0478-1CrossRefPubMedGoogle Scholar
  26. 26.
    Lombardi N, Vitale S, Turrà D, Reverberi M, Fanelli C, Vinale F, Marra R, Ruocco M, Pascale A, d’Errico G, Woo SL, Lorito M (2018) Root exudates of stressed plants stimulate and attract Trichoderma soil fungi. Mol Plant-Microbe Interact 31:982.  https://doi.org/10.1094/MPMI-12-17-0310-RCrossRefPubMedGoogle Scholar
  27. 27.
    Vargas WA, Mandawe JC, Kenerley CM (2009) Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol 151:792–808.  https://doi.org/10.1104/pp.109.141291CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Macías-Rodríguez L, Guzmán-Gómez A, García-Juárez P, Contreras-Cornejo HA (2018) Trichoderma atroviride promotes tomato development and alters the root exudation of carbohydrates, which stimulates fungal growth and the biocontrol of the phytopathogen Phytophthora cinnamomi in a tripartite interaction system. FEMS Microbiol Ecol.  https://doi.org/10.1093/femsec/fiy137
  29. 29.
    Morán-Diez E, Hermosa R, Ambrosino P, Cardoza RE, Gutiérrez S, Lorito M, Monte E (2009) The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum–plant beneficial interaction. Mol Plant-Microbe Interact 22:1021–1031.  https://doi.org/10.1094/MPMI-22-8-1021CrossRefPubMedGoogle Scholar
  30. 30.
    Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749–759.  https://doi.org/10.1038/nrmicro2637CrossRefPubMedGoogle Scholar
  31. 31.
    Mendoza-Mendoza A, Zaid R, Lawry R, Hermosa R, Monte E, Horwitz BA, Mukherjee PK (2018) Molecular dialogues between Trichoderma and roots: role of the fungal secretome. Fungal Biol Rev 32:62–85.  https://doi.org/10.1016/j.fbr.2017.12.001CrossRefGoogle Scholar
  32. 32.
    Nogueira-Lopez G, Greenwood DR, Middleditch M, Winefield C, Eaton C, Steyaert JM, Mendoza-Mendoza A (2018) The apoplastic secretome of Trichoderma virens during interaction with maize roots shows an inhibition of plant defence and scavenging oxidative stress secreted proteins. Front Plant Sci 9:409.  https://doi.org/10.3389/fpls.2018.00409CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Martínez-Medina A, Fernández I, Sánchez-Guzmán MJ, Jung SC, Pascual JA, Pozo MJ (2013) Deciphering the hormonal signaling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Front Plant Sci 4:206.  https://doi.org/10.3389/fpls.2013.00206CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Martínez-Medina A, Van Wees SCM, Pieterse CMJ (2017) Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum. Plant Cell Environ 40:2691–2705.  https://doi.org/10.1111/pce.13016CrossRefPubMedGoogle Scholar
  35. 35.
    Brotman Y, Landau U, Cuadros-Inostroza Á, Takayuki T, Fernie AR, Chet I, Viterbo A, Willmitzer L (2013) Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog 9(3):e1003221.  https://doi.org/10.1371/journal.ppat.1003221CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Singh BN, Dwivedi P, Sarma BK, Singh GS, Singh HB (2018) Trichoderma asperellum T42 reprograms tobacco for enhanced nitrogen utilization efficiency and plant growth when fed with N nutrients. Front Plant Sci 9:163.  https://doi.org/10.3389/fpls.2018.00163CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Arriagada C, Aranda E, Sampedro I, Garcia-Romera I, Ocampo JA (2009) Contribution of the saprobic fungi Trametes versicolor and Trichoderma harzianum and the arbuscular mycorrhizal fungi Glomus deserticola and G. claroideum to arsenic tolerance of Eucalyptus globulus. Bioresour Technol 100:6250–6257.  https://doi.org/10.1016/j.biortech.2009.07.010CrossRefPubMedGoogle Scholar
  38. 38.
