Advertisement

Cellulose-Based Hydrogel for Industrial Applications

  • Shah M. Reduwan Billah
  • Md. Ibrahim H. Mondal
  • Sazzad H. Somoal
  • M. Nahid Pervez
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

Cellulose-based superabsorbent hydrogels can absorb and retain huge amounts of water or aqueous solutions. They have a wide range of industrial applications including (a) hygienic and bio-related uses (more specifically in disposable diapers); (b) agricultural uses (such as water reserving in soil, soil conditioning, and controlled release of agrochemicals); (c) pharmaceutical dosage forms; (d) separation technology; (e) textile, leather, and paper industries (such as in wastewater treatment); (f) water-swelling rubbers; (g) soft actuators/valves; (h) electrical applications; (i) construction, packaging, and artificial snow; (j) sludge/coal dewatering; and (k) fire extinguishing gels. Many new advanced technologies are evolving by the day to cope with rigorous industrial-scale applications to ensure improved technical feasibilities. This chapter will briefly cover some of the selected aspects of cellulose-based hydrogels and their industrial applications.

Keywords

Cellulose Hydrogels Superabsorbent hydrogels Composite Stimuli-responsive hydrogels Carboxymethylcellulose 

References

  1. 1.
    Cipriano BH, Banik SJ, Sharma R, Rumore D, Hwang W, Briber RM, Raghavan SR (2014) Superabsorbent hydrogels that are robust and highly stretchable. Macromolecules 47(13):4445–4452CrossRefGoogle Scholar
  2. 2.
    Zhang M, Cheng Z, Zhao T, Liu M, Hu, Li J (2014) Synthesis, characterization, and swelling behaviors of salt-sensitive maize bran–poly (acrylic acid) superabsorbent hydrogel. J Agric Food Chem 62(35):8867–8874PubMedCrossRefGoogle Scholar
  3. 3.
    Sun JY, Zhao X, Illeperuma WR, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489(7414):133–136PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17:451–477Google Scholar
  5. 5.
    Ohmine I, Tanaka T (1982) Salt effects on the phase transition of ionic gels. J Chem Phys 77(11):5725–5729CrossRefGoogle Scholar
  6. 6.
    Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84(1):40–53CrossRefGoogle Scholar
  7. 7.
    Duan J, Zhang X, Jiang J, Han C, Yang J, Liu L, Lan H, Huang D (2014) The synthesis of a novel cellulose physical gel. J Nanomater. Article ID 312696, 1–7CrossRefGoogle Scholar
  8. 8.
    Meng H, Zhao Y, Duan J, Wang Z, Chen Y, Zhang L (2014) Fast contact of solid-liquid interface created high strength multi-layered cellulose hydrogels with controllable size. ACS Appl Mater Interfaces 6(3):1872–1878CrossRefGoogle Scholar
  9. 9.
    Lee J, Halake KS (2014) Superporous thermo-responsive hydrogels by combination of cellulose fibers and aligned micropores. Carbohydr Polym 105(5):184–192PubMedGoogle Scholar
  10. 10.
    Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Richter A, Howitz S, Kuckling D, Arndt KF (2004) Influence of volume phase transition phenomena on the behavior of hydrogel-based valves. Sensors Actuators B 99(2–3):451–458CrossRefGoogle Scholar
  12. 12.
    Mao L, Hu Y, Piao Y, Chen X, Xian W, Piao D (2005) Structure and character of artificial muscle model constructed from fibrous hydrogel. Curr Appl Phys 5(5):426–428CrossRefGoogle Scholar
  13. 13.
    Peppas NA (1997) Hydrogels and drug delivery. Curr Opin Colloid Interface Sci 2(5):531–537CrossRefGoogle Scholar
  14. 14.
    Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339PubMedCrossRefGoogle Scholar
  15. 15.
    Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185(4706):117–118CrossRefGoogle Scholar
  16. 16.
    Chambers DR, Fowler HH, Fujiura Y, Masuda F (1992) Super-absorbent polymer having improved absorbency properties. US Patent 5145906Google Scholar
  17. 17.
    (a) Ago M, Okajima K, Jakes JE, Park S, Rojas OJ (2012) Lignin-based electrospun nanofibers reinforced with cellulose nanocrystals. Biomacromol 13(3):918–926; (b) Crawford RL (1981) Lignin biodegradation and transformation. Wiley, New YorkGoogle Scholar
  18. 18.
    (a) Harris D, Bulone V, Ding S-Y, DeBolt S (2010) Tools for cellulose analysis in plant cell walls. Plant Physiol 153:420–426; (b) Payen A (1838) Mémoire sur la composition du tissu propre des plantes et du ligneux. Comptes Rendus 7:1052–1056Google Scholar
  19. 19.
    (a) Moon RJ, Martini A, Nairn J, Simonsenf J, Youngblood, J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994; (b) Dorée C (1947) The methods of cellulose chemistry. Chapman & Hall, LondonGoogle Scholar
  20. 20.
    (a) Ten E, Vermerris W (2013) Functionalized polymers from lignocellulosic biomass: state of the art. Polymers 5:600–642; (b) The Merck Index (1968) Merck & Co, Rahway, 8th ednGoogle Scholar
  21. 21.
    (a) Deng L, Young RJ, Kinloch IA, Abdelkader AM, Holmes SM, Rio DAD H-D, Eichhorn SJ (2013) Supercapacitance from cellulose and carbon nanotube nanocomposite fibers. ACS Appl Mater Interf 5:9983–9990; (b) Singh AV, Rahman A, Kumar NVGS, Aditi AS, Galluzzi M, Bovio SS, Barozzi S, Montani E, Parazzoli D (2012) Bio-inspired approaches to design smart fabrics. Mater Des 36:829–839
  22. 22.
    Visakh PM, Thomas S (2010) Preparation of bionanomaterials and their polymer nanocomposites from waste and biomass. Waste Biomass Valorization 1(1):121–134CrossRefGoogle Scholar
  23. 23.
    Williams GI, Wool RP (2000) Composites from natural fibers and soy oil resins. Appl Compos Mater 7(5–6):421–432CrossRefGoogle Scholar
  24. 24.
    (a) Torres FG, Diaz RM (2004) Morphological characterisation of natural fibre reinforced thermoplastics (NFRTP) processed by extrusion, compression and rotational moulding. Polym Polym Compos 12(8):705–718; (b) Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Tech 61:1437–1447Google Scholar
  25. 25.
    Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Keckes VJ, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibers and nanocomposites. J Mater Sci 45:1–33CrossRefGoogle Scholar
  26. 26.
    Baley C (2002) Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos Part A 33(7):939–948CrossRefGoogle Scholar
  27. 27.
    Lamy B, Baley C (2000) Stiffness prediction of flax fibers-epoxy composite materials. J Mater Sci Lett 19(11):979–980CrossRefGoogle Scholar
  28. 28.
    Ono T, Sugimoto T, Shinkai S, Sada K (2007) Lipophilic polyelectrolyte gels as super-absorbent polymers for nonpolar organic solvents. Nat Mater 6(6):429–433PubMedCrossRefGoogle Scholar
  29. 29.
    Li X, He JZ, Hughes JM, Liu Y-R, Zheng Y-M (2014) Effects of superabsorbent polymers on a soil–wheat (Triticum aestivum L.) system in the field. Appl Soil Ecol 73(2014):58–63CrossRefGoogle Scholar
  30. 30.
    Demitri C, Scalera F, Madaghiele M, Sannino A, Maffezzoli A (2013) Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. Int J Polym Sci 2013:435073, 6 pagesCrossRefGoogle Scholar
  31. 31.
    Li J, Jiang M, Wu H, Li Y (2009) Addition of modified bentonites in polymer gel formulation of 2, 4-D for its controlled release in water and soil. J Agric Food Chem 57(7):2868–2874PubMedCrossRefGoogle Scholar
  32. 32.
    Li J, Li Y, Dong H (2008) Controlled release of herbicide acetochlor from clay/carboxymethylcellulose gel formulations. J Agric Food Chem 56(4):1336–1342PubMedCrossRefGoogle Scholar
  33. 33.
    Lafah WA, Hashim S (2013) Preparation and possible agricultural applications of polymer hydrogel composite as soil conditioner. Adv Mater Res 626:6–10CrossRefGoogle Scholar
  34. 34.
    Bortolin A, Aouada FA, Mattoso LH, Rebeiro C (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agric Food Chem 61(31):7431–7439PubMedCrossRefGoogle Scholar
  35. 35.
