Preharvest Methyl Jasmonate and Postharvest UVC Treatments: Increasing Stilbenes in Wine

  • Susana Cruz
  • Raúl F. Guerrero
  • Belén Puertas
  • María Isabel Fernández-Marín
  • Emma Cantos-VillarEmail author
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


In varieties of Vitis vinifera, a number of different stilbenes are present in several parts of the grapevine as constitutive compounds of the lignified organs (roots, canes, seeds, and stems) and as induced substances (in leaves and berries) acting as phytoalexins in the mechanisms of grape resistance against pathogens.

This chapter describes the strategies and recent advances regarding ways to increase the stilbene concentration in grapes through the use of a combination of elicitors. Special attention is paid to the treatment combining MEJA (Methyljasmonate)+UVC (Ultraviolet C light), which results in grapes enriched in stilbenes. The effectiveness of treatments is subject to many vinicultural factors, as is the transfer of stilbene compounds into the wine. Maximum skin contact with the must and minimum amounts of fining agent is recommended. However, the production of stilbene-enriched wines is a complex process which is difficult to standardize.


Bioactive Phytoalexins Trans-resveratrol ε-viniferin Induction Dm Stress Elicitors Biosynthesis Functional 





Cinamate 4-hidroxylase




Time required for reaching maximum concentration of resveratrol


Fresh weight






Phenylalanine ammonialyase


Stilbene synthase


Tyrosine ammonia lyase




Ultraviolet C light



The authors thank INIA and FEDER for their financial support of the projects “Stilbenes as a sustainable tool to replace SO2 in winemaking” (RTA2015-00005-C02-01) and “Research and Technological Innovations in Viticulture” (AVA.AVA201601.3). Susana Cruz and Maria I. Fernandez thanks FEDER program (2014–2020) for supporting her contract.