    Splivallo R, Fischer U, Göbel C, Fewsner I, Petr K (2009) Truffles regulate root morphogenesis via the production of auxin and ethylene. Plant Physiol 150:2018–2019.  https://doi.org/10.1104/pp.109.141325CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Woodward AW Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735.  https://doi.org/10.1093/aob/mci083CrossRefPubMedGoogle Scholar
  40. 40.
    Chung KR, Shilts T, Esturk U, Timmer LW, Ueng P (2003) Indole derivatives produced by the fungus Colletotrichum acutum causing lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiol Lett 226:23–30.  https://doi.org/10.1016/S0378-1097(03)00605-0CrossRefPubMedGoogle Scholar
  41. 41.
    Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Herrera-Estrella A, Casas-Flores S (2011) Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol 131:15–26.  https://doi.org/10.1007/s10658-011-9782-6CrossRefGoogle Scholar
  42. 42.
    Frankenberger WT, Poth M (1987) Biosynthesis of indole-3-acetic acid by the pine ectomycorrhizal fungus Pisolithus tinctorius. Appl Environ Microbiol 53:2908–2913PubMedPubMedCentralGoogle Scholar
  43. 43.
    López-Coria M, Hernández-Mendoza JL, Sánchez-Nieto S (2016) Trichoderma asperellum induces maize seedling growth by activating the plasma membrane H+-ATPase. Mol Plant-Microbe Interact 29:797–806.  https://doi.org/10.1094/MPMI-07-16-0138-RCrossRefPubMedGoogle Scholar
  44. 44.
    Contreras-Cornejo HA, López-Bucio JS, Méndez-Bravo A, Macías-Rodríguez L, Ramos-Vega M, Guevara-García AA, López-Bucio J (2015) Mitogen-activated protein kinase 6 and ethylene and auxin signaling pathways are involved in Arabidopsis root-system architecture alterations by Trichoderma atroviride. Mol Plant-Microbe Interact 28:701–710.  https://doi.org/10.1094/MPMI-01-15-0005-RCrossRefPubMedGoogle Scholar
  45. 45.
    Contreras-Cornejo HA, Macías-Rodríguez L, Garnica-Vergara A, López-Bucio J (2015) Trichoderma modulates stomatal aperture and leaf transpiration through an abscisic acid-dependent mechanism. J Plant Growth Regul 34:425.  https://doi.org/10.1007/s00344-014-9471-8CrossRefGoogle Scholar
  46. 46.
    Serrano-Carreon L, Hathout Y, Bensoussan M, Belin JM (1993) Production of 6-pentyl-α-pyrone by Trichoderma harzianum from 18:n fatty acid methyl esters. Biotechnol Lett 14:1019–1024.  https://doi.org/10.1007/BF01021051CrossRefGoogle Scholar
  47. 47.
    Cutler HG, Jacyno JM, Phillips RS, vonTersch RL, Cole PD, Montemurro N (1991) Cyclonerodiol from a novel source, Trichoderma koningii: plant growth regulatory activity. Agric Biol Chem 55:243–244.  https://doi.org/10.1080/00021369.1991.10870569CrossRefGoogle Scholar
  48. 48.
    Sawa R, Mori Y, Iinuma H, Naganawa H, Hamada M, Yoshida S, Furutani H, Kajimura Y, Fuwa T, Takeuchi T (1994) Harzianic acid, a new antimicrobial antibiotic from a fungus. J Antibiot 47:731–732.  https://doi.org/10.7164/antibiotics.47.731CrossRefPubMedGoogle Scholar
  49. 49.
    Kawada M, Yoshimoto Y, Kumagai H, Someno T, Momose I, Kawamura N, Isshiki K, Ikeda D (2004) PP2A inhibitors, harzianic acid and related compounds produced by fungal strain F-1531. J Antibiot 57:235–237.  https://doi.org/10.7164/antibiotics.57.235CrossRefPubMedGoogle Scholar
  50. 50.
    Vinale F, Flematti G, Sivasithamparam K, Lorito M, Marra R, Skelton BW, Ghisalberti EL (2009) Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J Nat Prod 72:2032–2035.  https://doi.org/10.1021/np900548pCrossRefPubMedGoogle Scholar
  51. 51.