    Liu H, Zhang Y, Yao J (2014) Preparation and properties of an eco-friendly superabsorbent based on flax yarn waste for sanitary napkin applications. Fiber Polym 15(1):145–152CrossRefGoogle Scholar
  36. 36.
    Bissah K, Davies P, Hernandez FJV, Paque FW (2014) Absorbent article including an absorbent core layer having a material free zone and a transfer layer arranged below the absorbent core layer. US Patent 8,764,719, pp 7–1Google Scholar
  37. 37.
    Lavash BW (2014) Sanitary napkin for dynamic body fit. US Patent 8,808,264, pp 8–19Google Scholar
  38. 38.
    Warren R, Hammons JL, Blevins JM (2014) Skin care compositions on a thin sanitary napkin. US Patent 8,795,716, pp 8–5Google Scholar
  39. 39.
    Zhou Y, Fu S, Zhang L, Zhan H, Levit MV (2014) Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb (II). Carbohydr Polym 101:75–82PubMedCrossRefGoogle Scholar
  40. 40.
    Kamel S, Hassan EM, El-Sakhawy M (2006) Preparation and application of acrylonitrile-grafted cyanoethyl cellulose for the removal of copper (II) ions. J Appl Polym Sci 100(1):329–334CrossRefGoogle Scholar
  41. 41.
    Rohrbach K, Li Y, Zhu H, Liu Z, Dai J, Andreasen J, Hu L (2014) A cellulose based hydrophilic, oleophobic hydrated filter for water/oil separation. Chem Commun 50(87):13296–13299CrossRefGoogle Scholar
  42. 42.
    Persin Z, Maver U, Pivec T, Vesel A, Mozetič M, Stana-Kleinschek K (2014) Novel cellulose based materials for safe and efficient wound treatment. Carbohydr Polym 100:55–64PubMedCrossRefGoogle Scholar
  43. 43.
    He M, Zhao Y, Duan J, Duan J, Wang Z, Chen Y, Zhang L (2014) Fast contact of solid – liquid interface created high strength multi-layered cellulose hydrogels with controllable size. ACS Appl Mater Interfaces 6(3):1872–1878PubMedCrossRefGoogle Scholar
  44. 44.
    Yang X, Bakaic E, Hoare T, Cranston ED (2013) Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and cytotoxicity. Biomacromolecules 14(12):4447–4455PubMedCrossRefGoogle Scholar
  45. 45.
    Eyholzer C, Borges de Couraca A, Duc F, Bourban PE, Tingaut P, Zimmermann T, Månson JAE, Oksman K (2011) Biocomposite hydrogels with carboxymethylated, nanofibrillated cellulose powder for replacement of the nucleus pulposus. Biomacromolecules 12(5):1419–1427PubMedCrossRefGoogle Scholar
  46. 46.
    Lin N, Dufresne A (2013) Supramolecular hydrogels from in situ host–guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin. Biomacromolecules 14(3):871–880PubMedCrossRefGoogle Scholar
  47. 47.
    Oliveira VA, Veloso TC, Leao VA, dos Santos CG, Botaro VR (2013) Hydrogels of cellulose acetate crosslinked with pyromellitic dianhydride: part I: synthesis and swelling kinetics. Quim Nova 36(1):102–106CrossRefGoogle Scholar
  48. 48.
    Haque A, Morris ER (1993) Thermogelation of methylcellulose. Part I: molecular structures and processes. Carbohydr Polym 22(3):161–173CrossRefGoogle Scholar
  49. 49.
    Joshi SC (2011) Sol-gel behavior of hydroxypropyl methylcellulose (HPMC) in ionic media including drug release. Materials 4(10):1861–1905PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Jackson JK, Letchford K, Wasserman BZ, Ye L, Hamad WY, Burt HM (2011) The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int J Nanomedicine 6:321–330PubMedPubMedCentralGoogle Scholar
  51. 51.
    Zohuriaan-Mehr MJ, Omidian H, Doroudiani S, Kabiri K (2010) Advances in non-hygienic applications of superabsorbent hydrogel materials. J Mater Sci 45(21):5711–5735CrossRefGoogle Scholar
  52. 52.
    Ngwuluka NC, Choonara YE, Kumar P, Modi G, du Toit LC, Pillay V (2013) A hybrid methacrylate-sodium carboxymethylcellulose interpolyelectrolyte complex: rheometry and in silico disposition for controlled drug release. Materials 6(10):4284–4308PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Sklenář Z, Vitková Z, Herdová P, Horáčková K, Šimunková V (2013) Formulation and release of alaptide from cellulose-based hydrogels. Acta Vet Brno 81(3):301–306CrossRefGoogle Scholar
  54. 54.
    Appel EA, Forster RA, Rowland MJ, Scherman OA (2014) The control of cargo release from physically crosslinked hydrogels by crosslink dynamics. Biomaterials 35(37):9897–9903PubMedCrossRefGoogle Scholar
  55. 55.
    Patenaude M, Hoare T (2012) Injectable, mixed natural synthetic polymer hydrogels with modular properties. Biomacromolecules 13(2):369–378PubMedCrossRefGoogle Scholar
  56. 56.
    Spagnol C, Rodrigues FHA, Neto AGV (2012) Nanocomposites based on poly (acrylamide-co-acrylate) and cellulose nanowhiskers. Eur Polym J 48(3):454–463CrossRefGoogle Scholar
  57. 57.
    Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo A, Rubira A, Muniz E (2012) Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly (acrylic acid). Carbohydr Polym 87(3):2038–2045CrossRefGoogle Scholar
  58. 58.
    Wang Y, Shi X, Wang W, Wang A (2013) Synthesis, characterization, and swelling behaviors of a pH responsive CMC-g-poly (AA-co-AMPS) superabsorbent hydrogel. Turk J Chem 37(1):149–159Google Scholar
  59. 59.
    Hebeish A, Farag S, Sharaf S, Shaheen THI (2014) Thermal responsive hydrogels based on semi interpenetrating network of poly (NIPAm) and cellulose nanowhiskers. Carbohydr Polym 102:159–166PubMedCrossRefGoogle Scholar
  60. 60.
    Tang H, Chen H, Duan B, Zhang L (2014) Swelling behaviors of superabsorbent chitin/carboxymethyl cellulose hydrogels. J Mater Sci 49(5):2235–2242CrossRefGoogle Scholar
  61. 61.
    De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29(11):4609–4631CrossRefGoogle Scholar
  62. 62.
    Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466CrossRefGoogle Scholar
  64. 64.
    (a) Plackett DV, Letchford K, Jackson JK, Burt HMA (2014) Review of nanocellulose as a novel vehicle for drug delivery. Nord Pulp Pap Res J 29(1):105–118; (b) Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 132:41719–41737Google Scholar
  65. 65.
    Bissah K, Davies P, Hernandez FJV, Paques FW (2014) Absorbent article including an absorbent core layer having a material free zone and a transfer layer arranged below the absorbent core layer. US Patent 8,764,719, pp 7–1Google Scholar
  66. 66.
    Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33CrossRefGoogle Scholar
  67. 67.
    Koski A, Yim K, Shivkumar S (2004) Effect of molecular weight on fibrous PVA produced by electrospinning. Mater Lett 58:493–497CrossRefGoogle Scholar
  68. 68.
    Mbhele ZH, Salemane MG, van Sittert CGCE, Nedeljkovi JM, Djokovi V, Luyt AS (2003) Fabrication and characterization of silver-polyvinyl alcohol nanocomposites. Chem Mater 15:5019–5024CrossRefGoogle Scholar
  69. 69.
    Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151–1170CrossRefGoogle Scholar
  70. 70.
    Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49:5603–5621CrossRefGoogle Scholar
  71. 71.
    Li D, Wang Y, Xia Y (2003) Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett 3(8):1167–1171CrossRefGoogle Scholar
  72. 72.
    Pinto NJ, Johnson JAT, McDiarmid AG, Mueller CH, Theofylaktos N, Robinson DC, Miranda FA (2003) Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor. Appl Phys Lett 83:4244–4246CrossRefGoogle Scholar
  73. 73.
    Guo Z, Zhang D, Wei S, Wang Z, Karki AB, Li Y, Bernazzani P, Young DP, Gomes J, Cocke D, Ho TC (2010) Effects of iron oxide nanoparticles on polyvinyl alcohol: interfacial layer and bulk nanocomposites thin film. J Nanopart Res 12:2415–2426CrossRefGoogle Scholar
  74. 74.