  1. 1.
    Pawlus AD, Waffo-Teguo P, Shaver J, Mérillon JM (2012) Stilbenoid chemistry from wine and the genus Vitis, a review. J Int des Sci de la Vigne et du Vin 46(2):57–111Google Scholar
  2. 2.
    Gabaston J, Cantos-Villar E, Biais B, Waffo-Teguo P, Renouf E, Corio-Costet MF, Richard T, Mérillon JM (2017) Stilbenes from Vitis vinifera L. waste: a sustainable tool for controlling Plasmopara Viticola. J Agric Food Chem 65(13):2711–2718CrossRefGoogle Scholar
  3. 3.
    Gabaston J, Khawand T, Waffo-Teguo P, Decendit A, Richard T, Mérillon JM, Pavela R (2018) Stilbenes from grapevine root: a promising natural insecticide against Leptinotarsa decemlineata. J Pestic Sci 91(2):897–906CrossRefGoogle Scholar
  4. 4.
    Carter LG, D’Orazio JA, Pearson KJ (2014) Resveratrol and cancer: focus on in vivo evidence. Endocr Relat Cancer 21(3):209–225CrossRefGoogle Scholar
  5. 5.
    Bertelli AAA, Das DK (2009) Grapes, wines, resveratrol and heart health. J Cardiovasc Pharmacol 54(6):468–476CrossRefGoogle Scholar
  6. 6.
    Guerrero R, Cantos Villar E (2017) Chapter 3. Stilbenes in the Vitis genus: the key of revalorization in Winemaking. Stilbene. Derivatives, applications and research. Chemistry research and applications. Novinka, New YorkGoogle Scholar
  7. 7.
    Vitrac X, Monti JP, Vercauteren J, Deffieux G, Mérillon JM (2002) Direct liquid chromatographic analysis of resveratrol derivates and flavonols in wines with absorbance and fluorescence detection. Anal Chim Acta 458(1):103–110CrossRefGoogle Scholar
  8. 8.
    Brillante L, De Rosso M, Dalla Vedova A, Maoz I, Flamini R, Tomasi D (2017) Insights on the stilbenes in Raboso Piave grape (Vitis vinifera L.) as a consequence of postharvest vs on-vine dehydration. J Sci Food Agric 98(5):1961–1967CrossRefGoogle Scholar
  9. 9.
    Rosso MD, Soligo S, Panighel A, Carraro R, Vedova AD, Maoz I, Tomasi D, Flamini R (2016) Changes in grape polyphenols (V. vinifera L.) as a consequence of post-harvest withering by high-resolution mass spectrometry: Raboso Piave versus Corvina. J Mass Spectrom 51(9):750–760CrossRefGoogle Scholar
  10. 10.
    Buiarelli F, Coccioli F, Jasionowska R, Merolle M, Terraciano A (2007) Analysis of some stilbenes in Italian wines by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 21(18):2955–2964CrossRefGoogle Scholar
  11. 11.
    Guebailia HA, Chira K, Richard T, Mabrouk T, Furiga A, Vitrac X, Monti JP, Delauny JC, Mérillon JM (2006) Hopeaphenol: the first resveratrol tetramer in wines from North Africa. J Agric Food Chem 54(25):9559–0564CrossRefGoogle Scholar
  12. 12.
    Cantos E, Espín JC, Fernández MJ, Oliva J, Tomás-Barberán FA (2003) Postharvest UV-C-irradiated grapes as a potential source for producing stilbene-enriched red wines. J Agric Food Chem 51(5):1208–1214CrossRefGoogle Scholar
  13. 13.
    Portu J, Santamaría P, López-Alfaro I, López R, Garde-Cerdán T (2015) Methyl jasmonate foliar application to tempranillo vineyard improved grape and wine phenolic content. J Agric Food Chem 63(8):2328–2337CrossRefGoogle Scholar
  14. 14.
    Lee J, Renaker C (2007) Antioxidant capacity and stilbene contents of wines produced in the Snake River Valley of Idaho. Food Chem 105:195–203CrossRefGoogle Scholar
  15. 15.
    Cantos E, Tomás-Barberán FA, Martínez A, Espín JC (2003) Differential stilbene induction susceptibility of seven red wine grape varieties upon post-harvest UV-C irradiation. Eur Food Res Technol 217(3):253–258CrossRefGoogle Scholar
  16. 16.