    Vinale F, Sivasithamparam K, Ghisalberti EL, Woo SL, Nigro M, Marra R, Lombardi N, Pascale A, Ruocco M, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma secondary metabolites active on plants and fungal pathogens. Open Mycol J 8:127–139.  https://doi.org/10.2174/1874437001408010127CrossRefGoogle Scholar
  52. 52.
    Marfori EC, Kajiyama S, Fukusaki E, Kobayashi A (2003) Phytotoxicity of the tetramic acid metabolite trichosetin. Phytochemistry 62:715–721.  https://doi.org/10.1016/S0031-9422(02)00629-5CrossRefPubMedGoogle Scholar
  53. 53.
    Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2007) Volatile 1-octen-3-ol induces a defensive response in Arabidopsis thaliana. J Gen Plant Pathol 73:35–37.  https://doi.org/10.1007/s10327-006-0314-8CrossRefGoogle Scholar
  54. 54.
    Degenkolb T, Dieckmann R, Nielsen KF, Gräfenhan T, Theis C, Zafari D, Chaverri P, Ismaiel A, Brückner H, von Döhren H, Thrane U, Petrini O, Samuels GJ (2008) The Trichoderma brevicompactum clade: a separate lineage with new species, new peptabiotics, and mycotoxins. Mycol Prog 7:177–219.  https://doi.org/10.1007/s11557-008-0563-3CrossRefGoogle Scholar
  55. 55.
    Malmierca MG, Cardoza RE, Alexander NJ, McCormick SP, Collado IG, Hermosa R, Monte E, Gutiérrez S (2013) Relevance of trichothecenes in fungal physiology: Disruption of tri5 in Trichoderma arundinaceum. Fungal Genet Biol 53:22–33.  https://doi.org/10.1016/j.fgb.2013.02.001CrossRefPubMedGoogle Scholar
  56. 56.
    Malmierca MG, Cardoza RE, Alexander NJ, McCormick SP, Hermosa R, Monte E, Gutiérrez S (2012) Involvement of Trichoderma trichothecenes in the biocontrol activity and induction of plant defense-related genes. Appl Environ Microbiol 78:4856–4868.  https://doi.org/10.1128/AEM.00385-12CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Malmierca MG, McCormick SP, Cardoza RE, Monte E, Alexander NJ, Gutiérrez S (2015) Trichodiene production in a Trichoderma harzianum erg1-silenced strain provides evidence of the importance of the sterol biosynthetic pathway in inducing plant defense-related gene expression. Mol Plant-Microbe Interact 28:1181–1197.  https://doi.org/10.1094/MPMI-06-15-0127-RCrossRefPubMedGoogle Scholar
  58. 58.
    Djonović S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceous elicitor by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant-Microbe Interact 19:838–853CrossRefPubMedGoogle Scholar
  59. 59.
    Djonović S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM (2007) A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145:875–889.  https://doi.org/10.1104/pp.107.103689CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Vargas WA, Djonović S, Sukno SA, Kenerley CM (2008) Dimerization controls the activity of fungal elicitors that trigger systemic resistance in plants. J Biol Chem 283:19804–19815.  https://doi.org/10.1074/jbc.M802724200CrossRefPubMedGoogle Scholar
  61. 61.
    Cheng CH, Shen BN, Shang QW, Liu LYD, Peng KC, Chen YH, Chen FF, Hu SF, Wang YT, Wang HC, Wu HY, Lo CT, Lin SS (2018) Gene-to-gene network analysis of the mediation of plant innate immunity by the eliciting plant response-like 1 (Epl1) elicitor of Trichoderma formosa. Mol Plant-Microbe Interact 31:683.  https://doi.org/10.1094/MPMI-01-18-0002-TACrossRefPubMedGoogle Scholar
  62. 62.