    Teo WE, Ramakrishna SA (2006) Review on electrospinning design and nanofibre assemblies. Nanotechnology 17:89–106CrossRefGoogle Scholar
  75. 75.
    Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrost 35:151–160CrossRefGoogle Scholar
  76. 76.
    Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9:40–50CrossRefGoogle Scholar
  77. 77.
    Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670–5703CrossRefGoogle Scholar
  78. 78.
    Zuo W, Zhu M, Yang W, Yu H, Chen Y, Zhang Y (2005) Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polym Eng Sci 45:704–709CrossRefGoogle Scholar
  79. 79.
    (a) Deitzel JM, Kleinmeyer J, Harris D, Beck TNC (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261–272; (b) Lin T, Wang H, Wang H, Wang X, Brenner MP (2004) The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene. Nanotechnology 15:1375–1381CrossRefGoogle Scholar
  80. 80.
    Yang Z, Chen S, Hu W, Yin N, Zhang W, Xiang C, Wang H (2012) Flexible luminescent CdSe/bacterial cellulose nanocomposite membranes. Carbohydr Polym 88(1):173–178CrossRefGoogle Scholar
  81. 81.
    Hohman MM, Shin M, Rutledge G, Brenner MP (2001) Electrospinning and electrically forced jets. I. Stability theory. Phys Fluids 13:2201–2220CrossRefGoogle Scholar
  82. 82.
    Hohman MM, Shin M, Rutledge G (2001) Electrospinning and electrically forced jets. II. Appl Phys Fluid 13:2221–2236CrossRefGoogle Scholar
  83. 83.
    Reneker DH, Yarin AL, Fong H, Koombhongse S (2000) Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys 87:4531–4547CrossRefGoogle Scholar
  84. 84.
    Yarin AL, Koombhongse S, Reneker DH (2001) Bending instability in electrospinning of nanofibers. J Appl Phys 89:3018–3026CrossRefGoogle Scholar
  85. 85.
    Kim GM, Lach R, Michler GH, Poetschke P, Albrecht K (2006) Relationships between phase morphology and deformation mechanisms in polymer nanocomposite nanofibres prepared by an electrospinning process. Nanotechnology 17:963–972PubMedCrossRefGoogle Scholar
  86. 86.
    Appell D (2002) Wired for success. Nature 419:553–555PubMedCrossRefGoogle Scholar
  87. 87.
    Law M, Sirbuly DJ, Johnson JC, Goldberger J, Saykally RJ, Yang P (2004) Nanoribbon waveguides for subwavelength photonics integration. Science 305:1269–1273PubMedCrossRefGoogle Scholar
  88. 88.
    Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan Y (2003) One dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389CrossRefGoogle Scholar
  89. 89.
    Huang Y, Duan X, Cui Y, Lauhon L, Kim KH, Lieber C (2001) Logic gates and computation from assembled nanowire building blocks. Science 294:1313–1317PubMedCrossRefGoogle Scholar
  90. 90.
    Wang J, Gudiksen M, Duan X, Cui Y, Lieber C (2001) Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293:1455–1457PubMedCrossRefGoogle Scholar
  91. 91.
    Kind H, Yan H, Messer B, Law M, Yang P (2002) Nanowire ultraviolet photodetectors and optical switches. Adv Mater 14:158–160CrossRefGoogle Scholar
  92. 92.
    Law M, Kind H, Messer B, Kim H, Yang P (2002) Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew Chem Int Ed 41:2405–2408CrossRefGoogle Scholar
  93. 93.
    Zhang JP, Chu DY, Wu SL, Ho ST, Bi WG, Tu CW, Tiberio RC (1995) Photonic wire laser. Phys Rev Lett 75:2678–2681PubMedCrossRefGoogle Scholar
  94. 94.
    Duan X, Huang Y, Agarwal R, Lieber CM (2003) Single-nanowire electrically driven lasers. Nature 421:241–245PubMedCrossRefGoogle Scholar
  95. 95.
    Tong L, Gattass RR, Ashcom JB, He S, Lou J, Shen M, Maxwell I, Mazur E (2003) Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426:816–819PubMedCrossRefGoogle Scholar
  96. 96.
    Pyayt B, Wiley Y, Xia A, Chen T, Dalton L (2008) Integration of photonic and silver nanowire plasmonic waveguides. Nat Nanotechnol 3:660–665PubMedCrossRefGoogle Scholar
  97. 97.
    Brambilla G, Xu F, Feng X (2006) Fabrication of optical fiber nanowires and their optical and mechanical characterization. Electron Lett 42:517–518CrossRefGoogle Scholar
  98. 98.
    Tong L, Lou J, Gattass RR, He S, Chen X, Liu L, Mazur E (2005) Assembly of silica nanowires on silica aerogels for microphotonic devices. Nano Lett 5:259–262PubMedCrossRefGoogle Scholar
  99. 99.
    Li Y, Tong L (2008) Mach-Zehnder interferometers assembled with optical microfibers or nanofibers. Opt Lett 33:303–305PubMedCrossRefGoogle Scholar
  100. 100.
    Harfenist SA, Cambron SD, Nelson EW, Berry SM, Isham AW, Crain MM, Walsh KM, Keynton RS, Cohn RW (2004) Direct drawing of R. W. suspended filamentary micro- and nanostructures from liquid polymers. Nano Lett 4:1931–1937CrossRefGoogle Scholar
  101. 101.
    Liu H, Edel JB, Bellan LM, Craighead HG (2006) Electrospun polymer nanofibers as subwavelength optical waveguides incorporating quantum dots. Small 2:495–499PubMedCrossRefGoogle Scholar
  102. 102.
    Xing XB, Wang YQ, Zhu H, Li BJ (2008) Nanofiber drawing and nanodevice assembly in poly(trimethylene terephthalate). Opt Express 16:10815–10822PubMedCrossRefGoogle Scholar
  103. 103.
    Xing XB, Zhu H, Wang YQ, Li BJ (2008) Ultra compact photonic coupling splitters twisted by PTT nanowires. Nano Lett 8:2839–2843PubMedCrossRefGoogle Scholar
  104. 104.
    Wang H, Shao Z, Bacher M, Liebner F, Rosenau T (2013) Fluorescent cellulose aerogels containing covalently immobilized (ZnS)x(CuInS2)1-x/ZnS (core/shell) quantum dots. Cellulose 20:3007–3024PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Billah SMR, Thompson RL, Kimani SM, Hutchings LH, Wu J (2013) Influences of polyethylene functionalisation on silica nanocomposites. In: IUPAC 10th international conference on advanced polymers via macromolecular engineering, Durham, 18–22 Aug 2013Google Scholar
  106. 106.
    Hassan ML, Ward AA, Eid MA (2010) Mechanical, optical, and electrical properties of cellulosic semiconductor nanocomposites. J Appl Polym Sci 115:2847–2854CrossRefGoogle Scholar
  107. 107.
    Ruan D, Huang Q, Zhang L (2005) Structure and properties of CdS/regenerated cellulose nanocomposites. Macromol Mater Eng 290(10):1017–1024CrossRefGoogle Scholar
  108. 108.
    Small AC, Johnston JH (2008) Novel hybrid materials of cellulose fibres and doped ZnS nanocrystals. Curr Appl Phys 8(3–4):512–515CrossRefGoogle Scholar
  109. 109.
    Hassan ML, Ali AF (2008) Synthesis of nanostructured cadmium and zinc sulfides in aqueous solutions of hyperbranched polyethyleneimine. J Cryst Growth 310:5252–5258CrossRefGoogle Scholar
  110. 110.
    Wang W, Wang A (2010) Nanocomposite of carboxymethyl cellulose and attapulgite as a novel pH-sensitive superabsorbent: synthesis, characterization and properties. Carbohydr Polym 82:83–91CrossRefGoogle Scholar
  111. 111.
    Nadagouda MN, Varma RS (2007) Synthesis of thermally stable carboxymethyl cellulose/metal biodegradable nanocomposites for potential biological applications. Biomacromolecules 8(9):2762–2767PubMedCrossRefGoogle Scholar
  112. 112.
    Chang C, Han K, Zhang L (2011) Structure and properties of cellulose/poly(N- isopropylacrylamide) hydrogels prepared by IPN strategy. Polym Adv Technol 22(9):1329–1334Google Scholar
  113. 113.
