Advertisement

Novel Superabsorbent Cellulose-Based Hydrogels: Present Status, Synthesis, Characterization, and Application Prospects

  • You Wei Chen
  • Siti Hajjar Binti Hassan
  • Mazlita Yahya
  • Hwei Voon Lee
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

Over the past century, hydrogels have emerged as an effective material for an immense variety of applications. This contribution provides a brief overview of recent progress in cellulose-based superabsorbent hydrogels, fabrication approaches, materials, and promising applications. Firstly, hydrogels fabricated directly from various polymerization processes are presented. Secondly, we review on the stimuli-responsive hydrogels such as the role of temperature, electric potential, pH, and ionic strength to control the role of hydrogel in different applications. Also, the synthesis route and its formation mechanism for the production of smart superabsorbent, macro- and nano-hydrogels are addressed. In addition, several applications and future research in cellulose-based superabsorbent hydrogels are also discussed in this chapter.

Keywords

Hydrogel Polymerization reaction Superabsorbent Stimuli-responsive Biopolymer 

Notes

Acknowledgments

The authors are grateful for the financial support from the University of Malaya: SATU Joint Research Scheme (ST015-2017) and Postgraduate Research Grant Scheme (PPP) (PG249-2016A, PG253-2016A).

References

  1. 1.
    Kopeček J (2007) Hydrogel biomaterials: a smart future? Biomaterials 28(34):5185–5192PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267CrossRefGoogle Scholar
  4. 4.
    Kopeček J, Yang J (2012) Smart self-assembled hybrid hydrogel biomaterials. Angew Chem Int Ed 51(30):7396–7417CrossRefGoogle Scholar
  5. 5.
    Khan S, Ullah A, Ullah K, Rehman NU (2016) Insight into hydrogels. Des Monomers Polym 19(5):456–478CrossRefGoogle Scholar
  6. 6.
    Gulrez SK, Al-Assaf S, Phillips GO (2011) Hydrogels: methods of preparation, characterisation and applications. In: Progress in molecular and environmental bioengineering-from analysis and modeling to technology applications. InTech, RijekaGoogle Scholar
  7. 7.
    Das N (2013) Preparation methods and properties of hydrogel: a review. Int J Pharm Pharm Sci 5(3):112–117Google Scholar
  8. 8.
    Chai Q, Jiao Y, Yu X (2017) Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels 3(1):6CrossRefGoogle Scholar
  9. 9.
    Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729CrossRefGoogle Scholar
  10. 10.
    Ma J, Li X, Bao Y (2015) Advances in cellulose-based superabsorbent hydrogels. RSC Adv 5(73):59745–59757CrossRefGoogle Scholar
  11. 11.
    Hennink WE, Van Nostrum CF (2012) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 64:223–236CrossRefGoogle Scholar
  12. 12.
    Gibas I, Janik H (2010) Synthetic polymer hydrogels for biomedical applications. Chem Chem Technol 4(4):297–304Google Scholar
  13. 13.
    Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: a review. Polym Plast Technol Eng 50(14):1475–1486CrossRefGoogle Scholar
  14. 14.
    Zhao W, Jin X, Cong Y, Liu Y, Fu J (2013) Degradable natural polymer hydrogels for articular cartilage tissue engineering. J Chem Technol Biotechnol 88(3):327–339CrossRefGoogle Scholar
  15. 15.
    Bel’nikevich N, Bobrova N, Elokhovskii VY, Zoolshoev Z, Smirnov M, Elyashevich G (2011) Effect of initiator on the structure of hydrogels of cross-linked polyacrylic acid. Russ J Appl Chem 84(12):2106–2113CrossRefGoogle Scholar
  16. 16.
    Xiao X (2007) Effect of the initiator on thermosensitive rate of poly (N-isopropylacrylamide) hydrogels. Express Polym Lett 1:232–235CrossRefGoogle Scholar
  17. 17.