    Ruocco M, Lanzuise S, Lombardi N, Woo SL, Vinale F, Marra R, Varlese R, Manganiello G, Pascale A, Scala V, Turrà D, Scala F, Lorito M (2015) Multiple roles and effects of a novel Trichoderma hydrophobin. Mol Plant-Microbe Interact 28:167–179.  https://doi.org/10.1094/MPMI-07-14-0194-RCrossRefGoogle Scholar
  63. 63.
    Mukherjee PK, Wiest A, Ruiz N, Keightley A, Moran-Diez ME, McCluskey K, François Pouchus Y, Kenerley CM (2011) Two classes of new peptaibols are synthesized by a single non-ribosomal peptide synthetase of Trichoderma virens. J Biol Chem 286:4544–4554.  https://doi.org/10.1074/jbc.M110.159723CrossRefPubMedGoogle Scholar
  64. 64.
    Brewer D, Mason FG, Taylor A (1987) The production of alamethicins by Trichoderma spp. Can J Microbiol 33:619–625.  https://doi.org/10.1139/m87-108CrossRefPubMedGoogle Scholar
  65. 65.
    Fujita T, Wada S, Iida A, Nishimura T, Kanai M, Toyama N (1994) Fungal metabolites. XIII. Isolation and structural elucidation of new peptaibols, trichodecenins-I and II, from Trichoderma viride. Chem Pharm Bull (Tokyo) 42:489–494.  https://doi.org/10.1248/cpb.42.489CrossRefGoogle Scholar
  66. 66.
    Oh SU, Lee SJ, Kim JH, Yoo ID (2000) Structural elucidation of new antibiotic peptides, atroviridins A, B and C from Trichoderma atroviride. Tetrahedron Lett 41:61–64.  https://doi.org/10.1016/S0040-4039(99)02000-6CrossRefGoogle Scholar
  67. 67.
    Krause C, Kirschbaumbaum J, Jung G, Brueckner H (2006) Sequence diversity of the peptaibol antibiotic suzukacillin-A from the mold Trichoderma viride. J Pept Sci 12:321–327.  https://doi.org/10.1002/psc.728CrossRefPubMedGoogle Scholar
  68. 68.
    Mohamed-Benkada M, Montagu M, Biard JF, Mondeguer F, Verite P, Dalgalarrondo M, Bissett J, Pouchus YF (2006) New short peptaibols from a marine Trichoderma strain. Rapid Commun Mass Spectrom 20:1176–1180.  https://doi.org/10.1002/rcm.2430CrossRefPubMedGoogle Scholar
  69. 69.
    Degenkolb T, Grafenhan T, Nirenberg HI, Gams W, Bruckner H (2006) Trichoderma brevicompactum complex: rich source of novel and recurrent plant-protective polypeptide antibiotics (peptaibiotics). J Agric Food Chem 54:7047–7061.  https://doi.org/10.1021/jf060788qCrossRefPubMedGoogle Scholar
  70. 70.
    Auvin-Guette C, Rebuffat S, Prigent Y, Bodo B (1992) Trichogin A IV, an 11-residue lipopeptaibol from Trichoderma longibrachiatum. J Am Chem Soc 114:2170–2174.  https://doi.org/10.1021/ja00032a035CrossRefGoogle Scholar
  71. 71.
    Viterbo A, Wiest A, Brotman Y, Chet I, Kenerley C (2007) The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol Plant Pathol 8:737–746.  https://doi.org/10.1111/J.1364-3703.2007.00430.XCrossRefPubMedGoogle Scholar
  72. 72.
    Zook M, Hammerschmidt R (1997) Origin of the thiazole ring of camalexin, a phytoalexin from Arabidopsis thaliana. Plant Physiol 113:463–468.  https://doi.org/10.1104/pp.113.2.46CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Devys M, Barbier M (1991) Indole-3-carboxaldehyde in the cabbage Brassica oleracea: a systematic determination. Phytochemistry 30:389–391.  https://doi.org/10.1016/0031-9422(91)83690-MCrossRefGoogle Scholar
  74. 74.
    Scheler C, Durner J, Astier J (2013) Nitric oxide and reactive oxygen species in plant biotic interactions. Curr Opin Plant Biol 16:534–539.  https://doi.org/10.1016/j.pbi.2013.06.020CrossRefPubMedGoogle Scholar
  75. 75.