    Dong H, Strawheckera KE, Snydera JF, Orlicki JA, Reiner RS, Rudie AW (2012) Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: formation, properties and nanomechanical characterization. Carbohydr Polym 87:2488–2495CrossRefGoogle Scholar
  114. 114.
    Domingues RMA, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules 15(7):2327–2346PubMedCrossRefGoogle Scholar
  115. 115.
    Salas C, Nypelö T, Rodriguez-Abreu C, Carrillo C, Rojas OJ (2014) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 19(5):383–396CrossRefGoogle Scholar
  116. 116.
    Peresin MS, Vesterinen A-H, Habibi Y, Johansson L-S, Pawlak JJ, Nevzorov AA, Rojas OJ (2014) Crosslinked PVA nanofibers reinforced with cellulose nanocrystals: water interactions and thermomechanical properties. J Appl Polym Sci 131(11):1–12CrossRefGoogle Scholar
  117. 117.
    Abitbol T, Wilson JT, Gray DG (2011) Electrospinning of fluorescent fibers from CdSe/ZnS quantum dots in cellulose triacetate. J Appl Polym Sci 119(2):803–810CrossRefGoogle Scholar
  118. 118.
    Smart CL, Zellner CNC (1971) Cellulose triacetate fibers. In: Bikales NM, Segal L (eds) Cellulose and cellulose derivatives, vol 5. Wiley-Interscience, New York, pp 1151–1167Google Scholar
  119. 119.
    Iwamoto S, Lee S-H, Endo T (2014) Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym J 46:73–76CrossRefGoogle Scholar
  120. 120.
    Steinmeier H (2004) 3. Acetate manufacturing, process and technology, 3.1 chemistry of cellulose acetylation. In: Rustemeyer P (ed) Cellulose acetates: properties and applications. Wiley-VCH, Heidelberg, pp 39–60Google Scholar
  121. 121.
    Zugenmaier P (2004) Characteristics of cellulose acetates. In: Rustemeyer P (ed) Cellulose acetates: properties and applications. Wiley-VCH, Heidelberg, pp 81–166Google Scholar
  122. 122.
    Hiatt GD, Rebel WJB (1971) Esters. In: Bikales NM, Segal L (eds) Cellulose and cellulose derivatives, vol V. Wiley Interscience, New York, pp 741–784Google Scholar
  123. 123.
    Abitbol T, Gray DG (2007) CdSe/ZnS quantum dots embedded in cellulose triacetate films with hydrophilic surfaces. Chem Mater 19(17):4270–4276CrossRefGoogle Scholar
  124. 124.
    Abitbol T, Gray DG (2009) Incorporation into paper of cellulose triacetate films containing semiconductor nanoparticles. Cellulose 16(2):319–326CrossRefGoogle Scholar
  125. 125.
    Taajamaa L, Kontturi E, Lainea J, Rojas OJ (2012) Bicomponent fibre mats with adhesive ultra-hydrophobicity tailored with cellulose derivatives. J Mater Chem 22:12072–12082CrossRefGoogle Scholar
  126. 126.
    Han SO, Son WK, Youk JH, Lee TS, Park WH (2005) Ultrafine porous fibers electrospun from cellulose triacetate. Mater Lett 59(24–25):2998–3001CrossRefGoogle Scholar
  127. 127.
    Chu YC, Wang CC, Chen CY (2005) Synthesis of luminescent and rodlike CdS nanocrystals dispersed in polymer templates. Nanotechnology 16:58CrossRefGoogle Scholar
  128. 128.
    Zhao X, Ding X, Deng Z, Zheng Z, Peng Y, Tian C, Long X (2006) A kind of smart gold nanoparticle–hydrogel composite with tunable thermo-switchable electrical properties. New J Chem 30:915–920CrossRefGoogle Scholar
  129. 129.
    Shimmin RG, Vajtai R, Siegel RW, Braun PV (2007) Room-temperature assembly of germanium photonic crystals through colloidal crystal templating. Chem Mater 19:2102–2107CrossRefGoogle Scholar
  130. 130.
    Park JJ, Prabhakaran P, Jang KK, Lee YG, Lee J, Lee KH, Hur J, Kim JM, Cho N, Son Y, Yang DY, Lee KS (2010) Photopatternable quantum dots forming quasi-ordered arrays. Nano Lett 10(7):2310–2317PubMedCrossRefGoogle Scholar
  131. 131.
    Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos 32(2):277–289CrossRefGoogle Scholar
  132. 132.
    Billah SMR, Cameron NR, Przyborski SA, Humphrey EH, Tams DH (2013) Photochromic dye-doped electrospun nanofibre-based scaffolds for cell culture, security and optical data storage applications. In: IUPAC 10th international conference on advanced polymers via macromolecular engineering, Durham, 18–22 Aug 2013Google Scholar
  133. 133.
    Cha R, He Z, Ni Y (2012) Preparation and characterization of thermal/pH-sensitive hydrogel from carboxylated nanocrystalline cellulose. Carbohydr Polym 88:713–718CrossRefGoogle Scholar
  134. 134.
    Gorgieva S, Kokol V (2011) Synthesis and application of new temperature-responsive hydrogels based on carboxymethyl and hydroxyethyl cellulose derivatives for the functional finishing of cotton knitwear. Carbohydr Polym 85:664–673CrossRefGoogle Scholar
  135. 135.
    Sannino A, Pappadà S, Giotta L, Valli L, Maffezzoli A (2007) Spin coating cellulose derivatives on quartz crystal microbalance plates to obtain hydrogel-based fast sensors and actuators. J Appl Polym Sci 106:3040–3050CrossRefGoogle Scholar
  136. 136.
    Chang C, He M, Zhou J, Zhang L (2011) Swelling behaviors of pH- and salt- responsive cellulose-based hydrogels. Macromolecules 44:1642–1648CrossRefGoogle Scholar
  137. 137.
    Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100CrossRefGoogle Scholar
  138. 138.
    Pourjavadi A, Barzegar S, Mahdavinia GR (2006) MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels. Carbohydr Polym 66:386–395CrossRefGoogle Scholar
  139. 139.
    Fang A, Cathala B (2011) Smart swelling biopolymer microparticles by a microfluidic approach, synthesis, in situ encapsulation and controlled release. Colloids Surf B: Biointerfaces 82:81–86PubMedCrossRefGoogle Scholar
  140. 140.
    Salmawi KME, Ibrahim SM (2011) Characterization of superabsorbent carboxymethyl cellulose/clay hydrogel prepared by electron beam irradiation. Macromol Res 19:1029–1034CrossRefGoogle Scholar
  141. 141.
    Liao Q, Shao Q, Qiu G, Lu X (2012) Methacrylic acid-triggered phase transition behavior of thermosensitive hydroxypropylcellulose. Carbohydr Polym 89:1301–1304PubMedCrossRefGoogle Scholar
  142. 142.
    Chen Y, Ding D, Mao Z, He Y, Hu Y, Wu W, Jiang X (2008) Synthesis of hydroxypropylcellulose-poly(acrylic acid) particles with semi-interpenetrating polymer network structure. Biomacromolecules 9:2609–2614PubMedCrossRefGoogle Scholar
  143. 143.
    Demirel GB, Caykara T, Demiray M, Guru M (2009) Effect of pore-forming agent type on swelling properties of macroporous poly(N-[3-(dimethylaminopropyl)]- methacrylamide-co-acrylamide) hydrogels. J Macromol Sci A Pure Appl Chem 46:58–64CrossRefGoogle Scholar
  144. 144.
    Chauhan GS, Mahajan S (2002) Structural aspects and nature of swelling medium as equilibrium swelling determinants of acrylamide and cellulosic based smart hydrogels. J Appl Polym Sci 85:1161–1169CrossRefGoogle Scholar
  145. 145.
    Ma L, Liu R, Tan J, Wang D, Jin X, Kang H, Wu M, Huang Y (2010) Self- assembly and dual-stimuli sensitivities of hydroxypropylcellulose-graft-poly(N,N-dimethyl amino ethyl methacrylate) copolymers in aqueous solution. Langmuir 26:8697–8703PubMedCrossRefGoogle Scholar
  146. 146.