    Kaihara S, Matsumura S, Fisher JP (2008) Synthesis and characterization of cyclic acetal based degradable hydrogels. Eur J Pharm Biopharm 68(1):67–73PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Betancourt T, Pardo J, Soo K, Peppas NA (2010) Characterization of pH-responsive hydrogels of poly(itaconic acid-g-ethylene glycol) prepared by UV-initiated free radical polymerization as biomaterials for oral delivery of bioactive agents. J Biomed Mater Res A 93(1):175–188PubMedPubMedCentralGoogle Scholar
  19. 19.
    Wu H, Yu G, Pan L, Liu N, McDowell MT, Bao Z, Cui Y (2013) Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun 4:1943PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23CrossRefGoogle Scholar
  21. 21.
    Wong RSH, Ashton M, Dodou K (2015) Effect of crosslinking agent concentration on the properties of unmedicated hydrogels. Pharmaceutics 7(3):305–319PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng C 57:414–433CrossRefGoogle Scholar
  23. 23.
    Haraguchi K, Xu Y, Li G (2011) Poly (N-isopropylacrylamide) prepared by free-radical polymerization in aqueous solutions and in nanocomposite hydrogels. Macromol Symp 306-307:33. Wiley Online LibraryCrossRefGoogle Scholar
  24. 24.
    Jeong GT, Lee KM, Yang HS, Park SH, Park JH, Sunwoo C, Ryu HW, Kim D, Lee WT, Kim HS (2007) Synthesis of poly(sorbitan methacrylate) hydrogel by free-radical polymerization. Appl Biochem Biotechnol 137–140(1–12):935–946PubMedPubMedCentralGoogle Scholar
  25. 25.
    Thürmer MB, Diehl CE, Brum FJB, Santos LA (2014) Preparation and characterization of hydrogels with potential for use as biomaterials. Mater Res 17:109–113CrossRefGoogle Scholar
  26. 26.
    Reis EF, Campos FS, Lage AP, Leite RC, Heneine LG, Vasconcelos WL, Lobato ZIP, Mansur HS (2006) Synthesis and characterization of poly(vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption. Mater Res 9(2):185–191CrossRefGoogle Scholar
  27. 27.
    Liu ZQ, Wei Z, Zhu XL, Huang GY, Xu F, Yang JH, Osada Y, Zrínyi M, Li JH, Chen YM (2015) Dextran-based hydrogel formed by thiol-Michael addition reaction for 3D cell encapsulation. Colloids Surf B Biointerfaces 128:140–148PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Bakota EL, Aulisa L, Galler KM, Hartgerink JD (2011) Enzymatic cross-linking of a nanofibrous peptide hydrogel. Biomacromolecules 12(1):82–87PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Bajpai S, Bajpai M, Sharma L (2007) Inverse suspension polymerization of poly(methacrylic acid-co-partially neutralized acrylic acid) superabsorbent hydrogels: synthesis and water uptake behavior. Des Monomers Polym 10(2):181–192CrossRefGoogle Scholar
  30. 30.
    Abd Alla SG, Said HM, El-Naggar AWM (2004) Structural properties of γ-irradiated poly(vinyl alcohol)/poly(ethylene glycol) polymer blends. J Appl Polym Sci 94(1):167–176CrossRefGoogle Scholar
  31. 31.
    Doria-Serrano MC, Ruiz-Treviño FA, Rios-Arciga C, Hernández-Esparza M, Santiago P (2001) Physical characteristics of poly(vinyl alcohol) and calcium alginate hydrogels for the immobilization of activated sludge. Biomacromolecules 2(2):568–574PubMedCrossRefGoogle Scholar
  32. 32.
    de Jong SJ, De Smedt SC, Demeester J, van Nostrum CF, Kettenes-van den Bosch JJ, Hennink WE (2001) Biodegradable hydrogels based on stereocomplex formation between lactic acid oligomers grafted to dextran. J Control Release 72(1):47–56PubMedCrossRefGoogle Scholar
  33. 33.