    Ribeiro de Lima MT, Wafo-Teguo P, Teissendre PL, Pujolas A, Vercauteren J, Cabanis JC, Merillon JM (1999) Determination of stilbenes (trans-astriginin, cis and trans-piceid, and cis and trans-resveratrol) in Portuguese wines. J Agric Food Chem 47(7):2666–2670CrossRefGoogle Scholar
  17. 17.
    Feijoo O, Moreno A, Falque E (2008) Content of trans- and cis-resveratrol in Galician white and red wines. J Food Compos Anal 21(8):608–613CrossRefGoogle Scholar
  18. 18.
    Vitrac X, Bornet A, Vanderline R, Valls J, Richard T, Delauny J-C, Mérillon J-M, Teissedère P-L (2005) Determination of stilbenes (δ-viniferin, trans-astringin, trans-piceid, cis- and trans-resveratrol, ε-viniferin) in Brazilian wines. J Agric Food Chem 53(14):5664–5669CrossRefGoogle Scholar
  19. 19.
    Burns J, Yokota T, Ashihara H, Lean MEJ, Crozier A (2002) Plant foods and herbal sources of resveratrol. J Agric Food Chem 50(11):337–3340CrossRefGoogle Scholar
  20. 20.
    Amira-Guebailia H, Valls J, Richard T, Vitrac X, Monti JP, Delaunay JC, Mérillon JM (2009) Centrifugal partition chromatography followed by HPLC for the isolation of cis-ε-viniferin, a resveratrol dimer newly extracted from a red Algerian wine. Food Chem 113(1):320–324CrossRefGoogle Scholar
  21. 21.
    Zamora-Ros R, Andres-Lacueva C, Lamuela-Raventós RM, Berenguert T, Jakszyn P, Martínez C, Sánchez MJ, Navarro C, Chirlaque MD, Tormo MJ, Quirós JR, Amiano P, Dorronsoro M, Larranaga N, Barricarte A, Ardanaz E, González CA (2008) Concentrations of resveratrol and derivates in foods and estimation of dietary intake in a Spanish population: European Prospective Investigation into Cancer and Nutrition (EPIC)-Spain cohort. Br J Nutr 100(1):188–196CrossRefGoogle Scholar
  22. 22.
    Bavaresco L, Fregoni C, van Zeller de Macedo Basto Gonçalves MI, Velluzi S (2009) Physiology and molecular biology of grapevine stilbenes: an update. In: Roubelakis-Angelakis KA (ed) Grapevine molecular physiology and biotechnology. Springer Netherlands, New YorkGoogle Scholar
  23. 23.
    Lee SJ, Lee JE, Kim HW, Kim SS, Koh KH (2006) Development of Korean red wines using Vitis labrusca varieties: instrumental and sensory characterization. Food Chem 94(3):385–393CrossRefGoogle Scholar
  24. 24.
    Guerrero R, Puertas B, Fernández MI, Palma M, Cantos-Villar E (2010) Induction of stilbenes in grapes by UV-C: comparison of different subspecies of Vitis. Innov Food Sci Emerg Technol 11:231–238CrossRefGoogle Scholar
  25. 25.
    Jeandet P, Bessis R, Maume BF, Meunier P, Peyron D, Trollat P (1995) Effect of enological practices on the resveratrol isomer content of wine. J Agric Food Chem 43(2):316–319CrossRefGoogle Scholar
  26. 26.
    Bavaresco L, Gatti M, Pezzutto S, Fregoni M, Mattivi F (2008) Effect of leaf removal on grape yield, berry composition, and stilbene concentration. Am J Enol Vitic 59(3):292–298Google Scholar
  27. 27.
    Ruiz-García Y, Gil-Muñoz R, López-Roca JM, Martínez-Cutillas A, Romero-Cascales I, Gómez-Plaza E (2013) Increasing the phenolic compound content of grapes by preharvest application of abcisic acid and a combination of methyl jasmonate and benzothiadiazole. J Agric Food Chem 61(16):3978–3983CrossRefGoogle Scholar
  28. 28.
    Cisneros-Zevallos L (2003) The use of controlled postharvest abiotic stresses as a tool for enhancing the nutraceutical content and adding-value of fresh fruits and vegetables. J Food Sci 68(5):1560–1564CrossRefGoogle Scholar
  29. 29.
    Hasan M, Bae H (2017) An overview of stress-induces resveratrol synthesis in grapes: perspectives for resveratrol enriched grape products. Review. Molecules 22(2):294CrossRefGoogle Scholar
