Review of the Mechanistic Roles of Nanocellulose, Cellulosic Fibers, and Hydrophilic Cellulose Derivatives in Cellulose-Based Absorbents

  • Martin A. HubbeEmail author
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


Cellulose – either in solid form or as a highly hydrophilic chemical derivative of cellulose – can serve multiple and synergistic roles in the preparation of absorbent materials to meet the requirements of diverse absorbent products. Progress in the preparation of nanocellulose products, including nanocrystalline cellulose (CNC), nanofibrillated cellulose (NFC), and bacterial cellulose (BC), is opening up new possibilities for the reinforcement of hydrogels. Conventional cellulosic fibers, including kraft pulp fibers (e.g., fluff pulp), mechanically pulped lignocellulosic fibers, and recycled paper fibers can provide a structure to fine-tune the mechanical and drainage properties of products that can include superabsorbent materials. Carboxymethylcellulose (CMC) is an especially strong candidate for preparation of the swellable phase of a hydrogel. The high content of carboxylic acid groups in CMC gives rise to a strong swelling tendency, especially at neutral to alkaline pH values. The uptake of water can be understood based on concepts of osmotic pressure, in addition to any salinity in the fluid that is being absorbed. The swelling can be adjusted by the choice and amount of a cross-linking agent. Notably, some of the needed cross-linking effect can be optionally provided by nanocellulose or conventional cellulosic fibers. Combinations of solid cellulose entities and water-soluble cellulose-based polyelectrolytes can be used to prepare completely bio-based products that offer an alternative to the presently available disposable absorbents, which are based mainly on petroleum-based superabsorbent hydrogels. Chemical and physical aspects of cellulose and its derivatives also help determine what happens during drying of absorbent products; some swelling ability may be lost irreversibly due to highly organized hydrogen bonding and coalescence of the cellulose-based macromolecular chains. Since cellulose can be involved in both the structural and chemical aspects of highly absorbent products, there will be unique mechanistic roles governing water uptake, water holding, and even the environmental impacts of cellulose-based absorbent products.


Hydrogel Carboxymethylcellulose (CMC) Osmotic swelling Cross-linking Biodegradable Nanofibrillated cellulose (NFC) Cellulose nanocrystals (CNCs) 


  1. 1.
    Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos 32(2):277–289CrossRefGoogle Scholar
  2. 2.
    Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: a review. Polym-Plast Technol Eng 50(14):1475–1486CrossRefGoogle Scholar
  3. 3.
    Hubbe MA, Ayoub A, Daystar JS, Venditti RA, Pawlak JJ (2013) Enhanced absorbent products incorporating cellulose and its derivatives: a review. Bioresources 8(4):6556–6629Google Scholar
  4. 4.
    Matushek M (2008) The history of super absorbent chemistry. M2 Polymer Technologies, Inc.
  5. 5.
    Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17(6):451–477Google Scholar
  6. 6.
    Field CB, Behrenfeld JM, Randerson JT, Falkowski P (1998) Primary production of the biosphere, integrating terrestrial and oceanic components. Science 281(5374):237–240PubMedCrossRefGoogle Scholar
  7. 7.
    Parham R, Hergert H (1980) Fluff pulp: a review of its development and current technology. Pulp Pap 54(3):110–115. 121Google Scholar
  8. 8.
    Buchholz FL, Graham AT (2005) Modern superabsorbent polymer technology. Wiley-VCH, New YorkGoogle Scholar
  9. 9.
    Green Facts. Facts on health and the environment.
  10. 10.
    FAO (2010) Pulp and paper capacities. Survey 2009–2014, ISSN 0255–7665Google Scholar
  11. 11.
    Smithers PIRA (2015) The future of global fluff pulp to 2020.
  12. 12.
    CISION (2015) Global superabsorbent polymers market drive by top 6 companies at 80% SAP manufacturing capacity.
  13. 13.
    Nazmi Afshar BA (2014) Chemical profile: CMC. TranTech Consultants.
  14. 14.
    Askari F, Nafisi S, Omidian H, Hashemi SA (1993) Synthesis and characterization of acrylic-based superabsorbents. J Appl Polym Sci 50(10):1851–1855CrossRefGoogle Scholar
  15. 15.
    Theis T, Tomkin J. Sustainability: a comprehensive foundation.
  16. 16.
    Ress BB, Calvert PP, Pettigrew CA, Barlaz MA (1998) Testing anaerobic biodegradability of polymers in a laboratory scale simulated landfill. Environ Sci Technol 32(6):821–827CrossRefGoogle Scholar
  17. 17.
    Wang XM (2014) Biodegradability of forest products in laboratory- and field-scale municipal solid waste (MSW) landfills. PhD dissertation, North Carolina State UniversityGoogle Scholar
  18. 18.
    Fei B, Wach RA, Minomo H, Yoshii F, Kume T (2000) Hydrogel of biodegradable cellulose derivatives. I radiation-induced crosslinking of CMC. J Appl Polym Sci 78(2):278–283CrossRefGoogle Scholar
  19. 19.
    Wach RA, Mitomo H, Yoshii F, Kume T (2001) Hydrogel of biodegradable cellulose derivatives. II effect of some factors on radiation-induced crosslinking of CMC. J Appl Polym Sci 81(12):3030–3037CrossRefGoogle Scholar
  20. 20.