    Navarra MA, Dal Bosco C, Serra Moreno J, Vitucci FM, Paolone A, Panero S (2015) Synthesis and characterization of cellulose-based hydrogels to be used as gel electrolytes. Membranes 5(4):810–823PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Penco M, Marcioni S, Ferruti P, D’Antone S, Deghenghi R (1996) Degradation behaviour of block copolymers containing poly(lactic-glycolic acid) and poly(ethylene glycol) segments. Biomaterials 17(16):1583–1590PubMedCrossRefGoogle Scholar
  35. 35.
    Wang Y, Liu C, Fan L, Sheng Y, Mao J, Chao G, Li J, Tu M, Qian Z (2005) Synthesis of biodegradable poly(butylene terephthalate)/poly(ethylene glycol)(PBT/PEG) multiblock copolymers and preparation of indirubin loaded microspheres. Polym Bull 53(3):147–154CrossRefGoogle Scholar
  36. 36.
    Patil S (2008) Crosslinking of polysaccharides: methods and applications. Latest Rev 6(2):1Google Scholar
  37. 37.
    Kulkarni N, Wakte P, Naik J (2015) Development of floating chitosan-xanthan beads for oral controlled release of glipizide. Int J Pharma Investig 5(2):73CrossRefGoogle Scholar
  38. 38.
    Francis R, Kumar DS (2016) Biomedical applications of polymeric materials and composites. Wiley, Weinheim, GermanyGoogle Scholar
  39. 39.
    Zustiak SP, Wei Y, Leach JB (2012) Protein–hydrogel interactions in tissue engineering: mechanisms and applications. Tissue Eng Pt B-Rev 19(2):160–171CrossRefGoogle Scholar
  40. 40.
    Akhtar MF, Hanif M, Ranjha NM (2016) Methods of synthesis of hydrogels…a review. Saudi Pharm J 24(5):554–559PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    He M, Zhao Y, Duan J, Wang Z, Chen Y, Zhang L (2014) Fast contact of solid–liquid interface created high strength multi-layered cellulose hydrogels with controllable size. ACS Appl Mater Interface 6(3):1872–1878CrossRefGoogle Scholar
  42. 42.
    Bassil M, AL Moussawel J, Ibrahim M, Azzi G, El Tahchi M (2014) Electrospinning of highly aligned and covalently cross-linked hydrogel microfibers. J Appl Polym Sci 131(22):41092CrossRefGoogle Scholar
  43. 43.
    Cook JP, Goodall GW, Khutoryanskaya OV, Khutoryanskiy VV (2012) Microwave-assisted hydrogel synthesis: a new method for crosslinking polymers in aqueous solutions. Macromol Rapid Commun 33(4):332–336PubMedCrossRefGoogle Scholar
  44. 44.
    Tomšič B, Simončič B, Orel B, Vilčnik A, Spreizer H (2007) Biodegradability of cellulose fabric modified by imidazolidinone. Carbohydr Polym 69(3):478–488CrossRefGoogle Scholar
  45. 45.
    Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2(2):353PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Fajardo A, Pereira A, Rubira A, Valente A, Muniz E (2015) Stimuli-responsive polysaccharide-based hydrogels. In: Polysaccharide hydrogels. Pan Stanford, Singapore, pp 325–366CrossRefGoogle Scholar
  47. 47.
    Li L, Thangamathesvaran PM, Yue CY, Tam KC, Hu X, Lam YC (2001) Gel network structure of methylcellulose in water. Langmuir 17(26):8062–8068CrossRefGoogle Scholar
  48. 48.
    Sammon C, Bajwa G, Timmins P, Melia CD (2006) The application of attenuated total reflectance Fourier transform infrared spectroscopy to monitor the concentration and state of water in solutions of a thermally responsive cellulose ether during gelation. Polymer 47(2):577–584CrossRefGoogle Scholar
  49. 49.
    Sekiguchi Y, Sawatari C, Kondo T (2003) A gelation mechanism depending on hydrogen bond formation in regioselectively substituted O-methylcelluloses. Carbohydr Polym 53(2): 145–153CrossRefGoogle Scholar
  50. 50.