    Gupta KJ, Mur LAJ, Brotman Y (2014) Trichoderma asperelloides suppresses nitric oxide generation elicited by Fusarium oxysporum in Arabidopsis roots. Mol Plant-Microbe Interact 27:307–314.  https://doi.org/10.1094/MPMI-06-13-0160-RCrossRefPubMedGoogle Scholar
  76. 76.
    Mastouri F, Björkman T, Harman GE (2012) Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficit. Mol Plant-Microbe Interact 25:1264–1271.  https://doi.org/10.1094/MPMI-09-11-0240CrossRefPubMedGoogle Scholar
  77. 77.
    Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56.  https://doi.org/10.1038/nrmicro797CrossRefGoogle Scholar
  78. 78.
    Harman GE, Petzoldt R, Comis A, Chen J (2004) Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology 94:147–153.  https://doi.org/10.1094/PHYTO.2004.94.2.147CrossRefPubMedGoogle Scholar
  79. 79.
    Harman GE (2000) Myths and dogmas of biocontrol. Changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disease 84:377–393.  https://doi.org/10.1094/PDIS.2000.84.4.377CrossRefGoogle Scholar
  80. 80.
    Bae H, Roberts DP, Lim HS, Strem MD, Park SC, Ryu CM, Melnick RL, Bailey BA (2011) Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol Plant-Microbe Interact 24:336–351.  https://doi.org/10.1094/MPMI-09-10-0221CrossRefPubMedGoogle Scholar
  81. 81.
    Vinale F, Arjona Girona I, Nigro M, Mazzei P, Piccolo A, Ruocco M, Woo S, Ruano Rosa R, López Herrera C, Lorito M (2011) Cerinolactone, a hydroxyl-lactone derivative from Trichoderma cerinum. J Nat Prod 75:103–106.  https://doi.org/10.1021/np200577tCrossRefPubMedGoogle Scholar
  82. 82.
    Omann MR, Lehner S, Escobar-Rodríguez C, Brunner K, Zeilinger S (2012) The seven-transmembrane receptor Gpr1 governs processes relevant for the antagonistic interaction of Trichoderma atroviride with its host. Microbiology 158:107–118.  https://doi.org/10.1099/mic.0.052035-0CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Lin YR, Lo CT, Li SY, Peng KC (2012) Involvement of pachybasin and emodin in self-regulation of Trichoderma harzianum mycoparasitic coiling. J Agric Food Chem 60:2123–2128.  https://doi.org/10.1021/jf202773yCrossRefPubMedGoogle Scholar
  84. 84.
    Miyadera H, Shiomi K, Ui H, Yamaguchi Y, Masuma R, Tomoda H, Miyoshi H, Osanai A, Kita K, Omura S (2003) Atpenins, potent and specific inhibitors of mitochondrial complex II (succinate-ubiquinone oxidoreductase). Proc Natl Acad Sci USA 100:473–477.  https://doi.org/10.1073/pnas.0237315100CrossRefPubMedGoogle Scholar
  85. 85.
    Seidl V, Song L, Lindquistv E, Gruber S, Koptchinskiy A, Zeilinger S, Schmoll M, Martínez P, Sun J, Grigoriev I, Herrera-Estrella A, Baker SE, Kubicek CP (2009) Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genomics 10:567.  https://doi.org/10.1186/1471-2164-10-567CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Benítez T, Rincón AM, Limón MC, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260PubMedGoogle Scholar
  87. 87.
    Lehner SM, Atanasova L, Neumann NK, Krska R, Lemmens M, Druzhinina IS, Schuhmacher R (2013) Isotope-assisted screening for iron-containing metabolites reveals a high degree of diversity among known and unknownsiderophores produced by Trichoderma spp. Appl Environ Microbiol 79:18–31.  https://doi.org/10.1128/AEM.02339-12CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Collison D, Taylor RJ (2002) Fungal siderophores: structures, functions, and applications. Mycol Res 106:1123–1142.  https://doi.org/10.1017/S0953756202006548CrossRefGoogle Scholar
  89. 89.