    Lionetto F, Sannino A, Maffezzoli A (2005) Ultrasonic monitoring of the network formation in superabsorbent cellulose based hydrogels. Polymer 46(6):1796–1803CrossRefGoogle Scholar
  21. 21.
    Sahoo PK, Mohapatra R, Sahoo A, DebSarkar N, Swain SK (2005) Characterization, biodegradation, and water absorbency of chemically modified tossa variety jute fiber via pulping and grafting with acrylamide. Int J Polym Anal Charact 10(3–4):153–167CrossRefGoogle Scholar
  22. 22.
    Yoshimura T, Uchikoshi I, Yoshiura Y, Fujioka R (2005) Synthesis and characterization of novel biodegradable superabsorbent hydrogels based on chitin and succinic anhydride. Carbohydr Polym 61(3):322–326CrossRefGoogle Scholar
  23. 23.
    Yoshimura T, Matsuo K, Fujioka R (2006) Novel superabsorbent hydrogels derived from cotton cellulose and succinic anhydride: synthesis and characterization. J Appl Polym Sci 99(6):3251–3256CrossRefGoogle Scholar
  24. 24.
    Wang D, Song ZQ, Shang SB (2008) Characterization and biodegradability of amphoteric superabsorbent polymers. J Appl Polym Sci 107(6):4116–4120CrossRefGoogle Scholar
  25. 25.
    Feng H, Li JA, Wang LJ (2010) Preparation of biodegradable flax shive cellulose-based superabsorbent polymer under microwave irradiation. Bioresources 5(3):1484–1495Google Scholar
  26. 26.
    Kono H, Fujita S (2012) Biodegradable superabsorbent hydrogels derived from cellulose by esterification crosslinking with 1,2,3,4-butanetetracarboxylic dianhydride. Carbohydr Polym 87(4):2582–2588CrossRefGoogle Scholar
  27. 27.
    Xie LH, Liu MZ, Ni BL, Wang YF (2012) Utilization of wheat straw for the preparation of coated controlled-release fertilizer with the function of water retention. J Agric Food Chem 60(28):6921–6928PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Pohland FG, Cross WH, King LW (1993) Codisposal of disposable diapers with shredded municipal refuse in simulated landfills. Water Sci Technol 27(2):209–223CrossRefGoogle Scholar
  29. 29.
    Dutkiewicz JK (2002) Superabsorbent materials from shellfish waste – a review. J Biomed Mater Res 63(3):373–381PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Sannino A, Nicolais L (2005) Concurrent effect of microporosity and chemical structure on the equilibrium sorption properties of cellulose-based hydrogels. Polymer 46(13):4676–4685CrossRefGoogle Scholar
  31. 31.
    Wilske B, Bai M, Lindenstruth B, Bach M, Rezaie Z, Frede HG, Breuer L (2014) Biodegradability of a polyacrylate superabsorbent in agricultural soil. Environ Sci Pollut Res 21(16):9453–9460CrossRefGoogle Scholar
  32. 32.
    Colon J, Mestre-Montserrat M, Puig-Ventosa I, Sanchez A (2013) Performance of compostable baby used diapers in the composting process with the organic fraction of municipal solid waste. Waste Manag 33(5):1097–1103PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Espinosa-Valdemar RM, Sotelo-Navarro PX, Quecholac-Pina X, Garcia-Rivera MA, Beltran-Villavicencio M, Ojeda-Benitez S, Vazquez-Morillas A (2014) Biological recycling of used baby diapers in a small-scale composting system. Resour Conserv Recycl 87:153–157CrossRefGoogle Scholar
  34. 34.
    Nonaka H, Kobayashi A, Funaoka M (2014) Enzymatic hydrolysis of carboxymethyl cellulose and filter paper by immobilized cellulases on lignophenols. J Wood Chem Technol 34(3):169–177CrossRefGoogle Scholar
  35. 35.
    Glasser WG, McCartney BK, Samaranayake G (1994) Cellulose derivatives with low degree of substitution. 3. The biodegradability of cellulose esters using a simple enzyme assay. Biotechnol Prog 10(2):214–219CrossRefGoogle Scholar
  36. 36.
    Vizcarra AT, Lo KV, Liao PH (1994) A life-cycle inventory of baby diapers subject to Canadian conditions. Environ Toxicol Chem 13(10):1707–1716CrossRefGoogle Scholar
  37. 37.
    Mirabella N, Valentina C, Serenella S (2013) Life cycle assessment of bio-based products: a disposable diaper case study. Int J Life Cycle Assess 18:1036–1047CrossRefGoogle Scholar
  38. 38.
    Hubbe MA, Nazhad M, Sánchez C (2010) Composting as a way to convert cellulosic biomass and organic waste into high-value soil amendments: a review. Bioresources 5(4):2808–2854Google Scholar
  39. 39.
    Colon J, Ruggieri L, Sanchez A, Gonzalez A, Puig I (2011) Possibilities of composting disposable diapers with municipal solid wastes. Waste Manag Res 29(3):249–259PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Torrijos M, Sousbie P, Rouez M, Lemunier M, Lessard Y, Galtier L, Simao A, Steyer JP (2014) Treatment of the biodegradable fraction of used disposable diapers by co-digestion with waste activated sludge. Waste Manag 34(3):669–675PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Sotelo-Navarro PX, Poggi-Varaldo HM, Turpin-Marion SJ, Vazquez-Morillas A, Beltran-Villavicencio M, Espinosa-Valdemar RM (2017) Biohydrogen production from used diapers: evaluation of effect of temperature and substrate conditioning. Waste Manag Res 35(3):267–275PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Yeh Y-C, Ogawa M, Ogai H, Sakiyama K (2006) Model development of disposable diapers disposal process. SICE-ICASE International Joint Conference, BusanGoogle Scholar
  43. 43.