    Ma L, Kang H, Liu R, Huang Y (2010) Smart assembly behaviours of hydroxypropylcellulose-graftpoly(4-vinyl pyridine) copolymers in aqueous solution by thermo and pH stimuli. Langmuir 26:18519–18525PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Xu FJ, Zhu Y, Liu FS, Nie J, Ma J, Yang WT (2010) Comb-shaped conjugates comprising hydroxypropyl cellulose backbones and low-molecular-weight poly(N- isopropylacrylamide) side chains for smart hydrogels, synthesis, characterization, and biomedical applications. Bioconjug Chem 21:456–464PubMedCrossRefGoogle Scholar
  148. 148.
    Marsano E, Bianchi E, Viscardi A (2004) Stimuli responsive gels based on interpenetrating network of hydroxypropylcellulose and poly(N-isopropylacrylamide). Polymer 45:157–163CrossRefGoogle Scholar
  149. 149.
    Çaykara T, Şengül G, Birlik G (2006) Preparation and swelling properties of temperature-sensitive semi-interpenetrating polymer networks composed of poly[(N-tert-butylacrylamide)-co-acrylamide] and hydroxypropyl cellulose. Macromol Mater Eng 291:1044–1051CrossRefGoogle Scholar
  150. 150.
    Tan J, Kang H, Liu R, Wang D, Jin X, Li Q, Huang Y (2011) Dual-stimuli sensitive nanogels fabricated by self-association of thiolated hydroxypropyl cellulose. Polym Chem 2:672–678CrossRefGoogle Scholar
  151. 151.
    Wan S, Jiang M, Zhang G (2007) Dual temperature- and pH-dependent self-assembly of cellulose-based copolymer with a pair of complementary grafts. Macromolecules 40:5552–5558CrossRefGoogle Scholar
  152. 152.
    Peng Z, Chen F (2010) Synthesis and properties of temperature-sensitive hydrogel based on hydroxyethyl cellulose. Int J Polym Mater 59:450–461CrossRefGoogle Scholar
  153. 153.
    Kim B, Kang H, Kim J (2002) Thermo-sensitive microparticles of PNIPAM-grafted ethylcellulose by spray-drying method. J Microencapsul 19:661–669PubMedCrossRefGoogle Scholar
  154. 154.
    Yuan W, Zhang J, Zou H, Shen T, Ren J (2012) Amphiphilic ethyl cellulose brush polymers with mono and dual side chains, facile synthesis, self-assembly, and tunable temperature-pH responsivities. Polymer 53:956–966CrossRefGoogle Scholar
  155. 155.
    Estrada R, Rodríguez R, Castaño VM (2010) Smart polymeric membranes, pH- induced non-linear changes in pore size. Appl Phys A Mater Sci Process 99:723–728CrossRefGoogle Scholar
  156. 156.
    Cao S, Hu B, Liu H (2009) Synthesis of pH-responsive crosslinked poly[styrene-co- (maleic sodium anhydride)] and cellulose composite hydrogel nanofibers by electrospinning. Polym Int 58:545–551CrossRefGoogle Scholar
  157. 157.
    Liebert T (2010) Cellulose solvents – remarkable history, bright future. In: Liebert TF, Heinze TJ, Edgar KJ (eds) Cellulose solvents, for analysis, shaping and chemical modification. American Chemical Society, Washington, DC, pp 3–54CrossRefGoogle Scholar
  158. 158.
    Sui X, Yuan J, Zhou M, Zhang J, Yang H, Yuan W, Wei Y, Pan C (2008) Synthesis of cellulose-graft-poly(N,N-dimethylamino-2-ethyl methacrylate) copolymers via homogeneous ATRP and their aggregates in aqueous media. Biomacromolecules 9:2615–2620PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Wondraczek H, Pfeifer A, Heinze T (2012) Water soluble photoactive cellulose derivatives, synthesis and characterization of mixed 2-[(4-methyl-2-oxo-2H-chromen-7-yl) oxy] acetic acid-(3-carboxypropyl) trimethylammonium chloride esters of cellulose. Cellulose 19:1327–1335CrossRefGoogle Scholar
  160. 160.
    Cai Z, Kim J (2008) Characteristics and performance of electroactive paper actuator made with cellulose/polyurethane semi-interpenetrating polymer networks. J Appl Polym Sci 109:3689–3695CrossRefGoogle Scholar
  161. 161.
    Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals, chemistry, self- assembly, and applications. Chem Rev 110(6):3479–3500PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Zoppe JO, Habibi Y, Rojas OJ, Venditti RA, Johansson L-S, Efimenko K, Österberg M, Laine J (2010) Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromolecules 11:2683–2691PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Azzam F, Heux L, Putaux J-L, Jean B (2010) Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals. Biomacromolecules 11:3652–3659PubMedCrossRefGoogle Scholar
  164. 164.
    Way AE, Hsu L, Shanmuganathan K, Weder C, Rowan SJ (2012) pH- responsive cellulose nanocrystal gels and nanocomposites. ACS Macro Lett 1:1001–1006CrossRefGoogle Scholar
  165. 165.
    Morandi G, Thielemans W (2012) Synthesis of cellulose nanocrystals bearing photocleavable grafts by ATRP. Polym Chem 3:1402–1407CrossRefGoogle Scholar
  166. 166.
    Pan K, Zhang X, Ren R, Cao B (2010) Double stimuli-responsive membranes grafted with block copolymer by ATRP method. J Membr Sci 356:133–137CrossRefGoogle Scholar
  167. 167.
    Qiu X, Ren X, Hu S (2012) Fabrication of dual-responsive cellulose-based membrane via simplified surface-initiated ATRP. Carbohydr Polym 92:1887–1895PubMedCrossRefGoogle Scholar
  168. 168.
    Gorey C, Escobar IC (2011) N-isopropylacrylamide (NIPAAM) modified cellulose acetate ultrafiltration membranes. J Membr Sci 383:272–279CrossRefGoogle Scholar
  169. 169.
    Kubota H, Suka IG, Kuroda S-I, Kondo T (2001) Introduction of stimuli- responsive polymers into regenerated cellulose film by means of photo-grafting. Eur Polym J 37:1367–1372CrossRefGoogle Scholar
  170. 170.
    Gorey C, Escobar IC, Gruden C, Coleman M, Mileyeva-Biebesheimer O (2008) Development of smart membrane filters for microbial sensing. Sep Sci Technol 43:4056–4074CrossRefGoogle Scholar
  171. 171.
    Isaad J, Achari AE (2011) Colorimetric sensing of cyanide anions in aqueous media based on functional surface modification of natural cellulose materials. Tetrahedron 67:4939–4947CrossRefGoogle Scholar
  172. 172.
    Karlsson JO, Andersson M, Berntsson P, Chihani T, Gatenholm P (1998) Swelling behavior of stimuli-responsive cellulose fibers. Polymer 39:3589–3596CrossRefGoogle Scholar
  173. 173.
    Peng J, Liu Q, Xu Z, Masliyah J (2012) Synthesis of interfacially active and magnetically responsive nanoparticles for multiphase separation applications. Adv Funct Mater 22:1732–1740CrossRefGoogle Scholar
  174. 174.
    Gaharwar AK, Wong JE, Müller-Schulte D, Bahadur D, Richtering W (2009) Magnetic nanoparticles encapsulated within a thermoresponsive polymer. J Nanosci Nanotechnol 9:5355–5361PubMedCrossRefGoogle Scholar
  175. 175.
    Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications properties and applications. Polymers 2:728–765CrossRefGoogle Scholar
  176. 176.
    Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. Bioresources 3:929–980Google Scholar
  177. 177.
    Khalil HPSA, Bhat AH, Yusra AFI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979CrossRefGoogle Scholar
  178. 178.
    Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602CrossRefGoogle Scholar
  179. 179.
    Zhang K, Wu XY (2004) Temperature and pH-responsive polymeric composite membranes for controlled delivery of proteins and peptides. Biomaterials 25:5281–5291PubMedCrossRefGoogle Scholar
  180. 180.
    Zhang K, Wu XY (2002) Modulated insulin permeation across a glucose-sensitive polymeric composite membrane. J Control Release 80:169–178PubMedCrossRefGoogle Scholar
  181. 181.
    Regmi BP, Monk J, El-Zahab B, Das S, Hung FR, Hayes DJ, Warner IM (2012) A novel composite film for detection and molecular weight determination of organic vapors. J Mater Chem 22:13732–13741CrossRefGoogle Scholar
  182. 182.
    Lin Y-Y, Chen K-S, Lin S-Y (1996) Development and investigation of a thermo- responsive cholesteryl oleyl carbonate-embedded membrane. J Control Release 41:163–170CrossRefGoogle Scholar
  183. 183.