    Vinale F, Nigro M, Sivasithamparam K, Flematti G, Ghisalberti EL, Ruocco M, Varlese R, Marra R, Lanzuise S, Eid A, Woo SL, Lorito M (2013) Harzianic acid: a novel siderophore from Trichoderma harzianum. FEMS Microbiol Lett 347:123–129.  https://doi.org/10.1111/1574-6968.12231CrossRefPubMedGoogle Scholar
  90. 90.
    Sivasithamparam K, Ghisalberti EL (1998) Secondary metabolism in Trichoderma and Gliocladium. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium. Taylor and Francis, London, pp 139–191Google Scholar
  91. 91.
    Scarselletti R, Faull JL (1994) In vitro activity of 6-pentyl-α-pyrone, a metabolite of Trichoderma harzianum, in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. Mycol Res 98:1207–1209.  https://doi.org/10.1016/S0953-7562(09)80206-2CrossRefGoogle Scholar
  92. 92.
    Cooney JM, Lauren DR, Di Menna ME (2001) Impact of competitive fungi on trichothecene production by Fusarium graminearum. J Agric Food Chem 49:522–526.  https://doi.org/10.1021/jf0006372CrossRefPubMedGoogle Scholar
  93. 93.
    Itoh Y, Kodama K, Furuya K, Takahashi S, Haneishi T, Takiguchi Y, Arai M (1980) A new sesquiterpene antibiotic, heptelidic acid producing organisms, fermentation, isolation and characterization. J Antibiot 33:468–473.  https://doi.org/10.7164/antibiotics.33.468CrossRefPubMedGoogle Scholar
  94. 94.
    Almassi F, Ghisalberti EL, Narbey MJ, Sivasithamparam K (1991) New antibiotics from strains of Trichoderma harzianum. J Nat Prod 54:396–402.  https://doi.org/10.1021/np50074a008CrossRefGoogle Scholar
  95. 95.
    Agarwal SK, Singh SS, Verma S, Kumar S (2000) Antifungal activity of anthraquinone derivatives from Rheum emodi. J Ethnopharmacol 72:43–46.  https://doi.org/10.1016/S0378-8741(00)00195-1CrossRefPubMedGoogle Scholar
  96. 96.
    Coats JH, Meyer CE, Pyke TR (1971) Antibiotic dermadin. US Patent 3,627,882, 14 Dec 1971Google Scholar
  97. 97.
    Chukwujekwu JC, Coombes PH, Mulholland DA, van Staden J (2006) Emodin, an antibacterial anthraquinone from the roots of Cassia occidentalis. S Afr J Bot 72:295–297.  https://doi.org/10.1016/j.sajb.2005.08.003CrossRefGoogle Scholar
  98. 98.
    Brian PW (1944) Production of gliotoxin by Trichoderma viride. Nature 154:667–668CrossRefGoogle Scholar
  99. 99.
    Howell CR, Stipanovic RD (1983) Gliovirin, a new antibiotic from Gliocladium virens, and its role in the biological control of Pythium ultimum. Can J Microbiol 29:321–324.  https://doi.org/10.1139/m83-053CrossRefGoogle Scholar
  100. 100.
    Berg A, Wangun HVK, Nkengfack AE, Schlegel B (2004) Lignoren, a new sesquiterpenoid metabolite from Trichoderma lignorum HKI 0257. J Basic Microbiol 44:317–319.  https://doi.org/10.1002/jobm.200410383CrossRefPubMedGoogle Scholar
  101. 101.
    Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43:143–148.  https://doi.org/10.1111/j.1472-765X.2006.01939.xCrossRefPubMedGoogle Scholar
  102. 102.
    Marfori EC, Kajiyama S, Fusaki E, Kobayashi A (2003) Phytotoxicity of the tetramic acid metabolite trichosetin. Phytochemistry 62:715–721.  https://doi.org/10.1016/S0031-9422(02)00629-5CrossRefPubMedGoogle Scholar
  103. 103.