    Joshi SC, Liang CM, Lam YC (2008) Effect of solvent state and isothermal conditions on gelation of methylcellulose hydrogels. J Biomater Sci Polym Ed 19(12):1611–1623PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Weiss P, Gauthier O, Bouler JM, Grimandi G, Daculsi G (1999) Injectable bone substitute using a hydrophilic polymer. Bone 25(2):67S–70SPubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Silva SM, Pinto FV, Antunes FE, Miguel MG, Sousa JJ, Pais AA (2008) Aggregation and gelation in hydroxypropylmethyl cellulose aqueous solutions. J Colloid Interface Sci 327(2): 333–340PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Vinatier C, Gauthier O, Fatimi A, Merceron C, Masson M, Moreau A, Moreau F, Fellah B, Weiss P, Guicheux J (2009) An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects. Biotechnol Bioeng 102(4):1259–1267PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84(1):40–53CrossRefGoogle Scholar
  55. 55.
    Trojani C, Weiss P, Michiels JF, Vinatier C, Guicheux J, Daculsi G, Gaudray P, Carle GF, Rochet N (2005) Three-dimensional culture and differentiation of human osteogenic cells in an injectable hydroxypropylmethylcellulose hydrogel. Biomaterials 26(27):5509–5517PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Hirsch SG, Spontak RJ (2002) Temperature-dependent property development in hydrogels derived from hydroxypropyl cellulose. Polymer 43(1):123–129CrossRefGoogle Scholar
  57. 57.
    Demitri C, Scalera F, Madaghiele M, Sannino A, Maffezzoli A (2013) Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. Int J Polym Sci 2013:Article ID 435073.  https://doi.org/10.1155/2013/435073. 6 pagesCrossRefGoogle Scholar
  58. 58.
    Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18(1):53–75CrossRefGoogle Scholar
  59. 59.
    Kimura A, Nagasawa N, Taguchi M (2014) Cellulose gels produced in room temperature ionic liquids by ionizing radiation. Radiat Phys Chem 103:216–221CrossRefGoogle Scholar
  60. 60.
    Petrov P, Petrova E, Stamenova R, Tsvetanov CB, Riess G (2006) Cryogels of cellulose derivatives prepared via UV irradiation of moderately frozen systems. Polymer 47(19): 6481–6484CrossRefGoogle Scholar
  61. 61.
    Ebara M, Kotsuchibashi Y, Uto K, Aoyagi T, Kim YJ, Narain R, Idota N, Hoffman JM (2014) Smart hydrogels. In: Smart biomaterials. Springer, Tokyo, pp 9–65Google Scholar
  62. 62.
    Gil ES, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29(12):1173–1222CrossRefGoogle Scholar
  63. 63.
    Sharma K, Singh V, Arora A (2011) Natural biodegradable polymers as matrices in transdermal drug delivery. Int J Drug Dev Res 32:85–103Google Scholar
  64. 64.
    Thakur A, Wanchoo R, Singh P (2011) Structural parameters and swelling behavior of pH sensitive poly (acrylamide-co-acrylic acid) hydrogels. Chem Biochem Eng Q 25(2):181–194Google Scholar
  65. 65.
    Onofrei M, Filimon A (2016) Cellulose-based hydrogels: designing concepts, properties, and perspectives for biomedical and environmental applications. In: Polymer science: research advances, practical applications and educational aspects. Formatex, Badajoz, pp 108–120Google Scholar
  66. 66.
    Sakaguchi T, Nagano S, Hara M, Hyon S-H, Patel M, Matsumura K (2017) Facile preparation of transparent poly (vinyl alcohol) hydrogels with uniform microcrystalline structure by hot-pressing without using organic solvents. Polym J 49(7):535–542CrossRefGoogle Scholar
  67. 67.
    Karoyo AH, Wilson LD (2017) Physicochemical properties and the gelation process of supramolecular hydrogels: a review. Gels 3(1):1CrossRefGoogle Scholar
  68. 68.