    Lin S-Y, Lin H-L, Li M-J (2003) Reproducibility of temperature response and long-term stability of thermo-responsive membrane prepared by adsorption of binary liquid crystals. J Membr Sci 225:135–143CrossRefGoogle Scholar
  184. 184.
    Atyabi F, Khodaverdi E, Dinarvand R (2007) Temperature modulated drug permeation through liquid crystal embedded cellulose membranes. Int J Pharm 339:213–221PubMedCrossRefGoogle Scholar
  185. 185.
    Suedee R, Jantarat C, Lindner W, Viernstein H, Songkro S, Srichana T (2010) Development of a pH-responsive drug delivery system for enantioselective-controlled delivery of racemic drugs. J Control Release 142:122–131PubMedCrossRefGoogle Scholar
  186. 186.
    Waich K, Mayr T, Klimant I (2008) Fluorescence sensors for trace monitoring of dissolved ammonia. Talanta 77:66–72PubMedCrossRefGoogle Scholar
  187. 187.
    Mahadeva SK, Yun S, Kim J (2011) Flexible humidity and temperature sensor based on cellulose-polypyrrole nanocomposite. Sens Actuators A Phys 166:194–199CrossRefGoogle Scholar
  188. 188.
    Ichinose I, Kunitake T (1999) Polymerization-induced adsorption: a preparative method of ultrathin polymer films. Adv Mater 11:413–415CrossRefGoogle Scholar
  189. 189.
    Csoka L, Hoeger IC, Rojas OJ, Peszlen I, Pawlak JJ, Peralta PN (2012) Piezoelectric effect of cellulose nanocrystals thin films. ACS Macro Lett 1:867–870CrossRefGoogle Scholar
  190. 190.
    Kim J, Yun S, Mahadeva SK, Yun K, Yang SY, Maniruzzaman M (2010) Paper actuators made with cellulose and hybrid materials. Sensors 10:1473–1485PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Pandey JK, Takagi H, Nakagaito AN, Saini DR, Ahn S-H (2012) An overview on the cellulose based conducting composites. Compos Part B Eng 43:2822–2826CrossRefGoogle Scholar
  192. 192.
    Kim J, Wang N, Chen Y, Lee S-K, Yun G-Y (2007) Electroactive-paper actuator made with cellulose/NaOH/urea and sodium alginate. Cellulose 14:217–223CrossRefGoogle Scholar
  193. 193.
    Kim J, Yun S, Ounaies Z (2006) Discovery of cellulose as a smart material. Macromolecules 39:4202–4206CrossRefGoogle Scholar
  194. 194.
    Li J, Vadahanambi S, Kee C-D, Oh I-K (2011) Electrospun fullerenol-cellulose biocompatible actuators. Biomacromolecules 12:2048–2054PubMedCrossRefGoogle Scholar
  195. 195.
    Kunchornsup W, Sirivat A (2012) Physically cross-linked cellulosic gel via 1-butyl-3-methylimidazolium chloride ionic liquid and its electromechanical responses. Sens Actuators A Phys 175:155–164CrossRefGoogle Scholar
  196. 196.
    Kacmaz S, Ertekin K, Suslu A, Ergun Y, Celik E, Cocen U (2012) Sub- nanomolar sensing of ionic mercury with polymeric electrospun nanofibers. Mater Chem Phys 133:547–552CrossRefGoogle Scholar
  197. 197.
    Ongun MZ, Ertekin K, Gocmenturk M, Ergun Y, Suslu A (2012) Copper ion sensing with fluorescent electrospun nanofibers. Spectrochim Acta A Mol Biomol Spectrosc 90:177–185PubMedCrossRefGoogle Scholar
  198. 198.
    Schueren LVD, Clerck KD, Brancatelli G, Rosace G, Damme EV, Vos WD (2012) Novel cellulose and polyamide halochromic textile sensors based on the encapsulation of methyl red into a sol-gel matrix. Sensors Actuators B Chem 162:27–34CrossRefGoogle Scholar
  199. 199.
    Posey-Dowty JD, Watterson TL, Wilson AK, Edgar KJ, Shelton MC, Lingerfelt LR Jr (2007) Zero-order release formulations using a novel cellulose ester. Cellulose 14:73–83CrossRefGoogle Scholar
  200. 200.
    Karewicz A, Zasada K, Szczubiałka K, Zapotoczny S, Lach R, Nowakowska M (2010) Smart alginate–hydroxypropylcellulose microbeads for controlled release of heparin. Int J Pharm 385:163–169PubMedCrossRefGoogle Scholar
  201. 201.
    Tripathi GK, Singh S (2012) Formulation and in vitro evaluation of pH trigger polymeric blended buoyant beads of clarithromycin. Int J Pharm Tech Res 4:5–14Google Scholar
  202. 202.
    Tripathi G, Singh S (2010) Formulation and in vitro evaluation of pH sensitive oil entrapped polymeric blended gellan gum buoyant beads of clarithromycin. DARU J Pharm Sci 18:247–253Google Scholar
  203. 203.
    Ichikawa H, Fukumori Y (2000) A novel positively thermosensitive controlled- release microcapsule with membrane of nano-sized poly(nisopropylacrylamide) gel dispersed in ethylcellulose matrix. J Control Release 63:107–119PubMedCrossRefGoogle Scholar
  204. 204.
    Kettunen M, Silvennoinen RJ, Houbenov N, Nykänen A, Ruokolainen J, Sainio J, Pore V, Kemell M, Ankerfors M, Lindström T, Ritala M, Ras RHA, Ikkala O (2011) Photoswitchable superabsorbency based on nanocellulose aerogels. Adv Funct Mater 21:510–517CrossRefGoogle Scholar
  205. 205.
    Pääkk M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Linstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRefGoogle Scholar
  206. 206.
    Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499CrossRefGoogle Scholar
  207. 207.
    Katepetch C, Rujiravanit R (2011) Synthesis of magnetic nanoparticle into bacterial cellulose matrix by ammonia gas-enhancing in situ co-precipitation method. Carbohydr Polym 86:162–170CrossRefGoogle Scholar
  208. 208.
    Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose, fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRefGoogle Scholar
  209. 209.
    Shanmuganathan K, Capadona JR, Rowan SJ, Weder C (2010) Biomimetic mechanically adaptive nanocomposites. Prog Polym Sci 35:212–222CrossRefGoogle Scholar
  210. 210.
    Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41:2034–2057CrossRefGoogle Scholar
  211. 211.
    Behl M, Razzaq MY, Lendlein A (2010) Multifunctional shape-memory polymers. Adv Mater 22:3388–3410PubMedCrossRefGoogle Scholar
  212. 212.
    Huang WM, Yang B, Zhao Y, Ding Z (2010) Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review. J Mater Chem 20:3367–3381CrossRefGoogle Scholar
  213. 213.
    Zhu Y, Hu J, Luo H, Young RJ, Deng L, Zhang S, Fan Y, Ye G (2012) Rapidly switchable water-sensitive shape-memory cellulose/elastomer nano-composites. Soft Matter 8:2509–2517CrossRefGoogle Scholar
  214. 214.
    Han J, Zhu Y, Hu J, Luo H, Yeung L-Y, Li W, Meng Q, Ye G, Zhang S, Fan Y (2012) Morphology, reversible phase crystallization, and thermal sensitive shape memory effect of cellulose whisker/SMPU nanocomposites. J Appl Polym Sci 123:749–762CrossRefGoogle Scholar
  215. 215.
    Luo H, Hu J, Zhu Y (2011) Polymeric shape memory nanocomposites with heterogeneous twin switches. Macromol Chem Phys 212:1981–1986CrossRefGoogle Scholar
  216. 216.
    Luo H, Hu J, Zhu Y (2011) Tunable shape recovery of polymeric nano-composites. Mater Lett 65:3583–3585CrossRefGoogle Scholar
  217. 217.
    Auad ML, Contos VS, Nutt S, Aranguren MI, Marcovich NE (2008) Characterization of nanocellulose-reinforced shape memory polyurethanes. Polym Int 57:651–659CrossRefGoogle Scholar
  218. 218.
    Auad ML, Richardson T, Orts WJ, Medeiros E, Mattoso LHC, Mosiewicki MA, Marcovich NE, Aranguren MI (2011) Polyaniline-modified cellulose nanofibrils as reinforcement of a smart polyurethane. Polym Int 60:743–750CrossRefGoogle Scholar
  219. 219.