    Yamano T, Hemmi S, Yamamoto I, Tsubaki K (1970) Trichoviridin, a new antibiotic. Jpn. Tokkyo Koho, JP Patent 45015435, 29 May 1970Google Scholar
  104. 104.
    Tamura A, Kotani H, Naruto S (1975) Trichoviridin and dermadin from Trichoderma sp. TK-1. J Antibiot 28:161–162.  https://doi.org/10.7164/antibiotics.28.161CrossRefPubMedGoogle Scholar
  105. 105.
    Nobuhara M, Tazima H, Shudo K, Itai A, Okamoto T, Iitaka Y (1976) A fungal metabolite, novel isocyano epoxide. Chem Pharm Bull 24:832–834.  https://doi.org/10.1248/cpb.24.832CrossRefGoogle Scholar
  106. 106.
    Kramer R, Abraham WR (2012) Volatile sesquiterpenes from fungi: what are they good for? Phytochem Rev 11:15–37.  https://doi.org/10.1007/s11101-011-9216-2CrossRefGoogle Scholar
  107. 107.
    Yoshikuni Y, Martin VJ, Ferrin TE, Keasling JD (2006) Engineering cotton (+)-delta-cadinene synthase to an altered function: germacrene D-4-ol synthase. Chem Biol 13:91–98.  https://doi.org/10.1016/j.chembiol.2005.10.016CrossRefPubMedGoogle Scholar
  108. 108.
    Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283–291.  https://doi.org/10.1038/nchembio.158CrossRefPubMedGoogle Scholar
  109. 109.
    Stoppacher N, Kluger B, Zeilinger S, Krska R, Schuhmacher R (2010) Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J Microbiol Methods 81:187–193CrossRefPubMedGoogle Scholar
  110. 110.
    Contreras-Cornejo HA, Macías-Rodríguez LI, Herrera-Estrella A, López-Bucio J (2014) The 4-phosphopantetheinyl transferase of Trichoderma virens plays a role in plant protection against Botrytis cinerea through volatile organic compound emission. Plant Soil 379:261–274.  https://doi.org/10.1007/s11104-014-2069-xCrossRefGoogle Scholar
  111. 111.
    Hung R, Lee S, Bennett JW (2013) Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol 6:19–26.  https://doi.org/10.1016/j.funeco.2012.09.005CrossRefGoogle Scholar
  112. 112.
    Schnürer J, Olsson J, Börjesson T (1999) Fungal volatiles as indicators of food and feeds spoilage. Fungal Genet Biol 27:209–217.  https://doi.org/10.1006/fgbi.1999.1139CrossRefPubMedGoogle Scholar
  113. 113.
    Combet E, Henderson J, Eastwood DC, Burton KS (2006) Eight-carbon volatiles in mushrooms and fungi: properties, analysis, and biosynthesis. Mycoscience 47:317–326.  https://doi.org/10.1007/S10267-006-0318-4CrossRefGoogle Scholar
  114. 114.
    Splivallo R, Valdez N, Kirchhoff N, Ona MC, Schmidt JP, Feussner I, Karlovsky P (2012) Intraspecific genotypic variability determines concentrations of key truffle volatiles. New Phytol 194:823–835.  https://doi.org/10.1111/j.1469-8137.2012.04077.xCrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J (2018) The root endophytic fungus Trichoderma atroviride induces foliar herbivory resistance in maize plants. Appl Soil Ecol 124:45–53.  https://doi.org/10.1016/j.apsoil.2017.10.004CrossRefGoogle Scholar
  116. 116.
    Contreras-Cornejo HA, del-Val E, Macías-Rodríguez L, Alarcón A, González-Esquivel CE, Larsen J (2018) Trichoderma atroviride, a maize root associated fungus, increases the parasitism rate of the fall armyworm Spodoptera frugiperda by its natural enemy Campoletis sonorensis. Soil Biol Biochem 122:196–202.  https://doi.org/10.1016/j.soilbio.2018.04.013CrossRefGoogle Scholar
  117. 117.