  30. 30.
    Iriti M, Rossoni M, Borgo M, Ferrara L, Faoro F (2005) Induction of resistance to gray mold with benzothiadiazole modifies amino acid profile and incresases proanthocyanidins in grape: primary versus secondary metabolism. J Agric Food Chem 53:9133–9139CrossRefGoogle Scholar
  31. 31.
    Iriti M, Rossoni M, Faoro F (2008) Benzothiadiazole enhances resverarol and anthocyanin biosynthesis in grapevine, meanwhile improving resistance to botrytis cinérea. J Agric Food Chem 52:4406–4413CrossRefGoogle Scholar
  32. 32.
    Gómez-Plaza E, Bautista-Ortín AB, Ruiz-García Y, Fernández-Fernández JI, Gil-Muñoz R (2017) Effect of elicitors on the evolution of grape phenolic compounds during the ripening period. J Sci Food Agric 97(3):977–983CrossRefGoogle Scholar
  33. 33.
    Fernández-Marín MI, Guerrero RF, Puertas B, García-Parrilla MC, Collado IG, Cantos Villar E (2013) Impact of preharvest and postharvest treatments combinations on increase of stilbene content in grape. J Int des Sci de la Vigne et du Vin 47(3):203–212Google Scholar
  34. 34.
    Gozzo F (2003) Systemic acquired resistance in crop protection: from nature to a chemical approach. Review. J Agric Food Chem 51(16):4487–4503CrossRefGoogle Scholar
  35. 35.
    Ferri M, Tassoni A, Franceschetti M, Riguetti L, Naldrett MJ, Bagni N (2009) Chitosan treatement induces changes on protein expression profile and stilbene distribution in Vitis vinífera cell suspensions. Proteomics 9:610–624CrossRefGoogle Scholar
  36. 36.
    Aziz A, Trotel-Aziz P, Dhuicq L, Jeandet P, Couderchet M, Vernet G (2006) Chitosan oligomers and copper sulfate induce grapevine defense reactions and resistance to gray mold and downy mildew. Phytopatology 96(11):1188–1194CrossRefGoogle Scholar
  37. 37.
    Romanazzi G, Gabler FM, Smilanick JL (2006) Preharvest chitosan and postharvest UV irradiation treatments suppress grayn mold of table grapes. Plant Dis 90:445–450CrossRefGoogle Scholar
  38. 38.
    Beckers GJ, Spoel SH (2006) Fine-tuning plant defence signalling: salicylate versus jasmonate. Plant Biol 8(1):1–10CrossRefGoogle Scholar
  39. 39.
    Fernández-Marín I, Puertas B, Guerrero R, García-Parrilla MC, Cantos-Villar E (2014) Preharvest methyl jasmonate and postharvest UVC treatments:increasing stilbenes in wine. J Food Sci 79(3):C310–C317CrossRefGoogle Scholar
  40. 40.
    Ruiz-García Y, Romero Cascales I, Gil Muñoz R, Fernández-Fernández JI, López Roca JM, González Plaza E (2012) Improving grape phenolic content and wine chromatic characteristics through the use of two different elicitors; Metthyl jasmonate versus benzothiadiazole. J Agric Food Chem 60:1283–1290CrossRefGoogle Scholar
  41. 41.
    Vezzulli S, Civardi S, Ferrari F, Bavaresco L (2007) Methyl jasmonate treatment as a trigger of resveratrol synthesis in cultivated grapevine (Vitis vinífera L). Am J Enol Vitic 58:530–533Google Scholar
  42. 42.
    Gil-Muñoz R, Fernández-Fernández JI, Crespo-Villegas O, Garde-Cerdán T (2017) Elicitors used as a tool to increase stilbenes in grapes and wines. Food Res Int 98:34–39CrossRefGoogle Scholar
  43. 43.
    Portu J, López R, Baroja E, Santamaría P, Garde-Cerdán T (2016) Improvement of grape and wine phenolic content by foliar application to grapevine of three different elicitors: Methyljasmonate, chitosan, and yeast extract. Food Chem 201:213–221CrossRefGoogle Scholar
  44. 44.