    Hallac BB, Ragauskas AJ (2011) Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels Bioprod Biorefin 5(2):215–225CrossRefGoogle Scholar
  44. 44.
    Eriksson I, Haglind I, Lidbrandt O, Salmén L (1991) Fiber swelling favoured by lignin softening. Wood Sci Technol 25:135–144CrossRefGoogle Scholar
  45. 45.
    Hubbe MA, Gardner DJ, Shen W (2015) Contact angles and wettability of cellulosic surfaces: a review of proposed mechanisms and test strategies. Bioresources 10(4):8657–8749Google Scholar
  46. 46.
    Obataya E, Shibutani S, Minato K (2007) Swelling of acetylated wood II: effects of delignification on solvent adsorption of acetylated wood. J Wood Sci 53(5):408–411CrossRefGoogle Scholar
  47. 47.
    Back EL, Allen L (2000) Pitch control, wood resin and deresination. TAPPI Press, Atlanta, p 392Google Scholar
  48. 48.
    Alén R (2000) Chap. 1: Structure and chemical composition of wood. In: Stenius P (ed) Forest products chemistry, Papermaking science and technology series. Fapet Oy, Jyväskyl, pp 12–57Google Scholar
  49. 49.
    Wakelyn PJ, Bertoniere NR, French AD, Thibodeaux DP, Triplett BA, Rousselle M-A, Goynes WR, Edwards JV, Hunter L, McAlister DD, Gamble GR (2007) Cotton fiber chemistry and technology. CRC Press, Boca RatonGoogle Scholar
  50. 50.
    Biermann CJ (1996) Handbook of pulping and papermaking. Academic Press, Elsevier, San DiegoGoogle Scholar
  51. 51.
    Hansen CM (2007) Hansen solubility parameters: a user’s handbook, 2nd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  52. 52.
    Handgraaf J-W, van Erp TS, Meijer EJ (2003) Ab initio molecular dynamic study of liquid methanol. Chem Phys Lett 367(5–6):617–624CrossRefGoogle Scholar
  53. 53.
    Drost-Hansen W (1969) Structure of water near solid interfaces. Ind Eng Chem 61(11):10–47CrossRefGoogle Scholar
  54. 54.
    Berthold J, Rinaudo M, Salmen L (1996) Association of water to polar groups; estimations by an adsorption model for ligno-cellulosic materials. Colloids Surf A Physicochem Eng Asp 112(2–3):117–129CrossRefGoogle Scholar
  55. 55.
    Yang ZZ, Wu Y, Zhao DX (2004) Atom-bond electronegativity equalization method fused into molecular mechanics. I a seven-site fluctuating charge and flexible body water potential function for water clusters. J Chem Phys 120(6):2541–2557PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Poletto M, Zattera AJ, Santana RMC (2012) Structural differences between wood species: evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. J Appl Polym Sci 126(S1):E337–E343CrossRefGoogle Scholar
  57. 57.
    Luzar A, Chandler D (1996) Hydrogen-bond kinetics in liquid water. Nature 379(6560):55–57CrossRefGoogle Scholar
  58. 58.
    Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose 1 beta from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082PubMedCrossRefGoogle Scholar
  59. 59.
    Ahvenainen P, Kontro I, Svedstrom K (2016) Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose 23(2):1073–1086CrossRefGoogle Scholar
  60. 60.
    Bergenstrahle M, Wohlert J, Larsson PT, Mazeau K, Berglund LA (2008) Dynamics of cellulose-water interfaces: NMR spin-lattice relaxation times calculated from atomistic computer simulations. J Phys Chem B 112(9):2590–2595PubMedCrossRefGoogle Scholar
  61. 61.
    Alén R (2000) Chap. 2: Basic chemistry of wood delignification. In: Stenius P (ed) Forest products chemistry, Papermaking science and technology series. Fapet Oy, Jyväskyl, pp 59–104Google Scholar
  62. 62.
    Herrington TM, Petzold JC (1992) An investigation into the nature of charge on the surface of papermaking woodpulps. 2. Analysis of potentiometric titration data. Colloids Surf 64:109–118CrossRefGoogle Scholar
  63. 63.
    Barbucci R, Magnani A, Consumi M (2000) Swelling behavior of carboxymethyl cellulose hydrogels in relation to cross-linking, pH, and charge density. Macromolecules 33(20):7475–7480CrossRefGoogle Scholar
  64. 64.
    Liu P, Peng J, Li J, Wu J (2005) Radiation crosslinking of CMC-Na at low dose and its application as substitute for hydrogel. Radiat Phys Chem 72(5):635–638CrossRefGoogle Scholar
  65. 65.
    Chawla B, Ahluwalia JC (1975) Enthalpies and heat-capacities of dissolution of some sodium carboxylates in water and hydrophobic hydration. J Solut Chem 4(5):383–389CrossRefGoogle Scholar
  66. 66.
    Sixta H, Iakovlev M, Testova L, Roselli A, Hummel M, Borrega M, van Heiningen A, Froschauer C, Schottenberger H (2013) Novel concepts of dissolving pulp production. Cellulose 20(4):1547–1561CrossRefGoogle Scholar
  67. 67.