    Borzacchiello A, Ambrosio L (2009) Structure-property relationships. In: Hydrogels in hydrogels. Springer, Berlin, pp 9–20CrossRefGoogle Scholar
  69. 69.
    Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18(11):1345–1360CrossRefGoogle Scholar
  70. 70.
    Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46(1):92–100CrossRefGoogle Scholar
  71. 71.
    Pourjavadi A, Ayyari M, Amini-Fazl M (2008) Taguchi optimized synthesis of collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel. Eur Polym J 44(4):1209–1216CrossRefGoogle Scholar
  72. 72.
    Demitri C, Del Sole R, Scalera F, Sannino A, Vasapollo G, Maffezzoli A, Ambrosio L, Nicolais L (2008) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci 110(4):2453–2460CrossRefGoogle Scholar
  73. 73.
    Luo X, Zhang L (2013) New solvents and functional materials prepared from cellulose solutions in alkali/urea aqueous system. Food Res Int 52(1):387–400CrossRefGoogle Scholar
  74. 74.
    Fekete T, Borsa J, Takács E, Wojnárovits L (2016) Synthesis of cellulose-based superabsorbent hydrogels by high-energy irradiation in the presence of crosslinking agent. Radiat Phys Chem 118:114–119CrossRefGoogle Scholar
  75. 75.
    Duan J, Zhang X, Jiang J, Han C, Yang J, Liu L, Lan H, Huang D (2014) The synthesis of a novel cellulose physical gel. J Nanomater 2014:1CrossRefGoogle Scholar
  76. 76.
    D’Arrigo G (2013) Macro and nano shaped polysaccharide hydrogels as drug delivery systems. Northeastern University, BostonGoogle Scholar
  77. 77.
    Li L, Jiang R, Chen J, Wang M, Ge X (2017) In situ synthesis and self-reinforcement of polymeric composite hydrogel based on particulate macro-RAFT agents. RSC Adv 7(3): 1513–1519CrossRefGoogle Scholar
  78. 78.
    Feeney M, Giannuzzo M, Paolicelli P, Casadei MA (2007) Hydrogels of dextran containing nonsteroidal anti-inflammatory drugs as pendant agents. Drug Deliv 14(2):87–93PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Zhang Y, Liu Y, Liu J, Guo P, Heng L (2017) Super water absorbency OMMT/PAA hydrogel materials with excellent mechanical properties. RSC Adv 7(24):14504–14510CrossRefGoogle Scholar
  80. 80.
    Sannino A, Esposito A, Nicolais L, Del Nobile M, Giovane A, Balestrieri C, Esposito R, Agresti M (2000) Cellulose-based hydrogels as body water retainers. J Mater Sci-Mater M 11(4):247–253CrossRefGoogle Scholar
  81. 81.
    Sannino A, Mensitieri G, Nicolais L (2004) Water and synthetic urine sorption capacity of cellulose-based hydrogels under a compressive stress field. J Appl Polym Sci 91(6): 3791–3796CrossRefGoogle Scholar
  82. 82.
    Sannino A, Esposito A, Rosa AD, Cozzolino A, Ambrosio L, Nicolais L (2003) Biomedical application of a superabsorbent hydrogel for body water elimination in the treatment of edemas. J Biomed Mater Res A 67((3):1016–1024CrossRefGoogle Scholar
  83. 83.
    Li X, He JZ, Hughes JM, Liu YR, Zheng YM (2014) Effects of super-absorbent polymers on a soil–wheat (Triticum aestivum L.) system in the field. Appl Soil Ecol 73:58–63CrossRefGoogle Scholar
  84. 84.
    Salmawi KME, El-Naggar AA, Ibrahim SM (2018) Gamma irradiation synthesis of carboxymethyl cellulose/acrylic acid/clay superabsorbent hydrogel. Adv Polym Technol 37(2), 515–521CrossRefGoogle Scholar
  85. 85.