    Ju Y, Liu M, Zhao H, Meng JF, Fang YL (2016) Effect of exogenous abscisic acid and methyl jasmonate on anthocyanin composition, fatty acids, and volatile compounds of Cabernet Sauvignon (Vitis vinifera L.) grape berries. Molecules 21(10):1354–1369CrossRefGoogle Scholar
  45. 45.
    Hasan MM, Yun HK, Kwak EJ, Baek KH (2014) Preparation of resveratrol-enriched grape juice from ultrasonication treated grape fruits. Ultrason Sonochem 21(2):729–734CrossRefGoogle Scholar
  46. 46.
    Bavaresco L, Cantu E, Fregoni M, Trevisan M (1997) Constitutive stilbene contents of grapevine cluster stems as potential source of resveratrol in wine. Vitis 36(3):115–118Google Scholar
  47. 47.
    González-Barrio R, Beltran D, Cantos E, Gil MI, Espín JC, Tomás-Barberán FA (2006) Comparison of ozone and UV-C treatments on the postharvest stilbenoid monomer, dimer, and trimer induction in var. ‘Superior’ white table grapes. J Agric Food Chem 54(12):4222–4228CrossRefGoogle Scholar
  48. 48.
    Jiménez J, Orea JM, Ureña AG, Escribano P, De La Osa PL, Guadarrama A (2007) Short anoxic treatments to enhance trans-resveratrol content in grapes and wine. Eur Food Res Technol 224(3):373–378CrossRefGoogle Scholar
  49. 49.
    Bintsis T, Litopoulou-Tzanetaki E, Robinson RK (2000) Existing and potential applications of ultraviolet light in the food industry. A critical review. J Sci Food Agric 80(6):637–645CrossRefGoogle Scholar
  50. 50.
    Langcake P, Pryce RJ (1977) A new class of phytoalexins from grapevines. Experientia 33(2):151–152CrossRefGoogle Scholar
  51. 51.
    Jeandet P, Douillet-Breuil AC, Bessis R, Debord S, Sbaghi M, Adrian M (2002) Phytoalexins from the Vitaceae:biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. Review. J Agric Food Chem 50(10):2731–2741CrossRefGoogle Scholar
  52. 52.
    Douillet-Breuil AC, Jeandet P, Adrian M, Bessis R (1999) Changes in the phytoalexin content of various Vitis spp. in response to ultraviolet C elicitation. J Agric Food Chem 47(10):4456–4461CrossRefGoogle Scholar
  53. 53.
    Cantos E, García-Viguera C, de Pascual-Teresa S, Tomás-Barberán FA (2000) Effect of postharvest ultraviolet irradiation on resveratrol and other phenolics of cv. Napoleon table grapes. J Agric Food Chem 48(10):4606–4612CrossRefGoogle Scholar
  54. 54.
    Cantos E, Espín JC, Tomás-Barberán FA (2001) Postharvest induction modelin method using Uv irradiation pulses for obtaining resveratrol-enriched table grapes: a new “functional” fruit? J Agric Food Chem 49(10):5052–5058CrossRefGoogle Scholar
  55. 55.
    Guerrero RF, Cantos-Villar E, Fernández-Marín MI, Puertas B, Serrano-Albarrán MJ (2015) Optimising UV-C preharvest light for stilbene synthesis stimulation in table grape: applications. Innov Food Sci Emerg Technol 29:222–229CrossRefGoogle Scholar
  56. 56.
    Cantos E, Espín JC, Tomás-Barberán FA (2002) Postharvest stilbene-enrichment of red and white table grape varieties using UV-C irradiation pulses. J Agric Food Chem 50(22):6322–6329CrossRefGoogle Scholar
  57. 57.
    Luckey TD (1980) Hormesis with ionizing radiation. CRC Press, Boca RatonGoogle Scholar
  58. 58.
    Guerrero RF, Cantos-Villar E, Puertas B, Richard T (2016) Daily preharvest UV-C light maintains the high stilbenoid concentration in grapes. J Agric Food Chem 64(25):5139–5147CrossRefGoogle Scholar
  59. 59.
    Faurie B, Cluzet S, Mérillon JM (2009) Implication of signaling pathways involving calcium, phosphorylation and active oxygen species in methyl jasmonate-induced defense responses in grapevine cell cultures. Plant Physiol 166(17):1863–1877CrossRefGoogle Scholar
  60. 60.