    Ganassi S, Grazioso P, De Cristofaro A, Fiorentini F, Sabatini MA, Evidente A, Altomare C (2016) Long chain alcohols produced by Trichoderma citrinoviride have phagodeterrent activity against the bird cherry-oat aphid Rhopalosiphum padi. Front Microbiol 7:297.  https://doi.org/10.3389/fmicb.2016.00297CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Battaglia D, Bossi S, Cascone P, Digilio MC, Duran Prieto J, Fanti P, Guerrieri E, Iodice L, Lingua G, Lorito M, Maffei ME, Massa N, Ruocco M, Sasso R, Trotta V (2013) Tomato below ground-above ground interactions: Trichoderma longibrachiatum affects the performance of Macrosiphum euphorbiae and its natural antagonists. Mol Plant-Microbe Interact 26:1249–1256.  https://doi.org/10.1094/MPMI-02-13-0059-RCrossRefPubMedGoogle Scholar
  119. 119.
    Nemcovic M, Jakubikova L, Viden I, Farkas V (2008) Induction of condition by endogenous volatile compounds in Trichoderma spp. FEMS Microbiol Lett 284:231–236.  https://doi.org/10.1111/j.1574-6968.2008.01202.xCrossRefPubMedGoogle Scholar
  120. 120.
    Slater GP, Haskins RH, Hogge LR, Nesbitt LR (1967) Metabolic products from a Trichoderma viride Pers Ex Fries. Can J Chem 45:92–96.  https://doi.org/10.1139/v67-020CrossRefGoogle Scholar
  121. 121.
    De Stefano S, Nicoletti R (1999) Pachybasin and chrysophanol, two anthraquinones produced by the fungus Trichoderma aureoviride. Tabacco 7:21–24Google Scholar
  122. 122.
    Abe N, Murata T, Hirota A (1998) Novel DPPH radical scavengers, bisorbicillinol and demethyltrichodimerol, from a fungus. Biosci Biotechnol Biochem 62:661–666.  https://doi.org/10.1271/bbb.62.661CrossRefPubMedGoogle Scholar
  123. 123.
    Qian-Cutrone J, Huang S, Chang LP, Pirnik DM, Klohr SE, Dalterio RA, Hugill R, Lowe S, Alam M, Kadow KF (1996) Harziphilone and fleephilone, two new HIV REV/RRE binding inhibitors produced by Trichoderma harzianum. J Antibiot 49:990–997.  https://doi.org/10.7164/antibiotics.49.990CrossRefPubMedGoogle Scholar
  124. 124.
    Amagata T, Usami Y, Minoura K, Ito T, Numata A (1998) Cytotoxic substances produced by a fungal strain from a sponge: physico-chemical properties and structures. J Antibiot 51:33–40.  https://doi.org/10.7164/antibiotics.51.33CrossRefPubMedGoogle Scholar
  125. 125.
    Dodge JA, Sato M, Vlahos CJ (1995) Inhibition of phosphatidylinositol 3-kinase with viridin and analogs thereof. European Patent Application 648492, 19 Apr 1995Google Scholar
  126. 126.
    Hanson JR (1995) The viridin family of steroidal antibiotics. Nat Prod Rep 12:381–384.  https://doi.org/10.1039/NP9951200381CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hexon Angel Contreras-Cornejo
    • 1
  • Lourdes Macías-Rodríguez
    • 2
  • Ek del-Val
    • 1
    • 3
  • John Larsen
    • 1
  1. 1.Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Ex-Hacienda de San José de La Huerta, CP 58190Morelia, MichoacánMéxico
  2. 2.Instituto de Investigaciones Químico-BiológicasUniversidad Michoacana de San Nicolás de Hidalgo, Gral. Francisco J. Mujica S/N, Ciudad Universitaria, CP 58030Morelia, MichoacánMéxico
  3. 3.Escuela Nacional de Estudios Superiores Unidad MoreliaUniversidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Ex-Hacienda de San José de La Huerta, CP 58190Morelia, MichoacánMéxico

Personalised recommendations