    Li J, Jiang M, Wu H, Li Y (2009) Addition of modified bentonites in polymer gel formulation of 2, 4-D for its controlled release in water and soil. J Agric Food Chem 57(7):2868–2874PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Kołodyńska D, Skiba A, Be G, Hubicki Z (2016) Hydrogels from fundaments to application. In: Emerging concepts in analysis and applications of hydrogels. InTech, ViennaGoogle Scholar
  87. 87.
    Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Control Release 119(1):5–24PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Xiaoyu N, Yuejin W, Zhengyan W, Lin W, Guannan Q, Lixiang Y (2013) A novel slow-release urea fertiliser: physical and chemical analysis of its structure and study of its release mechanism. Biosyst Eng 115(3):274–282CrossRefGoogle Scholar
  89. 89.
    Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Bortolin A, Aouada FA, Mattoso LH, Ribeiro C (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agric Food Chem 61(31):7431–7439PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Davidson DW, Verma MS, Gu FX (2013) Controlled root targeted delivery of fertilizer using an ionically crosslinked carboxymethyl cellulose hydrogel matrix. Springerplus 2(1):318PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Davidson DGu FX (2012) Materials for sustained and controlled release of nutrients and molecules to support plant growth. J Agric Food Chem 60(4):870–876CrossRefGoogle Scholar
  93. 93.
    Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17(6):451Google Scholar
  94. 94.
    Spagnol C, Rodrigues FH, Pereira AG, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly(acrylic acid). Carbohydr Polym 87(3):2038–2045CrossRefGoogle Scholar
  95. 95.
    Liu H, Zhang Y, Yao J (2014) Preparation and properties of an eco-friendly superabsorbent based on flax yarn waste for sanitary napkin applications. Fibers Polym 15(1):145CrossRefGoogle Scholar
  96. 96.
    Zhang Y, Wu F, Liu L, Yao J (2013) Synthesis and urea sustained-release behavior of an eco-friendly superabsorbent based on flax yarn wastes. Carbohydr Polym 91(1):277–283PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Zhang J, Wang Q, Wang A (2007) Synthesis and characterization of chitosan-g-poly (acrylic acid)/attapulgite superabsorbent composites. Carbohydr Polym 68(2):367–374CrossRefGoogle Scholar
  98. 98.
    Marcì G, Mele G, Palmisano L, Pulito P, Sannino A (2006) Environmentally sustainable production of cellulose-based superabsorbent hydrogels. Green Chem 8(5):439–444CrossRefGoogle Scholar
  99. 99.
    Zhou Y, Fu S, Zhang L, Zhan H, Levit MV (2014) Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb (II). Carbohydr Polym 101:75–82PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Tripathy J, Mishra DK, Behari K (2009) Graft copolymerization of N-vinylformamide onto sodium carboxymethylcellulose and study of its swelling, metal ion sorption and flocculation behaviour. Carbohydr Polym 75(4):604–611CrossRefGoogle Scholar
  101. 101.
    Kamel S, Hassan E, El-Sakhawy M (2006) Preparation and application of acrylonitrile-grafted cyanoethyl cellulose for the removal of copper (II) ions. J Appl Polym Sci 100(1):329–334CrossRefGoogle Scholar
  102. 102.
    Abdel-Aal S, Gad Y, Dessouki A (2006) The use of wood pulp and radiation-modified starch in wastewater treatment. J Appl Polym Sci 99(5):2460–2469CrossRefGoogle Scholar
  103. 103.
    Hashem A, Ahmad F, Fahad R (2008) Application of some starch hydrogels for the removal of mercury (II) ions from aqueous solutions. Adsorpt Sci Technol 26(8):563–579CrossRefGoogle Scholar
  104. 104.
    Rohrbach K, Li Y, Zhu H, Liu Z, Dai J, Andreasen J, Hu L (2014) A cellulose based hydrophilic, oleophobic hydrated filter for water/oil separation. Chem Commun 50(87): 13296–13299CrossRefGoogle Scholar
  105. 105.
    Mulyadi A, Zhang Z, Deng Y (2016) Fluorine-free oil absorbents made from cellulose nanofibril aerogels. ACS Appl Mater Interfaces 8(4):2732–2740PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118CrossRefGoogle Scholar
  107. 107.