    Romanazzi G, Gabler FM, Smilanik JL (2006) Preharvest chitosan and postharves UV irradiation treatments suppress gray mold of table grapes. Plant Dis 90:445–450CrossRefGoogle Scholar
  61. 61.
    Larronde F, Gaudillère JP, Krisa S, Decendit A, Deffieux G, Mérillon JM (2003) Airbone methyl jasmonate induces stilbene accumulation in leaves and berries of grapevine plants. Am J Enol Vitic 54:63–66Google Scholar
  62. 62.
    Lijavetzky D, Almagro L, Belchi-Navarro S, Martínez-Zapater JM, Bru R, Pedreño MA (2008) Synergestic effect of methyljasmonate and cyclodextrin on stilbene biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures. BMC Res Notes 1:132CrossRefGoogle Scholar
  63. 63.
    Tisserant LP, Aziz A, Jullian N, Jeandet P, Clément C, Courot E, Boitel-Conti M (2016) Enhanced stilbene production and excretion in Vitis vinifera cv pinot noir hairy root cultures. Molecules 21(12):1703CrossRefGoogle Scholar
  64. 64.
    Xu A, Zhan JC, Huang WD (2015) Effects of ultraviolet C, methyl jasmonate and salicylic acid, alone or in combination, on stilbene biosynthesis in cell suspension cultures of Vitis vinifera L. cv. Cabernet Sauvignon. Plant Cell Tissue Organ Cult 122(1):197–211CrossRefGoogle Scholar
  65. 65.
    Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339(8808):1523–1526CrossRefGoogle Scholar
  66. 66.
    Pignatelli P, Ghiselli A, Buchetti B, Carnevale R, Natella F, Germanò G, Fimognari F, Di Santo S, Lenti L, Violi F (2006) Polyphenols synergistically inhibit oxidative stress in subjects given red and white wine. Atherosclerosis 188(1):77–83CrossRefGoogle Scholar
  67. 67.
    Vrhovsek U, Wendelin S, Eder R (1997) Effects of various vinification techniques on the concentration of cis- and trans-resveratrol and resveratrol glucoside isomers in wine. Am J Enol Vitic 48(2):214–219Google Scholar
  68. 68.
    Becker JVW, Armstrong GO, Van Der Merwe MJ, Lambrechts MG, Vivier MA, Pretorius IS (2003) Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Res 4(1):79–85CrossRefGoogle Scholar
  69. 69.
    Castellari M, Spinabelli U, Riponi C, Amati A (1998) Influence of some technological practices on the quantity of resveratrol in wine. Z Lebensm Unters Forsch 206(3):151–155CrossRefGoogle Scholar
  70. 70.
    Castro RI, Forero-Doria O, Guzmán L, Laurie VF, Valdés O, Ávila-Salas F, López-Cortés X, Santos LS (2016) New polymer for removal of wine phenolics: poly(N-(3-(N-isobutyrylisobutyramido)-3-oxopropyl)acrylamide) (P-NIOA). Food Chem 213:554–560CrossRefGoogle Scholar
  71. 71.
    Soleas GJ, Diamandis EP (1995) Influences of viticultural and oenological factor on changes in cis- and trans-resveratrol in comercial wines. J Wine Res 6(2):107–121CrossRefGoogle Scholar
  72. 72.
    Moreno-Labanda JF, Mallavia R, Pérez-Fons L, Lizama V, Saura D, Micol V (2004) Determination of piceid and resveratrol in Spanish wines deriving from Monastrell (Vitis vinífera, L.) grape variety. J Agric Food Chem 52(17):5396–5403CrossRefGoogle Scholar
  73. 73.
    Guerrero RF, Puertas B, Jiménez MJ, Cacho J, Cantos-Villar E (2010) Monitoring the process to obtain red wine enriched in resveratrol and piceatannol without quality loss. Food Chem 122(1):195–202CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Susana Cruz
    • 1
  • Raúl F. Guerrero
    • 1
  • Belén Puertas
    • 1
  • María Isabel Fernández-Marín
    • 1
  • Emma Cantos-Villar
    • 1
    Email author
  1. 1.Rancho de la Merced.Instituto de Investigación y Formación Agraria y Pesquera (IFAPA) Jerez de la FronteraSpain

Personalised recommendations