    Liu P, Zhai M, Li J, Peng J, Wu J (2002) Radiation preparation and swelling behavior of sodium carboxymethylcellulose hydrogels. Radiat Phys Chem 63(3–6):525–528CrossRefGoogle Scholar
  68. 68.
    Bao Y, Ma JZ, Sun YG (2012) Swelling behaviors of organic/inorganic composites based on various cellulose derivatives and inorganic particles. Carbohydr Polym 88(2):589–595CrossRefGoogle Scholar
  69. 69.
    Gurdag G, Guclu G, Ozgumus S (2001) Graft copolymerization of acrylic acid onto cellulose: effects of pretreatments and crosslinking agent. J Appl Polym Sci 80(12):2267–2272CrossRefGoogle Scholar
  70. 70.
    Margutti S, Vicini S, Proietti N, Capitani D, Conio G, Pedemonte E, Segre AL (2002) Physical-chemical characterization of acrylic polymers grafted on cellulose. Polymer 43(23):6183–6194CrossRefGoogle Scholar
  71. 71.
    Beck S, Bouchard J (2014) Auto-catalyzed acidic desulfation of cellulose nanocrystals. Nord Pulp Pap Res J 29(1):6–14CrossRefGoogle Scholar
  72. 72.
    Zhang J, Jiang N, Dang Z, Elder TJ, Ragauskas AJ (2008) Oxidation and sulfonation of cellulosics. Cellulose 15(3):489–496CrossRefGoogle Scholar
  73. 73.
    TAPPI (1981) Water retention value (WRV), useful test method. UM 256. TAPPI Press, AtlantaGoogle Scholar
  74. 74.
    Brandes R, Carminatti C, Mikowski A, Al-Qureshi H, Recouvreux D (2017) A mini-review on the progress of spherical bacterial cellulose production. J Nanopart Res 45:142–154CrossRefGoogle Scholar
  75. 75.
    Lenz J, Schurz J (1990) Fibrillar structure and deformation-behavior of regenerated cellulose fibers 1 methods of investigation and crystallite dimensions. Cellul Chem Technol 24(1):3–27Google Scholar
  76. 76.
    Witter R, Sternberg U, Hesse S, Kondo T, Koch FT, Ulrich AS (2006) C-13 chemical shift constrained crystal structure refinement of cellulose I-alpha and its verification by NMR anisotropy experiments. Macromolecules 39(18):6125–6132CrossRefGoogle Scholar
  77. 77.
    Sethaphong L, Haigler CH, Kubicki JD, Zimmer J, Bonetta D, DeBolt S, Yingling YG (2013) Tertiary model of a plant cellulose synthase. Proc Nat Acad Sci USA 110(18):7512–7517PubMedCrossRefGoogle Scholar
  78. 78.
    Guerriero G, Fugelstad J, Bulone V (2010) What do we really know about cellulose biosynthesis in higher plants? J Integr Plant Biol 52(2):161–175PubMedCrossRefGoogle Scholar
  79. 79.
    Ioelovich M (2008) Cellulose as a nanostructured polymer: a short review. Bioresources 3(4):1403–1418Google Scholar
  80. 80.
    Nishiyama Y, Kim UJ, Kim DY, Katsumata KS, May RP, Langan P (2003) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4(4):1013–1017PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Heiner AP, Kuutti L, Teleman O (1998) Comparison of the interface between water and four surfaces of native crystalline cellulose by molecular dynamics simulations. Carbohydr Res 306(1–2):205–220CrossRefGoogle Scholar
  82. 82.
    Kocherbitov V, Ulvenlund S, Kober M, Jarring K, Arnebrant T (2008) Hydration of microcrystalline cellulose and milled cellulose studied by sorption calorimetry. J Phys Chem B 112(12):3728–3734PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Barnett JR, Bonham VA (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev 79(2):461–472PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Stone J, Scallan A (1966) Influence of drying on the pore structures of the cell wall. In: Bolam F (ed) Consolidation of the paper web. Transactions of the symposium held at Cambridge, September 1965, vol 1. Technical Section British Paper & Board Makers’ Association, London, pp 145–174Google Scholar
  85. 85.
    Beuther PD, Veith MW, Zwick KJ (2010) Characterization of absorbent flow rate in towel and tissue. J Eng Fibers Fabr 5(2):1–7Google Scholar
  86. 86.
    Naderi A, Lindstrom T (2016) A comparative study of the rheological properties of three different nanofibrillated cellulose systems. Nord Pulp Pap Res J 31(3):354–363CrossRefGoogle Scholar
  87. 87.
    Nechyporchuk O, Belgacem MN, Pignon F (2016) Current progress in rheology of cellulose nanofibril suspensions. Biomacromolecules 17(7):2311–2320PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90(2):735–764PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Nair SS, Zhu JY, Deng YL, Ragauskas AJ (2014) Characterization of cellulose nanofibrillation by micro grinding. J Nanopart Res 16(4):article 2349CrossRefGoogle Scholar
  90. 90.
    Lee SY, Chun SJ, Kang IA, Park JY (2009) Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films. J Ind Eng Chem 15(1):50–55CrossRefGoogle Scholar
  91. 91.