    Mendez J, Annamalai PK, Eichhorn SJ, Rusli R, Rowan SJ, Foster EJ, Weder C (2011) Bioinspired mechanically adaptive polymer nanocomposites with water- activated shape-memory effect. Macromolecules 44:6827–6835CrossRefGoogle Scholar
  220. 220.
    Capadona JR, Shanmuganathan K, Tyler DJ, Rowan SJ, Weder C (2008) Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319:1370–1374PubMedCrossRefGoogle Scholar
  221. 221.
    Shanmuganathan K, Capadona JR, Rowan SJ, Weder C (2010) Bio-inspired mechanically-adaptive nanocomposites derived from cotton cellulose whiskers. J Mater Chem 20:180–186CrossRefGoogle Scholar
  222. 222.
    Shanmuganathan K, Capadona JR, Rowan SJ, Weder C (2010) Stimuli- responsive mechanically adaptive polymer nanocomposites. ACS Appl Mater Interfaces 2:165–174PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Dagnon KL, Shanmuganathan K, Weder C, Rowan SJ (2012) Water-triggered modulus changes of cellulose nanofiber nanocomposites with hydrophobic polymer matrices. Macromolecules 45:4707–4715CrossRefGoogle Scholar
  224. 224.
    Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan- graft-poly(acrylic acid). Carbohydr Polym 87:2038–2045CrossRefGoogle Scholar
  225. 225.
    Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688CrossRefGoogle Scholar
  226. 226.
    Kamel S, Ali N, Jahangir K, Shah SM, El-Gendy AA (2008) Pharmaceutical significance of cellulose: a review. Express Polym Lett 2:758–778CrossRefGoogle Scholar
  227. 227.
    Edgar KJ (2007) Cellulose esters in drug delivery. Cellulose 14:49–64CrossRefGoogle Scholar
  228. 228.
    Murtaza G (2012) Ethylcellulose microparticles: a review. Acta Pol Pharm 69:11–22PubMedGoogle Scholar
  229. 229.
    Rogers TL, Wallick D (2012) Reviewing the use of ethylcellulose, methylcellulose and hypromellose in microencapsulation. Part 1, materials used to formulate microcapsules. Drug Dev Ind Pharm 38:129–157PubMedCrossRefGoogle Scholar
  230. 230.
    Rogers TL, Wallick D (2011) Reviewing the use of ethylcellulose, methylcellulose and hypromellose in microencapsulation. Part 2, techniques used to make microcapsules. Drug Dev Ind Pharm 37:1259–1271PubMedCrossRefGoogle Scholar
  231. 231.
    Rogers TL, Wallick D (2012) Reviewing the use of ethylcellulose, methylcellulose and hypromellose in microencapsulation. Part 3: applications for microcapsules. Drug Dev Ind Pharm 38:521–539PubMedCrossRefGoogle Scholar
  232. 232.
    Lecomte F, Siepmann J, Walther M, MacRae RJ, Bodmeier R (2005) pH- sensitive polymer blends used as coating materials to control drug release from spherical beads, importance of the type of core. Biomacromolecules 6:2074–2083PubMedCrossRefGoogle Scholar
  233. 233.
    Josephine LJJ, Yathish M, Wilson B, Premakumari KB (2012) Formulation and evaluation of microparticles containing curcumin for colorectal cancer. J Drug Deliv Ther 2:125–128Google Scholar
  234. 234.
    Wang J, Wu F-Q, Shi K-H, Wang X-H, Sun P-P (2004) Humidity sensitivity of composite material of lanthanum ferrite/polymer quaternary acrylic resin. Sensors Actuators B Chem 99:586–591CrossRefGoogle Scholar
  235. 235.
    Wang X, Guo Y, Li D, Chen H, Sun R-C (2012) Fluorescent amphiphilic cellulose nanoaggregates for sensing trace explosives in aqueous solution. Chem Commun 48:5569–5571CrossRefGoogle Scholar
  236. 236.
    Arias JL, López-Viota M, Delgado ÁV, Ruiz MA (2010) Iron/ethylcellulose (core/shell) nanoplatform loaded with 5-fluorouracil for cancer targeting. Colloids Surf B: Biointerfaces 77:111–116PubMedCrossRefGoogle Scholar
  237. 237.
    Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z (2011) Glutathione- responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J Control Release 152:2–12PubMedCrossRefGoogle Scholar
  238. 238.
    Delcea M, Moehwald H, Skirtach AG (2011) Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv Drug Deliv Rev 63:730–747PubMedCrossRefGoogle Scholar
  239. 239.
    Wohl BM, Engbersen JFJ (2012) Responsive layer-by-layer materials for drug delivery. J Control Release 158:2–14PubMedCrossRefGoogle Scholar
  240. 240.
    Manchun S, Dass CR, Sriamornsak P (2012) Targeted therapy for cancer using pH-responsive nanocarrier systems. Life Sci 90:381–387PubMedCrossRefGoogle Scholar
  241. 241.
    Fleige E, Quadir MA, Haag R (2012) Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds. Concepts and applications. Adv Drug Deliv Rev 64:866–884PubMedCrossRefGoogle Scholar
  242. 242.
    Sanna R, Sanna D, Alzari V, Nuvoli D, Scognamillo S, Piccinini M, Lazzari M, Gioffredi E, Malucelli G, Mariani A (2012) Synthesis and characterization of graphene-containing thermoresponsive nanocomposite hydrogels of poly (N vinlcaprolactam) prepared by frontal polymerization. J Polym Sci A Polym Chem 50:4110–4118CrossRefGoogle Scholar
  243. 243.
    Zhang J, Li X, Li X (2012) Stimuli-triggered structural engineering of synthetic and biological polymeric assemblies. Prog Polym Sci 37:1130–1176CrossRefGoogle Scholar
  244. 244.
    Felber AE, Dufresne M-H, Leroux J-C (2012) pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv Drug Deliv Rev 64:979–992PubMedCrossRefGoogle Scholar
  245. 245.
    Zhang Q, Ko NR, Oh JK (2012) Recent advances in stimuli-responsive degradable block copolymer micelles, synthesis and controlled drug delivery applications. Chem Commun 48:7542–7552CrossRefGoogle Scholar
  246. 246.
    Prabaharan M, Mano JF (2006) Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials. Macromol Biosci 6:991–1008PubMedCrossRefGoogle Scholar
  247. 247.
    Estrada RF, Rodríguez R, Castaño VM (2003) Smart polymeric membranes with adjustable pore size. Int J Polym Mater 52:833–843CrossRefGoogle Scholar
  248. 248.
    Cabrera RQ, Meersman F, McMillan PF, Dmitriev V (2011) Nanomechanical and structural properties of native cellulose under compressive stress. Biomacromolecules 12:2178–2183CrossRefGoogle Scholar
  249. 249.
    Lima MMDS, Borsali R (2004) Rodlike cellulose microcrystals, structure, properties, and applications. Macromol Rapid Commun 25:771–787CrossRefGoogle Scholar
  250. 250.
    Kim J, Seo YB (2002) Electro-active paper actuators. Smart Mater Struct 11:355–360CrossRefGoogle Scholar
  251. 251.
    Mahadeva SK, Yun K, Kim J, Kim J-H (2011) Highly durable, biomimetic electro-active paper actuator based on cellulose polypyrrole-ionic liquid (CPIL) nanocomposite. J Nanosci Nanotechnol 11:270–274PubMedCrossRefGoogle Scholar
  252. 252.
    Yun G-Y, Kim J, Kim J-H, Kim S-Y (2010) Fabrication and testing of cellulose EAPap actuators for haptic application. Sens Actuators A Phys A164:68–73CrossRefGoogle Scholar
  253. 253.
    Gao Y, Kuang Y, Guo Z-F, Guo Z, Krauss IJ, Xu B (2009) Enzyme-instructed molecular self-assembly confers nanofibers and a supramolecular hydrogel of taxol derivative. J Am Chem Soc 131:13576–13577PubMedCrossRefGoogle Scholar
  254. 254.
    Imran AB, Seki T, Takeoka Y (2010) Recent advances in hydrogels in terms of fast stimuli responsiveness and superior mechanical performance. Polym J 42:839–851CrossRefGoogle Scholar
  255. 255.
    Yetisen AK, Butt H, Volpatti LR, Pavlichenko I, Humar M, Kwok SSK, Koo K, Kim KS, Naydenova I, Khademhosseini A, Hahn SK, Yun SH (2016) Photonic hydrogel sensors. Biotechnol Adv 34(3):250–271PubMedCrossRefGoogle Scholar
  256. 256.