    Lloyd AW, Faragher RG, Denyer SP (2001) Ocular biomaterials and implants. Biomaterials 22(8):769–785PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J (2015) Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials 5(4):2054–2130PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007CrossRefGoogle Scholar
  110. 110.
    Lin C-CMetters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58(12):1379–1408Google Scholar
  111. 111.
    Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Yang X, Bakaic E, Hoare T, Cranston ED (2013) Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and cytotoxicity. Biomacromolecules 14(12):4447–4455PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Leone G, Fini M, Torricelli P, Giardino R, Barbucci R (2008) An amidated carboxymethylcellulose hydrogel for cartilage regeneration. J Mater Sci-Mater M 19(8):2873–2880CrossRefGoogle Scholar
  114. 114.
    Vinatier C, Magne D, Moreau A, Gauthier O, Malard O, Vignes-Colombeix C, Daculsi G, Weiss P, Guicheux J (2007) Engineering cartilage with human nasal chondrocytes and a silanized hydroxypropyl methylcellulose hydrogel. J Biomed Mater Res A 80((1):66–74CrossRefGoogle Scholar
  115. 115.
    Zohuriaan-Mehr M, Omidian H, Doroudiani S, Kabiri K (2010) Advances in non-hygienic applications of superabsorbent hydrogel materials. J Mater Sci 45(21):5711–5735CrossRefGoogle Scholar
  116. 116.
    Jones V, Grey JE, Harding KG (2006) ABC of wound healing: wound dressings. BMJ- Brit Med J 332(7544):777PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Dabiri G, Damstetter E, Phillips T (2016) Choosing a wound dressing based on common wound characteristics. Adv Wound Care 5(1):32–41CrossRefGoogle Scholar
  118. 118.
    Stashak TS, Farstvedt E, Othic A (2004) Update on wound dressings: indications and best use. Clin Tech Equine Pract 3(2):148–163CrossRefGoogle Scholar
  119. 119.
    Winter GD (1962) Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature 193:293–294PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Murphy PS, Evans GR (2012) Advances in wound healing: a review of current wound healing products. Plast Surg Int 2012:190436PubMedPubMedCentralGoogle Scholar
  121. 121.
    Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1–12PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Liu X, Ma PX (2009) Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials 30(25):4094–4103PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Bukhari SMH, Khan S, Rehanullah M, Ranjha NM (2015) Synthesis and characterization of chemically cross-linked acrylic acid/gelatin hydrogels: effect of pH and composition on swelling and drug release. Int J Polym Sci 2015:Article ID 187961.  https://doi.org/10.1155/2015/187961. 15 pagesCrossRefGoogle Scholar
  124. 124.
    Saini K (2017) Preparation method, properties and crosslinking of hydrogel: a review. PharmaTutor 5(1):27–36Google Scholar
  125. 125.
    Hatefi A, Amsden B (2002) Biodegradable injectable in situ forming drug delivery systems. J Control Release 80(1):9–28PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Park SA, Lee SH, Kim W (2011) Fabrication of hydrogel scaffolds using rapid prototyping for soft tissue engineering. Macromol Res 19(7):694–698CrossRefGoogle Scholar
  127. 127.
    Bakarich SE, Pidcock GC, Balding P, Stevens L, Calvert P (2012) Recovery from applied strain in interpenetrating polymer network hydrogels with ionic and covalent cross-links. Soft Matter 8(39):9985–9988CrossRefGoogle Scholar
  128. 128.
    Jin KM, Kim YH (2008) Injectable, thermo-reversible and complex coacervate combination gels for protein drug delivery. J Control Release 127(3):249–256PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • You Wei Chen
    • 1
  • Siti Hajjar Binti Hassan
    • 1
  • Mazlita Yahya
    • 1
  • Hwei Voon Lee
    • 1
  1. 1.Nanotechnology & Catalysis Research Centre (NANOCAT)Institute of Graduate Studies, University of MalayaKuala LumpurMalaysia

Personalised recommendations