    Naderi A, Lindstrom T, Sundstrom J, Pettersson T, Flodberg G, Erlandsson J (2015) Microfluidized carboxymethyl cellulose modified pulp: a nanofibrillated cellulose system with some attractive properties. Cellulose 22(2):1159–1173CrossRefGoogle Scholar
  92. 92.
    Husband JC, Svending P, Skuse DR, Motsi T, Likitalo M, Coles A (2011) Paper filler method. US Patent 8,231,764Google Scholar
  93. 93.
    Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Alcala M, Gonzalez I, Boufi S, Vilaseca F, Mutje P (2013) All-cellulose composites from unbleached hardwood Kraft pulp reinforced with nanofibrillated cellulose. Cellulose 20(6):2909–2921CrossRefGoogle Scholar
  95. 95.
    Kim U, Kuga S (2002) Functionalization of cellulose by periodate oxidation. Cell Commun 56(1):7–10Google Scholar
  96. 96.
    Liimatainen H, Visanko M, Sirvio JA, Hormi OEO, Niinimaki J (2012) Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation. Biomacromolecules 13(5):1592–1597PubMedCrossRefGoogle Scholar
  97. 97.
    Naderi A, Lindstrom T, Sundstrom J (2015) Repeated homogenization, a route for decreasing the energy consumption in the manufacturing process of carboxymethylated nanofibrillated cellulose? Cellulose 22(2):1147–1157CrossRefGoogle Scholar
  98. 98.
    Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499CrossRefGoogle Scholar
  99. 99.
    Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94(1):154–169PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Eichhorn SH (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315CrossRefGoogle Scholar
  102. 102.
    Cheng QZ, Wang JX, McNeel JF, Jacobson PM (2010) Water retention value measurements of cellulosic materials using a centrifuge technique. Bioresources 5(3):1945–1954Google Scholar
  103. 103.
    Lenze CJ, Peksa CA, Sun WM, Hoeger IC, Salas C, Hubbe MA (2016) Intact and broken cellulose nanocrystals as model nanoparticles to promote dewatering and fine-particle retention during papermaking. Cellulose 23(6):3951–3962CrossRefGoogle Scholar
  104. 104.
    Scallan AM (1983) The effect of acid groups on the swelling of pulps: a review. TAPPI J 66(11):73–75Google Scholar
  105. 105.
    Brannon-Peppas L, Peppas NA (1990) The equilibrium swelling behavior of porous and non-porous hydrogels. In: Brannon-Peppas L, Harland RS (eds) Absorbent polymer technology, Studies in polymer science series 8. Elsevier, AmsterdamGoogle Scholar
  106. 106.
    Schuchardt DR, Berg JC (1991) Liquid transport in composite cellulose-superabsorbent fiber networks. Wood Fiber Sci 23(3):342–357Google Scholar
  107. 107.
    Wiryana S, Berg JC (1991) The transport of water in wet-formed networks of cellulose fibers and powdered superabsorbent. Wood Fiber Sci 23(3):457–464Google Scholar
  108. 108.
    Kazanskii KS, Dubrovskii SA (1992) Chemistry and physics of agricultural hydrogels. Adv Polym Sci 104:97–133CrossRefGoogle Scholar
  109. 109.
    Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19(5):375–398Google Scholar
  110. 110.
    Zohuriaan-Mehr MJ, Omidian H, Doroudiani S, Kabiri K (2010) Advances in non-hygienic applications of superabsorbent hydrogel materials. J Mater Sci 45(21):5711–5735CrossRefGoogle Scholar
  111. 111.
    Zhao HB, Kwak JH, Wang Y, Franz JA, White JM, Holladay JE (2006) Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-milling study. Energy Fuel 20(2):807–811CrossRefGoogle Scholar
  112. 112.
    Park S, Venditti RA, Jameel H, Pawlak JJ (2006) Hard to remove water in cellulose fibers characterized by high resolution thermogravimetric analysis – methods development. Cellulose 13(1):23–30CrossRefGoogle Scholar
  113. 113.
    Heiner AP, Teleman O (1997) Interface between monoclinic crystalline cellulose and water: breakdown of the odd/even duplicity. Langmuir 13(3):511–518CrossRefGoogle Scholar
  114. 114.
    Hubbe MA, Sundberg A, Mocchiutti P, Ni Y, Pelton R (2012) Dissolved and colloidal substances (DCS) and the charge demand of papermaking process waters and suspensions: a review. Bioresources 7(4):6109–6193Google Scholar
  115. 115.
    Salam A, Pawlak JJ, Venditti RA, El-tahlawy K (2011a) Incorporation of carboxyl groups into xylan for improved absorbency. Cellulose 18(4):1033–1041CrossRefGoogle Scholar
  116. 116.
    Gavezzotti A (2008) Hydrogen bond strength and bond geometry in cyclic dimers of crystalline carboxylic acids. Acta Crystallogr Sec B Struct Sci 64:401–403CrossRefGoogle Scholar
  117. 117.
    Pourjavadi A, Mahdavinia GR (2005) Superabsorbency and swelling behaviour of partially hydrolyzed carboxymethylcellulose-g-PAAm hydrogels. J Polym Mater 22(3):235–243Google Scholar
  118. 118.
    Pourjavadi A, Ghasemzadeh H (2006) CMC-g-poly (sodium acrylate)/kaolin superabsorbent hydrogel composites: synthesis, characterization and swelling behavior. Polym Polym Compos 14(7):701–712CrossRefGoogle Scholar
  119. 119.