    Stuart MAC, Huck WT, Genzer J, Müller M, Ober C, Stamm M, Sukhorukow GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113PubMedCrossRefGoogle Scholar
  257. 257.
    Buenger D, Topuz F, Groll J (2012) Hydrogels in sensing applications. Prog Polym Sci 37:1678–1719CrossRefGoogle Scholar
  258. 258.
    Zhao Y, Wostyn K, de Schaetzen G, Schoonheydt RA (2003) The fabrication of photonic band gap materials with a two-dimensional defect. Appl Phys Lett 82:3764–3766CrossRefGoogle Scholar
  259. 259.
    Zhao Y, Zhao X, Gu Z (2010) Photonic crystals in bioassays. Adv Funct Mater 20:2970–2988CrossRefGoogle Scholar
  260. 260.
    Zhao Y, Zhao X, Tang B, Xu W, Gu Z (2010) Rapid and sensitive biomolecular screening with encoded macroporous hydrogel photonic beads. Langmuir 26:6111–6114PubMedCrossRefGoogle Scholar
  261. 261.
    Zhao Y, Zhao X, Tang B, Xu W, Li J, Hu J, Gu Z (2010) Quantum-dot-tagged bioresponsive hydrogel suspension array for multiplex label-free DNA detection. Adv Funct Mater 20:976–982CrossRefGoogle Scholar
  262. 262.
    Zhao Y, Xie Z, Gu H, Zhu C, Gu Z (2012) Bio-inspired variable structural color materials. Chem Soc Rev 41:3297–3317PubMedCrossRefGoogle Scholar
  263. 263.
    Zhao Y, Shang L, Cheng Y, Gu Z (2014) Spherical colloidal photonic crystals. Acc Chem Res 47:3632–3642PubMedCrossRefGoogle Scholar
  264. 264.
    Zhao Q, Yetisen AK, Anthony CJ, Fowler WR, Yun SH, Butt H (2015) Printable ink holograms. Appl Phys Lett 107:041115CrossRefGoogle Scholar
  265. 265.
    Zhao Q, Yetisen AK, Sabouri A, Yun SH, Butt H (2015) Printable nanophotonic devices via holographic laser ablation. ACS Nano 9:9062–9069PubMedCrossRefGoogle Scholar
  266. 266.
    Gerlach G, Arndt K-F (2009) Hydrogel sensors and actuators: engineering and technology. Springer Science & Business Media, HeidelbergGoogle Scholar
  267. 267.
    Naydenova I, Jallapuram R, Toal V, Martin S (2008) A visual indication of environmental humidity using a color changing hologram recorded in a self-developing photopolymer. Appl Phys Lett 92:031109CrossRefGoogle Scholar
  268. 268.
    Naydenova I, Jallapuram R, Toal V, Martin S (2009) Characterisation of the humidity and temperature responses of a reflection hologram recorded in acrylamide-based photopolymer. Sensors Actuators B139:35–38CrossRefGoogle Scholar
  269. 269.
    Naydenova I, Jallapuram R, Martin S, Toal V (2011) Holographic humidity sensors. In: Okada CT (ed) Humidity sensors: types, nanomaterials and environmental monitoring. Nova Science Publishers, Hauppauge, pp 117–142Google Scholar
  270. 270.
    Yetisen AK (2015) Fundamentals of holographic sensing. Springer International Publishing, Cham, pp 27–51Google Scholar
  271. 271.
    Yetisen AK (2015) Holographic glucose sensors. Holographic sensors. Springer International Publishing, Cham, pp 101–134Google Scholar
  272. 272.
    Yetisen AK (2015) Holographic metal ion sensors. Holographic sensors. Springer International Publishing, Cham, pp 85–99Google Scholar
  273. 273.
    Yetisen AK (2015) Holographic pH sensors. Holographic sensors. Springer International Publishing, Cham, pp 53–83Google Scholar
  274. 274.
    Yetisen AK (2015) Mobile medical applications. Holographic sensors. Springer International Publishing, Cham, pp 135–148Google Scholar
  275. 275.
    Yetisen AK (2015) Point-of-care diagnostics. Holographic sensors. Springer International Publishing, Cham, pp 1–25Google Scholar
  276. 276.
    Yetisen AK (2015) The prospects for holographic sensors. Holographic sensors. Springer International Publishing, Cham, pp 149–162Google Scholar
  277. 277.
    Yetisen AK, Volpatti LR (2014) Patent protection and licensing in microfluidics. Lab Chip 14:2217–2225PubMedCrossRefGoogle Scholar
  278. 278.
    Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13:2210–2251PubMedCrossRefGoogle Scholar
  279. 279.
    Tian T, Li X, Cui J, Li J, Lan Y, Wang C, Zhang M, Wang H, Li G (2014) Highly sensitive assay for acetylcholinesterase activity and inhibition based on a specifically reactive photonic nanostructure. ACS Appl Mater Interfaces 6:15456–15465PubMedCrossRefGoogle Scholar
  280. 280.
    Cai Z, Liu YJ, Lu X, Teng J (2013) In situ “doping” inverse silica opals with size controllable gold nanoparticles for refractive index sensing. J Phys Chem C 117:9440–9445CrossRefGoogle Scholar
  281. 281.
    Cai Z, Zhang J-T, Xue F, Hong Z, Punihaole D, Asher SA (2014) 2D photonic crystal protein hydrogel coulometer for sensing serum albumin ligand binding. Anal Chem 86:4840–4847PubMedCrossRefGoogle Scholar
  282. 282.
    Cai Z, Smith NL, Zhang J-T, Asher SA (2015) Two-dimensional photonic crystal chemical and biomolecular sensors. Anal Chem 87:5013–5025PubMedCrossRefGoogle Scholar
  283. 283.
    Baruah U, Chowdhury D (2016) Functionalized graphene oxide quantum dot–PVA hydrogel: a colorimetric sensor for Fe2+, Co2+ and Cu2+ ions. Nanotechnology 27(14):145501PubMedCrossRefPubMedCentralGoogle Scholar
  284. 284.
    El-Salmawi KM (2007) Application of polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC) hydrogel produced by conventional crosslinking or by freezing and thawing. J Macromol Sci Part A Pure Appl Chem 44(6):619–624CrossRefGoogle Scholar
  285. 285.
    George J, Sabapathi SN (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54PubMedPubMedCentralCrossRefGoogle Scholar
  286. 286.
    Xie X, Ma D, Zhang L-M (2015) Fabrication and properties of a supramolecular hybrid hydrogel doped with CdTe quantum dots. RSC Adv 5:58746–58754CrossRefGoogle Scholar
  287. 287.
    Chang C, Peng J, Zhang L, Pang DW (2009) Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. J Mater Chem 9:7771–7776CrossRefGoogle Scholar
  288. 288.
    Palomero CR, Martínez SB, Soriano ML, Valcárcel M (2017) Fluorescent nanocellulosic hydrogels based on graphene quantum dots for sensing laccase. Anal Chim Acta 974(29):93–99CrossRefGoogle Scholar
  289. 289.
    Palomero CR, Soriano ML, Martínez SB, Valcárcel M (2017) Photoluminescent sensing hydrogel platform based on the combination of nanocellulose and S,N-codoped graphene quantum dots. Sensors Actuators B Chem 245:946–953CrossRefGoogle Scholar
  290. 290.
    Thoniyot P, Tan MJ, Karim AA, Young D J, Loh X J (2015) Nanoparticle–Hydrogel Composites: Concept, Design, and Applications of These Promising, Multi-Functional Materials, Adv. Sci. 2(1400010):1–13PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Shah M. Reduwan Billah
    • 1
    • 2
    • 3
  • Md. Ibrahim H. Mondal
    • 4
  • Sazzad H. Somoal
    • 5
  • M. Nahid Pervez
    • 3
  1. 1.CCIRA UK LimitedGalashielsUK
  2. 2.Department of ChemistryDurham UniversityDurhamUK
  3. 3.School of Textiles and DesignHeriot-Watt UniversityGalashielsUK
  4. 4.Polymer and Textiles Research Lab, Department of Applied Chemistry and Chemical EngineeringRajshahi UniversityRajshahiBangladesh
  5. 5.Institute for Environmental SciencesUniversity of Koblenz-LandauLandauGermany

Personalised recommendations