    Abd El-Mohdy HL (2007) Water sorption behavior of CMC/PAM hydrogels prepared by gamma-irradiation and release of potassium nitrate as agrochemical. React Funct Polym 67:1094–1102CrossRefGoogle Scholar
  120. 120.
    Ibrahim SM, El Salmawi KM, Zahran AH (2007) Synthesis of crosslinked superabsorbent carboxymethyl cellulose/acrylamide hydrogels through electron-beam irradiation. J Appl Polym Sci 104(3):2003–2008CrossRefGoogle Scholar
  121. 121.
    Pourjavadi A, Zohuriaan-Mehr MJ, Ghasernpoori SN, Hossienzadeh H (2007) Modified CMC. V. Synthesis and super-swelling behavior of hydrolyzed CMC-g-PAN hydrogel. J Appl Polym Sci 103(2):877–883CrossRefGoogle Scholar
  122. 122.
    Pourjavadi A, Ghasemzadeh H, Mojahedi F (2009) Swelling properties of CMC-g-poly (AAm-co-AMPS) superabsorbent hydrogel. J Appl Polym Sci 113(6):3442–3449CrossRefGoogle Scholar
  123. 123.
    Suo AL, Qian JM, Yao Y, Zhang WG (2007) Synthesis and properties of carboxymethyl cellulose-graft-poly(acrylic acid-co-acrylamide) as a novel cellulose-based superabsorbent. J Appl Polym Sci 103(3):1382–1388CrossRefGoogle Scholar
  124. 124.
    Yang F, Li G, He YG, Ren FX, Wang GX (2009) Synthesis, characterization, and applied properties of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr Polym 78(1):95–99CrossRefGoogle Scholar
  125. 125.
    Bao Y, Ma JZ, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84(1):76–82CrossRefGoogle Scholar
  126. 126.
    Eldin MSM, El-Sherif HM, Soliman EA, Elzatahry AA, Omer AM (2011) Polyacrylamide-grafted carboxymethyl cellulose: smart pH-sensitive hydrogel for protein concentration. J Appl Polym Sci 122(1):469–479CrossRefGoogle Scholar
  127. 127.
    Huang LJ, Xu T, Wang HT, Wang SF (2011) Preparation of super absorbent polymer by carboxymethyl cellulose grafting acrylic acid using low-temperature plasma treatment. Adv Mater 239-242:2578–2583Google Scholar
  128. 128.
    Liu QX, Xu WC, Lv YB, Li JL (2011) Preparation and properties studies of cellulose super absorbent polymer. Advanced Textile Materials, Book Ser: Adv Mater Res 332–334:1816–1819CrossRefGoogle Scholar
  129. 129.
    Wang WB, Wang Q, Wang AQ (2011) pH-responsive carboxymethylcellulose-g-poly(sodium acrylate)/polyvinylpyrrolidone semi-IPN hydrogels with enhanced responsive and swelling properties. Macromol Res 19(1):57–65CrossRefGoogle Scholar
  130. 130.
    Grignon J, Scallan AM (1980) Effect of pH and neutral salts upon the swelling of cellulose gels. J Appl Polym Sci 25(12):2829–2833CrossRefGoogle Scholar
  131. 131.
    Vitta SB, Stahel EP, Stannet VT (1986) The preparation and properties of acrylic and methacrylic acid grafted cellulose prepared by ceric ion initiation. II. Water retention properties. J Appl Polym Sci 32(7):5799–5810CrossRefGoogle Scholar
  132. 132.
    Oppermann W (1995) Superabsorbent materials based on cellulose. Papier 49(12):765–769Google Scholar
  133. 133.
    Sannino A, Maffezzoli A, Nicolais L (2003) Introduction of molecular spacers between the crosslinks of a cellulose-based superabsorbent hydrogel: effects on the equilibrium sorption properties. J Appl Polym Sci 90(1):168–174CrossRefGoogle Scholar
  134. 134.
    Buchholz FL, Pesce SR, Powell CL (2005) Deswelling stresses and reduced swelling of superabsorbent polymer in composites of fiber and superabsorbent polymers. J Appl Polym Sci 98(6):2493–2507CrossRefGoogle Scholar
  135. 135.
    Scallan AM, Tigerström A (1992) Swelling and elasticity of the cell walls of pulp fibers. J Pulp Pap Sci 18(5):J188–J193Google Scholar
  136. 136.
    Chang C, Lue A, Zhang L (2008) Effect of crosslinking methods on the structure and properties of cellulose/PVA hydrogels. Macromol Chem Phys 209(12):1266–1273CrossRefGoogle Scholar
  137. 137.
    Demitri C, Del Sole R, Scalera F, Sannino A, Vasapollo G, Maffezzoli A, Ambrosio L, Nicolais L (2008) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci 110(4):2453–2460CrossRefGoogle Scholar
  138. 138.
    Guilherme MR, Campese GM, Radovanovic E, Rubira AF, Feitosa JPA, Muniz EC (2005) Morphology and water affinity of superabsorbent hydrogels composed of methacrylated cashew gum and acrylamide with good mechanical properties. Polymer 46(19):7867–7873CrossRefGoogle Scholar
  139. 139.
    Dai Q, Kadla JF (2009) Effect of nanofillers on carboxymethyl cellulose/hydroethyl cellulose hydrogels. J Appl Polym Sci 114(3):1664–1669CrossRefGoogle Scholar
  140. 140.
    Buyanov AL, Gofman IV, Revel’skava LG, Khripnov AK, Tkachenko AA (2010) Anisotropic swelling and mechanical behavior of composite bacterial cellulose – poly(acrylamide or acrylamide-sodium acrylate) hydrogels. J Mech Behav Biomed Mater 3:102–111PubMedCrossRefGoogle Scholar
  141. 141.
    Larsson M, Stading M, Larsson A (2010) High performance polysodium acrylate superabsorbents utilizing microfibrillated cellulose to augment gel properties. Soft Mater 8(3):207–225CrossRefGoogle Scholar
  142. 142.
    Larsson M, Zhou Q, Larsson A (2011) Different types of microfibrillated cellulose as filler materials in polysodium acrylate superabsorbents. Chin J Polym Sci 29(4):407–413CrossRefGoogle Scholar
  143. 143.
    Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel nanocomposites based on starch-g-poly(sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose 19(4):1225–1237CrossRefGoogle Scholar
  144. 144.
    Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites, a review. Bioresources 3(3):929–980Google Scholar
  145. 145.
    Jayme G, Büttel H (1964) Die Abhängigkeit des Wasserrückhaltevermögens (WRV-Wert) verschiedener gebleichter und ungebleichter Zellstoffe. Wochenbl Pap 92(23–24):718–727Google Scholar
  146. 146.
    Lindström T, Carlsson G (1982) The effect of carboxyl groups and their ionic form during drying on the hornification of cellulose fibers. Sven Pap 85(15):R146–R151Google Scholar
  147. 147.
    Chen T, Tan HM (2006) Crosslinked carboxymethylchitosan-g-poly(acrylic acid) polymer as a novel superabsorbent polymer. Carbohydr Res 341(7):887–896PubMedCrossRefGoogle Scholar
  148. 148.
    Wang WB, Wang AQ (2010) Nanocomposite of carboxymethyl cellulose and attapulgite as a novel pH-sensitive superabsorbent: synthesis, characterization and properties. Carbohydr Polym 82(1):83–91CrossRefGoogle Scholar
  149. 149.
    Craver CD, Carraher CE (2000) Applied polymer science: 21st century. Elsevier, New YorkGoogle Scholar
  150. 150.
    Zhang JH, Kleinoder T, Gasteiger J (2006) Prediction of pKa values for aliphatic carboxylic acids and alcohols with empirical atomic charge descriptors. J Chem Inf Model 46(6):2256–2266PubMedCrossRefGoogle Scholar
  151. 151.
    Akar E, Altinisik A, Seki Y (2012) Preparation of pH- and ionic-strength responsive biodegradable fumaric acid crosslinked carboxymethyl cellulose. Carbohydr Polym 90(4):1634–1641PubMedCrossRefGoogle Scholar
  152. 152.
    Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670PubMedCrossRefGoogle Scholar
  153. 153.
    Sadeghi M, Safari S, Gudarzi A, Shahsavari H, Sadeghi H (2013) Studies on swelling kinetics and temperature-sensitive superabsorbent hydrogels based on carboxymethylcellulose. Asian J Chem 25(9):4865–4868Google Scholar
  154. 154.
    Rodkate N, Rutnakornpituk B, Wichai U, Ross G, Rutnakornpituk M (2015) Smart carboxymethylchitosan hydrogels that have thermo- and pH-responsive properties. J Appl Polym Sci 132(8):article 41505CrossRefGoogle Scholar
  155. 155.
    Tulain UR, Ahmad M, Rashid A, Iqbal FM (2016) Development and characterization of smart drug delivery system. Acta Pol Pharm 73(4):1009–1022PubMedPubMedCentralGoogle Scholar
  156. 156.
    Hiemenz P, Rajagopalan R (1997) Principles of colloid and surface chemistry, 3rd edn. Marcel Dekker, New YorkCrossRefGoogle Scholar
  157. 157.
    Fekete T, Borsa J, Takacs E, Wojnarovits L (2017) Synthesis and characterization of superabsorbent hydrogels based on hydroxyethylcellulose and acrylic acid. Carbohydr Polym 166:300–308PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Kulicke WM, Nottelmann H (1989) Structure and swelling of some synthetic, semisynthetic, and biopolymer hydrogels. Adv Chem Ser 223:15–44CrossRefGoogle Scholar
  159. 159.
    Chang CY, Duan B, Cai J, Zhang LN (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46(1):92–100CrossRefGoogle Scholar
  160. 160.
    Li Q, Ma ZH, Yue QY, Gao BY, Li WH, Xu X (2012) Synthesis, characterization and swelling behavior of superabsorbent wheat straw graft copolymers. Bioresour Technol 118:204–209PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Raafat AI, Eid M, El-Arnaouty MB (2012) Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications. Nucl Intrum Methods Phys Res Sec B – Beam Interac Mater Atoms 283:71–76CrossRefGoogle Scholar
  162. 162.
    Vogel NJ, Zwick KJ, Powling DJS, Johnson KD, Lortscher PS (2013) Dispersible wet wipes made using short cellulose fibers for enhanced dispersibility. European Patent EP2575579 A2Google Scholar
  163. 163.
    Bottero JY, Fiessinger F (1989) Aluminum chemistry in aqueous solution. Nord Pulp Pap Res J 4(2):81–89CrossRefGoogle Scholar
  164. 164.
    Exall KN, vanLoon GW (2003) Effects of raw water conditions on solution-state aluminum speciation during coagulant dilution. Water Res 37(14):3341–3350PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Kuwabara S, Kubota H (1996) Water-absorbing characteristics of acrylic acid-grafted carboxymethyl cellulose synthesized by photografting. J Appl Polym Sci 60(11):1965–1970CrossRefGoogle Scholar
  166. 166.
    Çaykara T, Sengiil G, Birlik G (2006) Preparation and swelling properties of temperature-sensitive semi-interpenetrating polymer networks composed of poly[(N-tert-butylacrylamide)-co-acrylamide] and hydroxypropyl cellulose. Macromol Mater Eng 291(9):1044–1051CrossRefGoogle Scholar
  167. 167.
    Hirsh SG, Spontak RJ (2002) Temperature-dependent property development in hydrogels derived from hydroxypropylcellulose. Polymer 43(1):123–129CrossRefGoogle Scholar
  168. 168.
    Kabra BG, Gehrke SH (1994) Rate-limiting steps for solvent sorption and desorption by microporous stimuli-sensitive absorbent gels. In: Buchholz FL, Peppas NA (eds) Superabsorbent polymers: science and technology, ACS symposium series, vol 573. American Chemical Society, Washington, DC, pp 76–86CrossRefGoogle Scholar
  169. 169.
    Poirier DR, Geiger GH (2016) Chap. 12: Transport phenomena in materials processing, Springer, SwitzerlandCrossRefGoogle Scholar
  170. 170.
    Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70:1214–1218CrossRefGoogle Scholar
  171. 171.
    Chen J, Park H, Park K (1999) Synthesis of superporous hydrogels: hydrogels with fast swelling and superabsorbent properties. J Biomed Mater Res 44(1):53–62PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Brodin FW, Theliander H (2012) Absorbent materials based on Kraft pulp: preparation and material characterization. Bioresources 7(2):1666–1683CrossRefGoogle Scholar
  173. 173.
    Brodin FW, Lund K, Brelid H, Theliander H (2012) Reinforced absorbent material: a cellulosic composite of TEMPO-oxidized MFC and CTMP fibres. Cellulose 19(4):1413–1423CrossRefGoogle Scholar
  174. 174.
    Sehaqui H, Salajková M, Zhou Q, Berglund L (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6:1824–1832CrossRefGoogle Scholar
  175. 175.
    Sehaqui H, Zhou Q, Berglund L (2011) High porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71(13):1593–1599CrossRefGoogle Scholar
  176. 176.
    Theliander H, Wernersson F, Hansson C, Gustafson I, Falk T (2011) Absorbent article comprising absorbent porous foam of freeze-dried microfibrillated cellulose. WO Patent 2011090410, 28 July 2011Google Scholar
  177. 177.
    Hubbe MA, Venditti RA, Rojas OJ (2007) What happens to cellulosic fibers during papermaking and recycling? A review. Bioresources 2(4):739–788Google Scholar
  178. 178.
    Pönni R, Vuorinen T, Kontturi E (2012) Proposed nano-scale coalescence of cellulose pulp fibers during technical treatments. Bioresources 7(4):6077–6108CrossRefGoogle Scholar
  179. 179.
    Butchosa N, Zhou Q (2014) Water redispersible cellulose nanofibrils adsorbed with carboxymethyl cellulose. Cellulose 21:4349–4358CrossRefGoogle Scholar
  180. 180.
    Missoum K, Bras J, Belgacem MN (2012) Water redispersible dried nanofibrillated cellulose by adding sodium chloride. Biomacromolecules 13:4118–4125PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Jin H, Nishiyama Y, Wada M, Kuga S (2004) Nanofibrillar cellulose aerogels. Colloids Surf A Physicochem Eng Asp 240:63–67CrossRefGoogle Scholar
  182. 182.
    Pääkkö M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Kettunen M, Silvennoinen RJ, Houbenov N, Nykanen A, Ruokolainen J, Sainio J, Pore V, Kemell M, Ankerfors M, Lindstrom T, Ritala M, Ras RHA, Ikkala O (2011) Photoswitchable superabsorbency based on nanocellulose aerogels. Adv Funct Mater 21(3):510–517CrossRefGoogle Scholar
  184. 184.
    Yang X, Cranston ED (2014) Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem Mater 26(20):6016–6025CrossRefGoogle Scholar
  185. 185.
    Bastioli C (1998) Biodegradable materials – present situation and future perspectives. Macromol Symp 135:193–204CrossRefGoogle Scholar
  186. 186.
    Levis JW, Barlaz MA (2011) Is biodegradability a desirable attribute for discarded solid waste? Perspectives from a national landfill greenhouse gas inventory model. Environ Sci Technol 45(13):5470–5476PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Themelis NJ, Ulloa PA (2007) Methane generation in landfills. Renew Energy 32(7):1243–1257CrossRefGoogle Scholar
  188. 188.
    Hubbe MA, Metts JR, Hermosilla D, Blanco MA, Yerushalmi L, Haghighat F, Lindholm-Lehto P, Khodaparast Z, Kamali M, Elliott A (2016) Wastewater treatment and reclamation: a review of pulp and paper industry practices and opportunities. Bioresources 11(3):7953–8091Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Forest Biomaterials, College of Natural ResourcesNorth Carolina State UniversityRaleighUSA

Personalised recommendations